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Abstract It is known that the analysis to tackle with non-symmetric cone optimization is quite different

from the way to deal with symmetric cone optimization due to the discrepancy between these types of cones.

However, there are still common concepts for both optimization problems, for example, the decomposition

with respect to the given cone, smooth and nonsmooth analysis for the associated conic function, conic-

convexity, conic-monotonicity and etc. In this paper, motivated by Chares Robert’s thesis [Chares, R.: Cones

and interior-point algorithms for structured convex optimization involving powers and exponentials. PhD

thesis, UCL-Universite Catholique de Louvain (2009)], we consider the decomposition issue of two core

non-symmetric cones, in which two types of decomposition formulae will be proposed, one is adapted from

the well-known Moreau decomposition theorem and the other follows from geometry properties of the given

cones. As a byproduct, we also establish the conic functions of these cones and generalize the power cone

case to its high-dimensional counterpart.

Keywords Moreau decomposition theorem · power cone · exponential cone · non-symmetric cones.

Mathematics Subject Classification (2000) 49M27 · 90C25.

1 Introduction

Consider the following two core non-symmetric cones

Kα :=

{
(x1, x̄) ∈ R× R2

∣∣∣∣ |x1| ≤ x̄α1
1 x̄α2

2 , x̄1 ≥ 0, x̄2 ≥ 0

}
, (1)

Kexp := cl

{
(x1, x̄) ∈ R× R2

∣∣∣∣x1 ≥ x̄2 · exp

(
x̄1

x̄2

)
, x̄2 > 0, x1 ≥ 0

}
, (2)
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where x̄ := (x̄1, x̄2)T ∈ R2, α := (α1, α2)T ∈ R2, α1, α2 ∈ (0, 1), α1 + α2 = 1 and cl(Ω) is the closure of Ω.

We call Kα the power cone and Kexp the exponential cone1, whose graphs are depicted in Figure 1.

Fig. 1 The power cone Kα (left) and the exponential cone Kexp (right).

1.1 Motivations and Literatures

Why do we pay attention to these two core non-symmetric cones? There are two main reasons. In theory,

R. Chares [4] proposes two important concepts (i.e., α-representable and extended α-representable, see

Appendix 6.1) involving powers and exponentials and plenty of famous cones can be generated from these

two cones such as second-order cones [1,22,14,7,9,24], p-order cones [2,27,44], geometric cones [3,15,16,

26], Lp cones [17] and etc., one can refer to [4, chapter 4] for more examples. In applications, many practical

problems can be cast into optimization models involving the power cone constraints and the exponential cone

constraints, such as location problems [4,19] and geometric programming problems [3,31,34] (see Appendix

6.2). Therefore, it becomes quite obvious that there is a great demand for providing systematic studies for

these cones.

In the past three decades, a great deal of mathematical effort in conic programming have been devoted

to the study of symmetric cones and it has been made extensive progress [8,13,30,29,33,38], particularly

for the second-order cone (SOC) [1,22,14,7,9,24] and the positive semi-definite matrix cone (PSD) [41,37,

40,35,39]. For example, consider the second-order cone

Ln := {(x1, x̄) ∈ R× Rn−1 |x1 ≥ ‖x̄‖}.

For any given z = (z1, z̄) ∈ R× Rn−1, its decomposition with respect to Ln has the form

z = λ1(z) · u(1)
z + λ2(z) · u(2)

z , (3)

where λi(z) := z1 + (−1)i‖z̄‖ and u
(i)
z is equal to 1

2

(
1, (−1)i z̄

‖z̄‖

)
, if z̄ 6= 0; 1

2

(
1, (−1)iw

)
, otherwise, which

is applicable for i = 1, 2 with w ∈ Rn−1 being any unit vector. For any scalar function f : R → R, the

associated conic function fsoc(z) (called the SOC function) is given by

fsoc(z) = f(λ1(z)) · u(1)
z + f(λ2(z)) · u(2)

z . (4)

1 The definition of Kexp used in (2) comes from [4, Section 4.1], which has a slight difference from another form in [34,
Definition 2.1.2] as

Kexp := cl

{
(x1, x̄) ∈ R× R2

∣∣∣∣∣x1 ≥ x̄2 · exp

(
x̄1

x̄2

)
, x̄2 > 0

}
.

However, one can observe that these two definitions coincide with each other.
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In light of the decomposition formula and its conic function, one can further establish their analytic prop-

erties (i.e., projection mapping, cone-convexity, conic-monotonicity) and design numerical algorithms (i.e.,

proximal-like algorithms and interior-point algorithms), see Figure 2 for their relations and refer to the

monograph [10] for more details. Similar results have also been established for the PSD cone [40,43] and

symmetric cones [38,13]. Therefore, the past experience [13,43,10] indicates that how to derive the associ-

ated decomposition expression with respect to a given cone as the form (3) at a low cost becomes the most

important issue in the whole picture of researches.

Fig. 2 The relations between the decomposition with respect to SOC and other topics.

As a fundamental tool in optimization, Moreau decomposition theorem [25] characterizes the key rela-

tionship between the decomposition with respect to a closed convex cone and its projection mappings. More

concretely, for any given z ∈ Rn, it can be uniquely decomposed into

z = ΠK(z) +ΠK◦(z) = ΠK(z)−ΠK∗(−z), (5)

where ΠK(z) is the projection mapping of z ∈ Rn onto K and K◦ is the polar cone of K, i.e.,

K◦ := {y ∈ Rn | xT y ≤ 0, ∀x ∈ K}.

In addition, K∗ is the dual cone of K and satisfies the relation K∗ = −K◦. It follows from (5) that if these

projection mappings have closed-form expressions, the decomposition issue can be simply solved by this

classical theorem. However, for most non-symmetric cones (except for the circular cone [6,45], see Appendix

6.3), their projection mappings are usually not explicit, such as the power cone Kα [19, section 2] and the

exponential cone Kexp [26, section 6]. Thus, one cannot employ the Moreau decomposition theorem directly

and continue subsequent studies on optimization problems involved with these non-symmetric cones. This

is the main and big hurdle for non-symmetric cone optimization problems.

In reality, there are plenty of non-symmetric cones in the literatures, such as homogeneous cones [5,

21,42], matrix norm cones [11], p-order cones [2,17,44,27], hyperbolicity cones [18,20,32], circular cones

[6,45] and copositive cones [12], etc. Unlike the symmetric cone optimization, there seems no systematic

study due to the various features and very few algorithms are proposed to solve optimization problems

with these non-symmetric cones constraints, except for some interior-point type methods [44,5,28,36,23].

For example, Xue and Ye [44] study an optimization problem of minimizing a sum of p-norms, in which

two new barrier functions are introduced for p-order cones and a primal-dual potential reduction algorithm

is presented. Chua [5] combines the T-algebra with the primal-dual interior-point algorithm to solve the

homogeneous conic programming problems. Based on the concept of self-concordant barriers and the efficient
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computational experience of the long path-following steps, Nesterov [28] proposes a new predictor-corrector

path-following method with an additional primal-dual lifting process (called Phase I). Skajaa and Ye [36]

present a homogeneous interior-point algorithm for non-symmetric convex conic optimization, in which no

Phase I method is needed. Recently, Karimi and Tuncel [23] present a primal-dual interior-point methods

for convex optimization problems, in which a new concept called Domain-Driven Setup plays a crucial role

in their theoretical analysis.

In contrast to these interior-point type methods, we pay more attention to the decomposition issue of

the given cones. It is worth noting that the decompositions with respect to the second-order cone Ln and

the circular cone Lθ (see Eq. (3) and Eq. (51)) show that any given point can be divided into two parts, one

lies in the boundary of the given cone (i.e., u
(1)
z ∈ ∂Ln, ũ

(1)
z ∈ ∂Lθ, where ∂Ω is the boundary of Ω) and

the other comes from the boundary of the given cone (i.e., u
(2)
z ∈ ∂Ln) or its polar (i.e., ũ

(2)
z ∈ ∂L◦θ). One

can easily verify these results by the Moreau decomposition theorem in some cases (for example, the given

point lies out the union of the given cone and its polar), but it is amazing that these decompositions are

satisfied in all cases! These observations motivate us to study the boundary structures of the given cones

more carefully.

1.2 Contributions and Contents

In this paper, we successfully explore two new types of decompositions with respect to the power cone Kα
and the exponential cone Kexp, one is adapted from the well-known Moreau decomposition theorem, which

looks like

z = sx · x+ sy · y, x ∈ ∂K, y ∈ ∂K◦, (sx, sy) 6= (0, 0) (6)

and the other follows from geometric structures of the given cone, i.e.,

z = sx · x+ sy · y, x ∈ ∂K, y ∈ ∂K, (sx, sy) 6= (0, 0), (7)

where z ∈ Rn, sx, sy ∈ R, x, y ∈ Rn, K has two choices, namely Kα or Kexp, as defined in (1) and (2). In

the sequel, we call (6) the Type I decomposition and (7) the Type II decomposition, respectively. To our

best knowledge, no results about the decompositions with respect to these two non-symmetric cones have

been reported. Hence, the purpose of this paper aims to fill this gap and the contributions of our research

can be summarized as follows.

(a) We propose a more compact description of the boundary for these two cones.

(b) Two types of decompositions with respect to Kα,Kexp are presented, which are do-able and computable.

As a byproduct, the decomposition expressions with respect to the high-dimensional power cone are also

derived.

(c) We establish the conic functions of the power cone Kα and the exponential cone Kexp based on their

decomposition formulae.

The remainder of this paper is organized as follows. In Sections 2 and 3, we present the decomposition

formulae with respect to the power cone Kα and the exponential cone Kexp, respectively. In Section 4, we

discuss some applications of these decompositions. Finally, we draw some concluding remarks in Section 5.

2 The decompositions with respect to the power cone Kα

In this section, we present two types of decompositions with respect to the power cone Kα. Before that, we

present some analytic properties of Kα in the following lemmas.
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Lemma 1 Kα is a closed convex cone.

Proof It can be easily verified by definition, see Appendix 6.4 for more details. ut

Lemma 2 The dual cone K∗α can be described as

K∗α =

{
(x1, x̄) ∈ R× R2

∣∣∣∣ |x1| ≤
(
x̄1

α1

)α1
(
x̄2

α2

)α2

, x̄1 ≥ 0, x̄2 ≥ 0

}
,

where x̄ := (x̄1, x̄2)T ∈ R2, α := (α1, α2)T ∈ R2, α1, α2 ∈ (0, 1), α1 + α2 = 1.

Proof We refer the readers to [4, Theorem 4.3.1] for its verification. ut

From the relation K◦α = −K∗α and Lemma 2, the polar cone K◦α has the following closed-form expression.

Corollary 1 The polar cone K◦α is given by

K◦α =

{
(x1, x̄) ∈ R× R2

∣∣∣∣ |x1| ≤
(
−x̄1

α1

)α1
(
−x̄2

α2

)α2

, x̄1 ≤ 0, x̄2 ≤ 0

}
.

We now proceed to identify the structures of the power cone Kα, its dual K∗α and its polar K◦α more

clearly, particularly for their interiors and boundaries.

Lemma 3 The interior of the power cone Kα, its dual K∗α and its polar K◦α , denoted by intKα, intK∗α
and intK◦α, are respectively given by

intKα =

{
(x1, x̄) ∈ R× R2

∣∣∣∣ |x1| < σα(x̄), x̄1 > 0, x̄2 > 0

}
, (8)

intK∗α =

{
(x1, x̄) ∈ R× R2

∣∣∣∣ |x1| < ηα(x̄), x̄1 > 0, x̄2 > 0

}
, (9)

intK◦α =

{
(x1, x̄) ∈ R× R2

∣∣∣∣ |x1| < ηα(−x̄), x̄1 < 0, x̄2 < 0

}
, (10)

where

σα(x̄) := x̄α1
1 x̄α2

2 , ηα(x̄) :=

(
x̄1

α1

)α1
(
x̄2

α2

)α2

. (11)

Proof By definition, (x1, x̄) is an element of intKα if and only if there exists an open neighborhood of

(x1, x̄) ∈ R × R2 entirely included in Kα. Let us take (x1, x̄) ∈ Kα. For any given strict positive scalars

x̄1, x̄2 ∈ R, it is easy to see that (0, 0, 0), (0, x̄1, 0) and (0, 0, x̄2) are all outside of intKα, due to the

observation that every open neighborhood with respect to each of these points contains a point with the

negative x̄1 or x̄2 component. For a point (x1, x̄1, x̄2) ∈ R×R2 such that σα(x̄) = |x1| with x̄1, x̄2 > 0, where

σα(x̄) is defined as in (11). In this case, we can take a point (x′1, x̄
′
1, x̄
′
2) with 0 < x̄′1 < x̄1, 0 < x̄′2 < x̄2,

|x′1| > |x1| in every open neighborhood of (x1, x̄1, x̄2) ∈ R × R2, which implies that |x′1| > |x1| = σα(x̄) >

σα(x̄′), i.e., the point (x′1, x̄
′
1, x̄
′
2) can not belong to Kα and hence (x1, x̄1, x̄2) /∈ intKα.

Next, we turn to show that all the remaining points that do not satisfy the above two cases, i.e., the points

in the right-hand side of (8), belong to the interior of Kα. For sufficiently small scalar ε ∈ (0,min{x̄1, x̄2}),
let Bε(x1,x̄) be a neighborhood of (x1, x̄) with the form

Bε(x1,x̄) :=

{
(x′1, x̄

′) ∈ R× R2

∣∣∣∣ 0 ≤ |x1| − ε ≤ |x′1| ≤ |x1|+ ε, 0 < x̄i − ε ≤ x̄′i ≤ x̄i + ε, i = 1, 2

}
.
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Taking (x1, x̄) ∈ R×R2 from the right-hand side of (8), i.e., σα(x̄) > |x1|, x̄i > 0, i = 1, 2. For all elements

(x′1, x̄
′) ∈ Bε(x1,x̄), we have

|x′1| − σα(x̄′) ≤ |x̄1|+ ε− (x̄′1)α1(x̄′2)α2 ≤ |x̄1|+ ε− (x̄1 − ε)α1(x̄2 − ε)α2 . (12)

In addition, letting ε→ 0, we obtain

lim
ε→0

(|x̄1|+ ε− (x̄1 − ε)α1(x̄2 − ε)α2) = |x̄1| − σα(x̄) < 0.

Therefore, there exists a scalar ε∗ such that |x̄1|+ ε∗ − (x̄1 − ε∗)α1(x̄2 − ε∗)α2 < 0. This together with (12)

imply that

|x′1| − σα(x̄′) < 0, ∀(x′1, x̄′) ∈ Bε(x1,x̄),

which is sufficient to show that Bε(x1,x̄) is entirely included in Kα and hence (x1, x̄) ∈ intKα.

Applying a similar way to K∗α and K◦α, their interiors can also be verified as the right-hand side of (9)

and (10). ut

From the proof of Lemma 3, we further define the following sets

S1 :=
{

(x1, x̄) ∈ R× R2 | x1 = 0, x̄1 > 0, x̄2 = 0
}
,

S2 :=
{

(x1, x̄) ∈ R× R2 | x1 = 0, x̄1 = 0, x̄2 > 0
}
,

S3 :=
{

(x1, x̄) ∈ R× R2 | |x1| = σα(x̄), x̄1 > 0, x̄2 > 0
}
,

S4 :=
{

(x1, x̄) ∈ R× R2 | |x1| = ηα(x̄), x̄1 > 0, x̄2 > 0
}
,

T1 :=
{

(x1, x̄) ∈ R× R2 | x1 = 0, x̄1 < 0, x̄2 = 0
}

= −S1,
T2 :=

{
(x1, x̄) ∈ R× R2 | x1 = 0, x̄1 = 0, x̄2 < 0

}
= −S2,

T3 :=
{

(x1, x̄) ∈ R× R2 | |x1| = ηα(−x̄), x̄1 < 0, x̄2 < 0
}

= −S4.

(13)

Then, the boundary of Kα,K∗α and K◦α can be stated in a more compact form.

Lemma 4 The boundary of Kα and K∗α, denoted by ∂Kα and ∂K∗α, are respectively given by

∂Kα := S1 ∪ S2 ∪ S3 ∪ {0}, ∂K∗α := S1 ∪ S2 ∪ S4 ∪ {0}.

Similarly, the boundary of K◦α, denoted by ∂K◦α, can be formulated as

∂K◦α := T1 ∪ T2 ∪ T3 ∪ {0}.

Remark 1 It follows that the union set Kα ∪ K◦α can be divided into seven parts

Kα ∪ K◦α = S1 ∪ S2 ∪ T1 ∪ T2 ∪ P1 ∪ P2 ∪ {0},

where
P1 :=

{
(x1, x̄) ∈ R× R2 | |x1| ≤ σα(x̄), x̄1 > 0, x̄2 > 0

}
,

P2 :=
{

(x1, x̄) ∈ R× R2 | |x1| ≤ ηα(−x̄), x̄1 < 0, x̄2 < 0
}
.

In addition, the boundary of Kα and its polar K◦α are depicted in Figure 3.

In order to make the classifications clear and neat, we adapt some notations as follows:

z := (z1, z̄) ∈ R× R2, z̄ := (z̄1, z̄2)T ∈ R2, z̄min := min{z̄1, z̄2}, z̄max := max{z̄1, z̄2}. (14)

Consequently, we divide the space R× R2 into the following four blocks

Block I : B1 :=
{

(z1, z̄) ∈ R× R2 | z̄min · z̄max > 0 or (z1 6= 0 and z̄min = z̄max = 0)
}
.

Block II : B2 :=
{

(z1, z̄) ∈ R× R2 | z̄min · z̄max = 0 and z̄min + z̄max 6= 0
}
.

Block III : B3 :=
{

(z1, z̄) ∈ R× R2 | z̄min · z̄max < 0
}
.

Block IV : B4 :=
{

(z1, z̄) ∈ R× R2 | z1 = 0 and z̄min = z̄max = 0
}
.

(15)

The subcases of these blocks with respect to Kα can be found in Table 1.
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Fig. 3 The different parts of ∂Kα (left) and ∂K◦α (right).

Table 1 The subcases of each block in (15) with respect to Kα.

B1 B2 B3 B4

(B11) z1 free, z̄1 > 0, z̄2 > 0 (B21) z1 free, z̄1 = 0, z̄2 > 0 (B31) z1 free, z̄1 < 0, z̄2 > 0 (B4) z1 = 0, z̄1 = 0, z̄2 = 0
(B12) z1 free, z̄1 < 0, z̄2 < 0 (B22) z1 free, z̄1 > 0, z̄2 = 0 (B32) z1 free, z̄1 > 0, z̄2 < 0
(B13) z1 6= 0, z̄1 = 0, z̄2 = 0 (B23) z1 free, z̄1 = 0, z̄2 < 0

(B24) z1 free, z̄1 < 0, z̄2 = 0

2.1 The Type I decomposition with respect to the power cone Kα

In this subsection, we present the Type I decomposition with respect to the power cone Kα. To proceed, we

discuss four cases, in which the sets Si ⊂ K (i = 1, 2, 3, 4) and Tj ⊂ ∂K◦ (j = 1, 2, 3) are defined as in (13).

Case 1: (z1, z̄) ∈ B1.

(a) z̄min > 0. In this subcase, (z1, z̄) ∈ B11, i.e., z̄1 > 0, z̄2 > 0, which implies σα(z̄) > 0 and ηα(z̄) > 0.

Then, we take x = ẋ(B1,a), y = ẏ(B1,a) and sx = ṡ
(B1,a)
x , sy = ṡ

(B1,a)
y , where

ẋ(B1,a) :=

[
1
z̄

σα(z̄)

]
∈ S3, ẏ

(B1,a) :=

[
1

− z̄
ηα(z̄)

]
∈ T3. (16)

ṡ(B1,a)
x :=

z1 + ηα(z̄)

σα(z̄) + ηα(z̄)
· σα(z̄), ṡ(B1,a)

y :=
z1 − σα(z̄)

σα(z̄) + ηα(z̄)
· ηα(z̄). (17)

It is easy to show that the above setting satisfies the decomposition formula (6).

(b) z̄max < 0. Similar to the argument in Case 1 (a), (z1, z̄) ∈ B12, i.e., z̄1 < 0, z̄2 < 0, which implies

σα(−z̄) > 0 and ηα(−z̄) > 0. In this subcase, we set x = ẋ(B1,b), y = ẏ(B1,b) and sx = ṡ
(B1,b)
x ,

sy = ṡ
(B1,b)
y , where

ẋ(B1,b) :=

[
1
−z̄

σα(−z̄)

]
∈ S3, ẏ

(B1,b) :=

[
1
z̄

ηα(−z̄)

]
∈ T3. (18)

ṡ(B1,b)
x :=

z1 − ηα(−z̄)
σα(−z̄) + ηα(−z̄) · σα(−z̄), ṡ(B1,b)

y :=
z1 + σα(−z̄)

σα(−z̄) + ηα(−z̄) · ηα(−z̄). (19)

(c) z1 6= 0 and z̄min = z̄max = 0. In this subcase, (z1, z̄) ∈ B13, which implies σα(z̄) = 0 and ηα(z̄) = 0.

Therefore, we set x = ẋ(B1,c), y = ẏ(B1,c) and sx = ṡ
(B1,c)
x , sy = ṡ

(B1,c)
y , where

ẋ(B1,c) :=

[
1
1

σα(1)

]
∈ S3, ẏ

(B1,c) :=

[
1

− 1
ηα(1)

]
∈ T3, (20)

ṡ(B1,c)
x :=

z1

σα(1) + ηα(1)
· σα(1), ṡ(B1,c)

y :=
z1

σα(1) + ηα(1)
· ηα(1) (21)

with 1 := (1, 1)T ∈ R2.
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Case 2: (z1, z̄) ∈ B2.

(a) z̄min = 0, z̄max > 0. In this subcase, (z1, z̄) ∈ B21 or (z1, z̄) ∈ B22. Therefore, we set x = ẋ(B2,a),

y = ẏ(B2,a) and sx = 1, sy = 1, where ẋ(B2,a) = (ẋ
(B2,a)
1 , ˙̄x

(B2,a)
) and ẏ(B2,a) = (ẏ

(B2,a)
1 , ˙̄y

(B2,a)
) with

ẋ
(B2,a)
1 := z1, ˙̄x

(B2,a)
:=



[(
|z1|
z̄
α2
2

) 1
α1

z̄2

]
if (z1, z̄) ∈ B21,[

z̄1(
|z1|
z̄
α1
1

) 1
α2

]
if (z1, z̄) ∈ B22,

(22)

ẏ
(B2,a)
1 := 0, ˙̄y

(B2,a)
:=



[
−
(
|z1|
z̄
α2
2

) 1
α1

0

]
if (z1, z̄) ∈ B21,[

0

−
(
|z1|
z̄
α1
1

) 1
α2

]
if (z1, z̄) ∈ B22.

(23)

It is easy to see that

(a) (z1, z̄) ∈ B21, z1 = 0⇒ x ∈ S2, y = 0; (b) (z1, z̄) ∈ B21, z1 6= 0⇒ x ∈ S3, y ∈ T1;
(c) (z1, z̄) ∈ B22, z1 = 0⇒ x ∈ S1, y = 0; (d) (z1, z̄) ∈ B22, z1 6= 0⇒ x ∈ S3, y ∈ T2.

(b) z̄min < 0, z̄max = 0. In this subcase, (z1, z̄) ∈ B23 or (z1, z̄) ∈ B24. We set x = ẋ(B2,b), y = ẏ(B2,b) and

sx = −1, sy = −1, where ẋ(B2,b) = (ẋ
(B2,b)
1 , ˙̄x

(B2,b)) and ẏ(B2,b) = (ẏ
(B2,b)
1 , ˙̄y

(B2,b)) with

ẋ
(B2,b)
1 := −z1, ˙̄x

(B2,b) :=



[(
|z1|

(−z̄2)α2

) 1
α1

−z̄2

]
if (z1, z̄) ∈ B23,[ −z̄1(

|z1|
(−z̄1)α1

) 1
α2

]
if (z1, z̄) ∈ B24,

(24)

ẏ
(B2,b)
1 := 0, ˙̄y

(B2,b) :=



[
−
(
|z1|

(−z̄2)α2

) 1
α1

0

]
if (z1, z̄) ∈ B23,[

0

−
(
|z1|

(−z̄1)α1

) 1
α2

]
if (z1, z̄) ∈ B24.

(25)

Similar to the arguments in Case 2 (a), we obtain

(a) (z1, z̄) ∈ B23, z1 = 0⇒ x ∈ S2, y = 0; (b) (z1, z̄) ∈ B23, z1 6= 0⇒ x ∈ S3, y ∈ T1;
(c) (z1, z̄) ∈ B24, z1 = 0⇒ x ∈ S1, y = 0; (d) (z1, z̄) ∈ B24, z1 6= 0⇒ x ∈ S3, y ∈ T2.

Case 3: (z1, z̄) ∈ B3. In this subcase, (z1, z̄) ∈ B31 or (z1, z̄) ∈ B32. We set x = ẋ(B3) ∈ ∂Kα, y = ẏ(B3) ∈
∂K◦α and sx = 1, sy = 1, where ẋ(B3) = (ẋ

(B3)
1 , ˙̄x

(B3)
) and ẏ(B3) = (ẏ

(B3)
1 , ˙̄y

(B3)
) with

ẋ
(B3)
1 := z1, ˙̄x

(B3)
:=



[(
|z1|
z̄
α2
2

) 1
α1

z̄2

]
if z ∈ B31,[

z̄1(
|z1|
z̄
α1
1

) 1
α2

]
if z ∈ B32,

(26)

ẏ
(B3)
1 := 0, ˙̄y

(B3)
:=



[
z̄1 −

(
|z1|
z̄
α2
2

) 1
α1

0

]
if z ∈ B31,[

0

z̄2 −
(
|z1|
z̄
α1
1

) 1
α2

]
if z ∈ B32.

(27)

More concretely, we obtain

(a) (z1, z̄) ∈ B31, z1 = 0⇒ x ∈ S2, y ∈ T1; (b) (z1, z̄) ∈ B31, z1 6= 0⇒ x ∈ S3, y ∈ T1;
(c) (z1, z̄) ∈ B32, z1 = 0⇒ x ∈ S1, y ∈ T2; (d) (z1, z̄) ∈ B32, z1 6= 0⇒ x ∈ S3, y ∈ T2.
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Case 4: (z1, z̄) ∈ B4. In this subcase, we set x = ẋ(B4), y = ẏ(B4) and sx = 1, sy = 1, where

ẋ(B4) :=

 0
1
0

 ∈ S1, ẏ(B4) :=

 0
−1
0

 ∈ T1, (28)

or

ẋ(B4) :=

 0
0
1

 ∈ S2, ẏ(B4) :=

 0
0
−1

 ∈ T2. (29)

To sum up these discussions, we present the Type I decomposition with respect to the power cone Kα
in the following theorem.

Theorem 1 For any given z = (z1, z̄) ∈ R× R2, its Type I decomposition with respect to Kα is given by

(a) If z ∈ B1, then

z =


ṡ
(B1,a)
x · ẋ(B1,a) + ṡ

(B1,a)
y · ẏ(B1,a), if z ∈ B11,

ṡ
(B1,b)
x · ẋ(B1,b) + ṡ

(B1,b)
y · ẏ(B1,b), if z ∈ B12,

ṡ
(B1,c)
x · ẋ(B1,c) + ṡ

(B1,c)
y · ẏ(B1,c), if z ∈ B13,

where ẋ(B1,a), ẏ(B1,a), ṡ
(B1,a)
x , ṡ

(B1,a)
y are defined as in (16)-(17), ẋ(B1,b), ẏ(B1,b), ṡ

(B1,b)
x , ṡ

(B1,b)
y are

defined as in (18)-(19) and ẋ(B1,c), ẏ(B1,c), ṡ
(B1,c)
x , ṡ

(B1,c)
y are defined as in (20)-(21).

(b) If z ∈ B2, then

z =

{
ẋ(B2,a) + ẏ(B2,a), if z ∈ B21 or z ∈ B22,

(−1) · ẋ(B2,b) + (−1) · ẏ(B2,b), if z ∈ B23 or z ∈ B24,

where ẋ(B2,a), ẏ(B2,a) are defined as in (22)-(23), ẋ(B2,b), ẏ(B2,b) are defined as in (24)-(25).

(c) If z ∈ B3, then z = ẋ(B3) + ẏ(B3), where ẋ(B3), ẏ(B3) are defined as in (26)-(27).

(d) If z ∈ B4, then z = ẋ(B4) + ẏ(B4), where ẋ(B4) and ẏ(B4) are defined as in (28) or (29).

In addition, the locations of the x-part and y-part in each case are shown in Table 2, where Si, Ti (i =

1, 2, 3, 4) are defined as in (13) and xloc, yloc denote the locations of x and y, respectively.

Table 2 The locations of the x-part and y-part in the Type I decomposition with respect to Kα.

B̄1 B̄2 B̄3 B̄4

B̄21 B̄22 B̄23 B̄24 B̄31 B̄32

xloc S3 S2 ∪ S3 S1 ∪ S3 S2 ∪ S3 S1 ∪ S3 S2 ∪ S3 S1 ∪ S3 S1 ∪ S2

yloc T3 {0} ∪ T1 {0} ∪ T2 {0} ∪ T1 {0} ∪ T2 T1 T2 T1 ∪ T2

2.2 The Type II decomposition with respect to the power cone Kα

In this subsection, we present the Type II decomposition with respect to the power cone Kα. Similarly, we

consider the following four cases.

Case 1: (z1, z̄) ∈ B1.

(a) z̄min > 0. In this subcase, (z1, z̄) ∈ B11 and σα(z̄) > 0. Then, we take x = ẍ(B1,a), y = ÿ(B1,a) and

sx = s̈
(B1,a)
x , sy = s̈

(B1,a)
y , where

ẍ(B1,a) :=

[
1
z̄

σα(z̄)

]
∈ S3, ÿ

(B1,a) :=

[
−1
z̄

σα(z̄)

]
∈ S3. (30)

s̈(B1,a)
x :=

z1 + σα(z̄)

2
, s̈(B1,a)

y :=
σα(z̄)− z1

2
. (31)
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Similarly, we can show that the above setting satisfies the decomposition formula (7).

(b) z̄max < 0. Similar to the argument in Case 1 (a), (z1, z̄) ∈ B12 and σα(−z̄) > 0. In this subcase, we set

x = ẍ(B1,b), y = ÿ(B1,b) and sx = s̈
(B1,b)
x , sy = s̈

(B1,b)
y , where

ẍ(B1,b) :=

[
1
−z̄

σα(−z̄)

]
∈ S3, ÿ

(B1,b) :=

[
−1
−z̄

σα(−z̄)

]
∈ S3. (32)

s̈(B1,b)
x :=

z1 − σα(−z̄)
2

, s̈(B1,b)
y :=

−σα(−z̄)− z1

2
. (33)

(c) z1 6= 0 and z̄min = z̄max = 0. In this subcase, (z1, z̄) ∈ B13 and σα(z̄) = 0. Thus, we set x = ẍ(B1,c),

y = ÿ(B1,c) and sx = s̈
(B1,c)
x , sy = s̈

(B1,c)
y , where

ẍ(B1,c) :=

[
1
1

σα(1)

]
∈ S3, ÿ

(B1,c) :=

[
−1
1

σα(1)

]
∈ S3, (34)

s̈(B1,c)
x =

z1

2
, s̈(B1,c)

y = −z1

2
. (35)

Case 2: (z1, z̄) ∈ B2.

(a) z̄min = 0, z̄max > 0. In this subcase, (z1, z̄) ∈ B21 or (z1, z̄) ∈ B22, we set x = ẍ(B2,a), y = ÿ(B2,a) and

sx = 1, sy = −1, where ẍ(B2,a) = (ẍ
(B2,a)
1 , ¨̄x

(B2,a)
) and ÿ(B2,a) = (ÿ

(B2,a)
1 , ¨̄y

(B2,a)
) with

ẍ
(B2,a)
1 := z1, ¨̄x

(B2,a)
:=



[(
|z1|
z̄
α2
2

) 1
α1

z̄2

]
if (z1, z̄) ∈ B21,[

z̄1(
|z1|
z̄
α1
1

) 1
α2

]
if (z1, z̄) ∈ B22,

(36)

ÿ
(B2,a)
1 := 0, ¨̄y

(B2,a)
:=



[(
|z1|
z̄
α2
2

) 1
α1

0

]
if (z1, z̄) ∈ B21,[

0(
|z1|
z̄
α1
1

) 1
α2

]
if (z1, z̄) ∈ B22.

(37)

It is easy to see that

(a) (z1, z̄) ∈ B21, z1 = 0⇒ x ∈ S2, y = 0; (b) (z1, z̄) ∈ B21, z1 6= 0⇒ x ∈ S3, y ∈ S1;
(c) (z1, z̄) ∈ B22, z1 = 0⇒ x ∈ S1, y = 0; (d) (z1, z̄) ∈ B22, z1 6= 0⇒ x ∈ S3, y ∈ S2.

(b) z̄min < 0, z̄max = 0. In this subcase, (z1, z̄) ∈ B23 or (z1, z̄) ∈ B24. We set x = ẍ(B2,b), y = ÿ(B2,b) and

sx = −1, sy = 1, where ẍ(B2,b) = (ẍ
(B2,b)
1 , ¨̄x

(B2,b)) and ÿ(B2,b) = (ÿ
(B2,b)
1 , ¨̄y

(B2,b)) with

ẍ
(B2,b)
1 := −z1, ¨̄x

(B2,b) :=



[(
|z1|

(−z̄2)α2

) 1
α1

−z̄2

]
if (z1, z̄) ∈ B23,[ −z̄1(

|z1|
(−z̄1)α1

) 1
α2

]
if (z1, z̄) ∈ B24,

(38)

ÿ
(B2,b)
1 := 0, ¨̄y

(B2,b) :=



[(
|z1|

(−z̄2)α2

) 1
α1

0

]
if (z1, z̄) ∈ B23,[

0(
|z1|

(−z̄1)α1

) 1
α2

]
if (z1, z̄) ∈ B24.

(39)

Similar to the arguments in Case 2 (a), we obtain

(a) (z1, z̄) ∈ B23, z1 = 0⇒ x ∈ S2, y = 0; (b) (z1, z̄) ∈ B23, z1 6= 0⇒ x ∈ S3, y ∈ S1;
(c) (z1, z̄) ∈ B24, z1 = 0⇒ x ∈ S1, y = 0; (d) (z1, z̄) ∈ B24, z1 6= 0⇒ x ∈ S3, y ∈ S2.
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Case 3: (z1, z̄) ∈ B3. In this subcase, (z1, z̄) ∈ B31 or (z1, z̄) ∈ B32. We set x = ẍ(B3), y = ÿ(B3) and

sx = 1, sy = −1, where ẍ(B3) = (ẍ
(B3)
1 , ¨̄x

(B3)
) and ÿ(B3) = (ÿ

(B3)
1 , ¨̄y

(B3)
) with

ẍ
(B3)
1 := z1, ¨̄x

(B3)
:=



[(
|z1|
z̄
α2
2

) 1
α1

z̄2

]
if z ∈ B31,[

z̄1(
|z1|
z̄
α1
1

) 1
α2

]
if z ∈ B32,

(40)

ÿ
(B3)
1 := 0, ¨̄y

(B3)
j :=



[
−z̄1 +

(
|z1|
z̄
α2
2

) 1
α1

0

]
if z ∈ B31,[

0

−z̄2 +
(
|z1|
z̄
α1
1

) 1
α2

]
if z ∈ B32.

(41)

More concretely, we obtain

(a) (z1, z̄) ∈ B31, z1 = 0⇒ x ∈ S2, y ∈ S1; (b) (z1, z̄) ∈ B31, z1 6= 0⇒ x ∈ S3, y ∈ S1;
(c) (z1, z̄) ∈ B32, z1 = 0⇒ x ∈ S1, y ∈ S2; (d) (z1, z̄) ∈ B32, z1 6= 0⇒ x ∈ S3, y ∈ S2.

Case 4: (z1, z̄) ∈ B4. In this subcase, we set x = ẍ(B4) ∈ ∂Kα, y = ÿ(B4) ∈ ∂Kα and sx = 1, sy = −1,

where ẍ(B4) = (ẍ
(B4)
1 , ¨̄x

(B4)
) and ÿ(B4) = (ÿ

(B4)
1 , ¨̄y

(B4)
) with

ẍ(B4) :=

 0
1
0

 ∈ S1, ÿ(B4) :=

 0
1
0

 ∈ S1, (42)

or

ẍ(B4) :=

 0
0
1

 ∈ S2, ÿ(B4) :=

 0
0
1

 ∈ S2. (43)

As mentioned above, the next theorem presents the Type II decomposition with respect to the power

cone Kα.

Theorem 2 For any given z = (z1, z̄) ∈ R× R2, its Type II decomposition with respect to Kα is given by

(a) If z ∈ B1, then

z =


s̈
(B1,a)
x · ẍ(B1,a) + s̈

(B1,a)
y · ÿ(B1,a), if z ∈ B11,

s̈
(B1,b)
x · ẍ(B1,b) + s̈

(B1,b)
y · ÿ(B1,b), if z ∈ B12,

s̈
(B1,c)
x · ẍ(B1,c) + s̈

(B1,c)
y · ÿ(B1,c), if z ∈ B13,

where ẍ(B1,a), ÿ(B1,a), s̈
(B1,a)
x , s̈

(B1,a)
y are defined as in (30)-(31), ẍ(B1,b), ÿ(B1,b), s̈

(B1,b)
x , s̈

(B1,b)
y are

defined as in (32)-(33) and ẍ(B1,c), ÿ(B1,c), s̈
(B1,c)
x , s̈

(B1,c)
y are defined as in (34)-(35).

(b) If z ∈ B2, then

z =

{
ẍ(B2,a) + (−1) · ÿ(B2,a), if z ∈ B21 or z ∈ B22,

(−1) · ẍ(B2,b) + ÿ(B2,b), if z ∈ B23 or z ∈ B24, ,

where ẍ(B2,a), ÿ(B2,a) are defined as (36)-(37), ẍ(B2,b), ÿ(B2,b) are defined as in (38)-(39).

(c) If z ∈ B3, then z = ẍ(B3) + (−1) · ÿ(B3), where ẍ(B3), ÿ(B3) are defined as in (40)-(41).

(d) If z ∈ B4, then z = ẍ(B4) + (−1) · ÿ(B4), where ẍ(B4) and ÿ(B4) are defined as in (42) or (43).

In addition, the locations of the x-part and y-part in each case are summarized in Table 3.



12 Yue Lu et al.

Table 3 The locations of the x-part and y-part in the Type II decomposition with respect to Kα.

B̄1 B̄2 B̄3 B̄4

B̄21 B̄22 B̄23 B̄24 B̄31 B̄32

xloc S3 S2 ∪ S3 S1 ∪ S3 S2 ∪ S3 S1 ∪ S3 S2 ∪ S3 S1 ∪ S3 S1 ∪ S2

yloc S3 {0} ∪ S1 {0} ∪ S2 {0} ∪ S1 {0} ∪ S2 S1 S2 S1 ∪ S2

2.3 Manipulation of a real example

In this subsection, we elaborate more about how to implement the Type I and Type II decomposition with

respect to the power cone Kα explicitly by manipulating an example. Without loss of generality, we set the

parameters α1 = α2 = 1
2 .

Example 1 The power cone K 1
2

and its polar cone K◦1
2

are respectively given by

K 1
2

=

{
(x1, x̄) ∈ R× R2

∣∣∣∣ |x1| ≤ x̄
1
2
1 x̄

1
2
2 , x̄1 ≥ 0, x̄2 ≥ 0

}
,

K◦1
2

=

{
(x1, x̄) ∈ R× R2

∣∣∣∣ |x1| ≤ (−2x̄1)
1
2 (−2x̄2)

1
2 , x̄1 ≤ 0, x̄2 ≤ 0

}
.

According to the four blocks defined as in (15), we pick different points to figure out their decompositions

with respect to K 1
2
. For example, we take z = (1,−1,−2)T ∈ B12. In this case, z1 = 1, z̄ = (−1,−2)T ,

σ 1
2
(−z̄) =

√
2, η 1

2
(−z̄) = 2

√
2. From the relations (18)-(19) and (32)-(33), we obtain

ẋ(B1,b) :=

[
1
−z̄

σ 1
2

(−z̄)

]
=

 1
1√
2

2√
2

 ∈ S3, ẏ(B1,b) :=

[
1
z̄

η 1
2

(−z̄)

]
=

 1
− 1

2
√

2

− 1√
2

 ∈ T3,

ṡ(B1,b)
x :=

z1 − η 1
2
(−z̄)

σ 1
2
(−z̄) + η 1

2
(−z̄) · σ

1
2
(−z̄) =

1− 2
√

2√
2 + 2

√
2
·
√

2 =
1− 2

√
2

3
,

ṡ(B1,b)
y :=

z1 + σ 1
2
(−z̄)

σ 1
2
(−z̄) + η 1

2
(−z̄) · η

1
2
(−z̄) =

1 +
√

2√
2 + 2

√
2
· 2
√

2 =
2(1 +

√
2)

3
.

ẍ(B1,b) :=

[
1
−z̄

σ 1
2

(−z̄)

]
=

 1
1√
2

2√
2

 ∈ S3, ÿ(B1,b) :=

[
−1
−z̄

σ 1
2

(−z̄)

]
=

−1
1√
2

2√
2

 ∈ S3,

s̈(B1,b)
x :=

z1 − σ 1
2
(−z̄)

2
=

1−
√

2

2
, s̈(B1,b)

y :=
−σ 1

2
(−z̄)− z1

2
=
−
√

2− 1

2
.

Therefore, the corresponding two types of decompositions with respect to K 1
2

are respectively given by

Type I:

 1
−1
−2

 = 1−2
√

2
3

 1
1√
2

2√
2

+ 2(1+
√

2)
3 ·

 1
− 1

2
√

2

− 1√
2

 ,

Type II:

 1
−1
−2

 = 1−
√

2
2

 1
1√
2

2√
2

+ −
√

2−1
2 ·

−1
1√
2

2√
2

 ,
whose graphs are depicted in Figure 4 and 5, respectively. The other cases for testing the decompositions

with respect to K 1
2

can be seen in Table 4, in which xloc, yloc, zloc denote the locations of x, y, z, respectively.

Remark 2 As shown in Example 1, these two types of decompositions for any given nonzero vectors with

respect to the power cone Kα are easy to implement, which is a new feature to the progress of this core
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Fig. 4 The Type I decomposition for Example 1.

Fig. 5 The Type II decomposition for Example 1.
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Table 4 Examples of two types of decompositions with respect to K 1
2

.

Type I Type II

z zloc sx x xloc sy y yloc sx x xloc sy y yloc 1
2
2

 B1
5
3

 1
1
1

 S3 − 2
3

 1
− 1

2
− 1

2

 T3
3
2

 1
1
1

 S3
1
2

−1
1
1

 S3

 1
0
1

 B2 1

 1
1
1

 S3 1

 0
−1
0

 T1 1

 1
1
1

 S3 −1

 0
1
0

 S1

 1
1
−1

 B3 1

 1
1
1

 S3 1

 0
0
−2

 T2 1

 1
1
1

 S3 −1

 0
0
2

 S2

 0
0
0

 B4

1

1

 0
1
0


 0

0
1


S1

S2

1

1

 0
−1
0


 0

0
−1


T1

T2

1

1

 0
1
0


 0

0
1


S1

S2

−1

−1

 0
1
0


 0

0
1


S1

S2

non-symmetric cone and plays a crucial role in continuing subsequent study on this topic, for instance

generating conic functions like the SOC-function [7] and Löwner’s operator for PSD [37,38] as mentioned

above. Moreover, through comparing the above two types of decompositions established in Theorem 1 and

2, we rewrite them as follows:

Type I: z = sIx · xI + sIy · yI .
Type II: z = sIIx · xII + sIIy · yII .

It is easy to see that if ηα(z) = σα(z), then xI = xII , yI = −yII , sIx = sIIx and sIy = −sIIy , where

ηα, σα are defined as in (11). On the other hand, we also find that the sx-part and sy-part of the Type I

decomposition are more complicated than the Type II counterpart in general. Therefore, we prefer the Type

II decomposition with respect to Kα for further studies, see Section 4 for more details.

3 The decompositions with respect to the exponential cone Kexp

In this section, we present two types of decompositions with respect to the exponential cone Kexp. Again,

we also present its analytic properties. Due to similar procedures as Section 2, we omit their proofs and

only list some results. For the dual of the exponential cone Kexp, we refer the reader to [4, Theorem 4.3.3]

for its verification.

Lemma 5 Kexp is a closed convex cone.

Lemma 6 The dual cone K∗exp can be described as

K∗exp := cl

{
(x1, x̄) ∈ R× R2

∣∣∣∣x1 ≥ −
x̄1

e
· exp

(
x̄2

x̄1

)
, x̄1 < 0, x1 ≥ 0

}
.

Correspondingly, the polar K◦exp is given by

K◦exp := cl

{
(x1, x̄) ∈ R× R2

∣∣∣∣x1 ≤ −
x̄1

e
· exp

(
x̄2

x̄1

)
, x̄1 > 0, x1 ≤ 0

}
.
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Similar to Lemma 4, we also define the following sets

Ŝ1 :=
{

(x1, x̄) ∈ R× R2 | x1 > 0, x̄1 < 0, x̄2 = 0
}
,

Ŝ2 :=
{

(x1, x̄) ∈ R× R2 | x1 = 0, x̄1 < 0, x̄2 = 0
}
,

Ŝ3 :=
{

(x1, x̄) ∈ R× R2 | x1 > 0, x̄1 = 0, x̄2 = 0
}
,

Ŝ4 :=
{

(x1, x̄) ∈ R× R2 | x1 ≥ 0, σexp(x̄) = x1, x̄2 > 0
}
,

Ŝ5 :=
{

(x1, x̄) ∈ R× R2 | x1 > 0, x̄1 = 0, x̄2 > 0
}
,

Ŝ6 :=
{

(x1, x̄) ∈ R× R2 | x1 = 0, x̄1 = 0, x̄2 > 0
}
,

Ŝ7 :=
{

(x1, x̄) ∈ R× R2 | x1 > 0, x̄1 = 0, x̄2 = 0
}
,

Ŝ8 :=
{

(x1, x̄) ∈ R× R2 | x1 ≥ 0, x̄1 < 0, −ηexp(x̄) = x1

}
,

T̂1 :=
{

(x1, x̄) ∈ R× R2 | x1 < 0, x̄1 = 0, x̄2 < 0
}
,

T̂2 :=
{

(x1, x̄) ∈ R× R2 | x1 = 0, x̄1 = 0, x̄2 < 0
}
,

T̂3 :=
{

(x1, x̄) ∈ R× R2 | x1 < 0, x̄1 = 0, x̄2 = 0
}
,

T̂4 :=
{

(x1, x̄) ∈ R× R2 | x1 ≤ 0, x̄1 > 0, −ηexp(x̄) = x1

}
.

(44)

Consequently, the boundary of Kexp and K◦exp can be described in a more compact form.

Lemma 7 The boundary of Kexp and K∗exp, denoted by ∂Kexp and ∂K∗exp, are respectively given by

∂Kexp := Ŝ1 ∪ Ŝ2 ∪ Ŝ3 ∪ Ŝ4 ∪ {0}, ∂K∗exp := Ŝ5 ∪ Ŝ6 ∪ Ŝ7 ∪ Ŝ8 ∪ {0},

where

σexp(x̄) := x̄2 · exp

(
x̄1

x̄2

)
, ηexp(x̄) :=

x̄1

e
· exp

(
x̄2

x̄1

)
. (45)

Similarly, the boundary of K◦exp can be formulated as

∂K◦exp := T̂1 ∪ T̂2 ∪ T̂3 ∪ T̂4 ∪ {0}.

Remark 3 Similar to Remark 1, the set Kexp ∪ K◦exp can also be divided into the following nine parts

Kexp ∪ K◦exp = Ŝ1 ∪ Ŝ2 ∪ Ŝ3 ∪ T̂1 ∪ T̂2 ∪ T̂3 ∪ P̂1 ∪ P̂2 ∪ {0},

where

P̂1 :=
{

(x1, x̄) ∈ R× R2 | x1 ≥ 0, σexp(x̄) ≤ x1, x̄2 > 0
}
,

P̂2 :=
{

(x1, x̄) ∈ R× R2 | x1 ≤ 0, x̄1 > 0, −ηexp(x̄) ≥ x1

}
.

In addition, the boundary of Kexp and its polar K◦exp are depicted in Figure 6.

Fig. 6 The different parts of ∂Kexp (left) and ∂K◦exp (right).
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3.1 The Type I decomposition with respect to the power cone Kexp

In this subsection, we present the Type I decomposition with respect to the exponential cone Kexp, in which

we divide the space R× R2 into the following four blocks:

Block I : B̃1 :=
{

(z1, z̄) ∈ R× R2 | z̄1 · z̄2 > 0 or (z1 6= 0 and z̄ = 0)
}
.

Block II : B̃2 :=
{

(z1, z̄) ∈ R× R2 | (z̄1 = 0, z̄2 6= 0) or (z̄1 < 0, z̄2 > 0)
}
.

Block III : B̃3 :=
{

(z1, z̄) ∈ R× R2 | (z̄1 6= 0, z̄2 = 0) or (z̄1 > 0, z̄2 < 0)
}
.

Block IV : B̃4 :=
{

(z1, z̄) ∈ R× R2 | z1 = 0 and z̄ = 0
}
.

(46)

Their subcases with respect to Kexp for the Type I decomposition can be found in Table 5.

Table 5 The subcases of each block in (46) with respect to Kexp for the Type I decomposition.

B̃1 B̃2 B̃3 B̃4

(B̃11) z1 free, z̄1 > 0, z̄2 > 0 (B̃21) z1 free, z̄1 = 0, z̄2 > 0 (B̃31) z1 free, z̄1 > 0, z̄2 = 0 (B̃4) z1 = 0, z̄1 = 0, z̄2 = 0

(B̃12) z1 free, z̄1 < 0, z̄2 < 0 (B̃22) z1 free, z̄1 = 0, z̄2 < 0 (B̃32) z1 free, z̄1 < 0, z̄2 = 0

(B̃13) z1 6= 0, z̄1 = 0, z̄2 = 0 (B̃23) z1 free, z̄1 < 0, z̄2 > 0 (B̃33) z1 free, z̄1 > 0, z̄2 < 0

Similar to Theorem 1, we now present the Type I decomposition with respect to Kexp.

Theorem 3 For any given z = (z1, z̄) ∈ R× R2, its Type I decomposition with respect to Kexp is given by

(a) If z ∈ B̃1, then

z =


(z1 + ηexp(z̄)) · σexp(z̄)

σexp(z̄) + ηexp(z̄)
·
[

1
z̄

σexp(z̄)

]
+

(σexp(z̄)− z1) · ηexp(z̄)

σexp(z̄) + ηexp(z̄)
·
[
−1
z̄

ηexp(z̄)

]
, if z ∈ B̃11 or z ∈ B̃12,

z1 · σexp(1)

σexp(1) + ηexp(1)
·
[

1
1

σexp(1)

]
+

−z1 · ηexp(1)

σexp(1) + ηexp(1)
·
[
−1
1

ηexp(1)

]
, if z ∈ B̃13,

where 1 := (1, 1)T ∈ R2 and σexp(z̄), ηexp(z̄) are defined as in (45).

(b) If z ∈ B̃2, then

z = σexp(z̄) ·
[

1
z̄

σexp(z̄)

]
+ sgn(σexp(x̄)− z1) ·

[
−|z1 − σexp(z̄)|

0

]
,

where sgn(t) denotes the sign of the variable t ∈ R.

(c) If z ∈ B̃3, then

z = sgn(z1 + ηexp(z̄)) ·
[
|z1 + ηexp(z̄)|

0

]
+ ηexp(z̄) ·

[
−1
z̄

ηexp(z̄)

]
.

(d) If z ∈ B̃4, then

z = 1 ·
[

max{0, w}
0

]
+ 1 ·

[
min{0,−w}

0

]
,

where w is any scalar in R.

In addition, the locations of the x-part and y-part in each case are summarized in Table 6, where S̃i, T̃i (i =

1, 2, 3, 4) are defined as in (44).



The decompositions with respect to two core non-symmetric cones 17

Table 6 The locations of the x-part and y-part in the Type I decomposition with respect to Kexp.

B̃1 B̃2 B̃3 B̃4

xloc Ŝ4 Ŝ4 {0} ∪ Ŝ3 {0} ∪ Ŝ3

yloc T̂4 {0} ∪ T̂3 T̂4 {0} ∪ T̂3

3.2 The Type II decomposition with respect to the power cone Kexp

In this subsection, we present the Type II decomposition of the power cone Kexp. By contrast with the Type

I case, we present a new space division for R× R2 as follows:

Block I : B̄1 :=
{

(z1, z̄) ∈ R× R2 | z̄2 6= 0
}
.

Block II : B̄2 :=
{

(z1, z̄) ∈ R× R2 | (z1 6= 0, z̄ = 0) or (z̄1 < 0, z̄2 = 0)
}
.

Block III : B̄3 :=
{

(z1, z̄) ∈ R× R2 | z̄1 > 0, z̄2 = 0
}
.

Block IV : B̄4 :=
{

(z1, z̄) ∈ R× R2 | z1 = 0 and z̄ = 0
}
.

(47)

Table 7 indicates their subcases of these blocks with respect to Kexp for the Type II decomposition.

Table 7 The subcases of each block in (47) with respect to Kexp for the Type II decomposition.

B̄1 B̄2 B̄3 B̄4

(B̄11) z1 free, z̄1 > 0, z̄2 > 0 (B̄21) z1 6= 0, z̄1 = 0, z̄2 = 0 (B̄3) z1 free, z̄1 > 0, z̄2 = 0 (B̄4) z1 = 0, z̄1 = 0, z̄2 = 0
(B̄12) z1 free, z̄1 = 0, z̄2 > 0 (B̄22) z1 free, z̄1 < 0, z̄2 = 0
(B̄13) z1 free, z̄1 < 0, z̄2 > 0
(B̄14) z1 free, z̄1 > 0, z̄2 < 0
(B̄15) z1 free, z̄1 = 0, z̄2 < 0
(B̄16) z1 free, z̄1 < 0, z̄2 < 0

Similar to Theorem 2, the next theorem presents the Type II decomposition with respect to Kexp.

Theorem 4 For any given z = (z1, z̄) ∈ R×R2, its Type II decomposition with respect to Kexp is given by

(a) If z ∈ B̄1, then

z = σexp(z̄) ·
[

1
z̄

σexp(z̄)

]
+ sgn(z1 − σexp(z̄)) ·

[
|z1 − σexp(z̄)|

0

]
,

where sgn(t) denotes the sign of the variable t ∈ R.

(b) If z ∈ B̄2, then

z = 1 ·
[

max{0, z1}
z̄

]
+ (−1) ·

[
−min{0, z1}

0

]
.

(c) If z ∈ B̄3, then

z = 1 ·
[

max{0, z1}
0

]
+ (−1) ·

[
−min{0, z1}

−z̄

]
.

(d) If z ∈ B̄4, then

z = 1 ·
[

max{0, w}
0

]
+ (−1) ·

[
−min{0,−w}

0

]
,

where w is any scalar in R.
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Table 8 The locations of the x-part and y-part in the Type II decomposition with respect to Kexp.

B̄1 B̄2 B̄3 B̄4

B̄21 B̄22

xloc Ŝ4 {0} ∪ Ŝ3 Ŝ1 ∪ Ŝ2 {0} ∪ Ŝ3 {0} ∪ Ŝ3

yloc {0} ∪ Ŝ3 Ŝ3 ∪ {0} {0} ∪ Ŝ3 Ŝ1 ∪ Ŝ2 {0} ∪ Ŝ3

In addition, the locations of the x-part and y-part in each case are summarized in Table 8.

Remark 4 Similar to the power cone Kα case discussed in Section 2.3, Theorem 3 and Theorem 4 also show

that our decompositions with respect to the exponential cone Kexp are easy to calculate. Implementing

a real example is routine, we do not repeat it again there. On the other hand, different with the power

cone case, the sx-part and sy-part of the Type I decomposition with respect to Kexp seems to be more

regular than the Type II counterpart in general, due to the appearance of the “wall” part in Fig. 6 (see

Ŝ1 ∪ Ŝ2 ∪ Ŝ3 ∪ {0}). Therefore, we suggest to use the Type I decomposition with respect to Kexp in the

sequential studies.

4 Applications

In this section, we discuss some applications of these decompositions with respect to the power cone Kα
and the exponential cone Kexp.

4.1 Conic functions

As mentioned before, the most important application of the decomposition with respect to the given cone

is to establish its associated conic function. In this subsection, we focus on the conic functions for the power

cone Kα and the exponential cone Kexp.

According to Theorem 2 and Remark 3, the conic function with respect to the power cone Kα is defined

in the following form.

Definition 1 For any given z = (z1, z̄) ∈ R × R2, let f be a scalar function defined in R and fpower be

the conic function with respect to the power cone Kα. Denote 1 := (1, 1)T ∈ R2 and the space division of

R× R2 is defined as in (15). Then, we have

(a) If z ∈ B1, then

fpower(z) :=



f
(
z1+σα(z̄)

2

)
·

 1
z̄1

σα(z̄)
z̄2

σα(z̄)

+ f
(
σα(z̄)−z1

2

)
·

 −1
z̄1

σα(z̄)
z̄2

σα(z̄)

 if z ∈ B11,

f
(
z1−σα(−z̄)

2

)
·

 1
−z̄1

σα(−z̄)
−z̄2

σα(−z̄)

+ f
(
−σα(z̄)−z1

2

)
·

 −1
−z̄1
σα(z̄)
−z̄2
σα(z̄)

 if z ∈ B12,

f
(
z1
2

)
·

 1
1

σα(1)
1

σα(1)

+ f
(−z1

2

)
·

 −1
1

σα(1)
1

σα(1)

 if z ∈ B13,
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where σα(z̄) is defined as in (11).

(b) If z ∈ B2, then

fpower(z) :=



f(1) ·

 z1(
|z1|
z̄
α2
2

) 1
α1

z̄2

+ f(−1) ·

 0(
|z1|
z̄
α2
2

) 1
α1

0

 if z ∈ B21,

f(1) ·

 z1

z̄1(
|z1|
z̄
α1
1

) 1
α2

+ f(−1) ·

 0
0(

|z1|
z̄
α1
1

) 1
α2

 if z ∈ B22,

f(−1) ·

 −z1(
|z1|

(−z̄2)α2

) 1
α1

−z̄2

+ f(−1) ·

 0(
|z1|

(−z̄2)α2

) 1
α1

0

 if z ∈ B23,

f(−1) ·

 −z1

−z̄1(
|z1|

(−z̄1)α1

) 1
α2

+ f(−1) ·

 0
0(

|z1|
(−z̄1)α1

) 1
α2

 if z ∈ B24.

(c) If z ∈ B3, then

fpower(z) :=



f(1) ·

 z1(
|z1|
z̄
α2
2

) 1
α1

z̄2

+ f(−1) ·

 0

−z̄1 +
(
|z1|
z̄
α2
2

) 1
α1

0

 if z ∈ B31,

f(1) ·

 z1

z̄1(
|z1|
z̄
α1
1

) 1
α2

+ f(−1) ·

 0
0

−z̄2 +
(
|z1|
z̄
α1
1

) 1
α2

 if z ∈ B32.

(d) If z ∈ B4, then

fpower(z) := f(1) ·

 0
1
0

+ f(−1) ·

 0
−1
0

 or fpower(z) := f(1) ·

 0
0
1

+ f(−1) ·

 0
0
−1

 .
Similarly, according to Theorem 3 and Remark 4, the conic function with respect to the exponential

cone Kexp has the following explicit description.

Definition 2 For any given z = (z1, z̄) ∈ R × R2, let f be a scalar function defined in R and fexp be the

conic function with respect to the exponential cone Kexp. Denote 1 := (1, 1)T ∈ R2 and the space division

of R× R2 is defined as in (46). Then, we have

(a) If z ∈ B̃1, then

fexp(z) :=


f
(

(z1+ηexp(z̄))·σexp(z̄)
σexp(z̄)+ηexp(z̄)

)
·
[

1
z̄

σexp(z̄)

]
+ f

(
(σexp(z̄)−z1)·ηexp(z̄)
σexp(z̄)+ηexp(z̄)

)
·
[
−1
z̄

ηexp(z̄)

]
, if z ∈ B̃11 ∪ B̃12,

f
(

z1·σexp(1)
σexp(1)+ηexp(1)

)
·
[

1
1

σexp(1)

]
+ f

(
−z1·ηexp(1)

σexp(1)+ηexp(1)

)
·
[
−1
1

ηexp(1)

]
, if z ∈ B̃13,

where σexp(z̄), ηexp(z̄) are defined as in (45).
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(b) If z ∈ B̃2, then

fexp(z) := f(σexp(z̄)) ·
[

1
z̄

σexp(z̄)

]
+ f(sgn(σexp(x̄)− z1)) ·

[
−|z1 − σexp(z̄)|

0

]
,

where sgn(t) denotes the sign of the variable t ∈ R.

(c) If z ∈ B̃3, then

fexp(z) := f(sgn(z1 + ηexp(z̄))) ·
[
|z1 + ηexp(z̄)|

0

]
+ f(ηexp(z̄)) ·

[
−1
z̄

ηexp(z̄)

]
.

(d) If z ∈ B̃4, then

fexp(z) := f(1) ·
[

max{0, w}
0

]
+ f(1) ·

[
min{0,−w}

0

]
,

where w is any scalar in R.

4.2 The generalization to the high-dimensional power cone

In this subsection, we extend the discussion for the power cone Kα to its high-dimensional version

K(n)
α :=

{
(x1, x̄) ∈ R× Rn

∣∣∣∣ |x1| ≤
n∏
i=1

x̄αii , x̄i ≥ 0, i = 1, 2, · · · , n

}
, (48)

where x̄ := (x̄1, x̄2, · · · , x̄n)T ∈ Rn. In order to make the classifications clear and neat, we similarly adapt

some notations as follows:

z̄ := (z̄1, z̄2, · · · , z̄n)T ∈ Rn, z̄min := min{z̄1, z̄2, · · · , z̄n}, z̄max := max{z̄1, z̄2, · · · , z̄n},
1(n) := (1, 1, · · · , 1)T ∈ Rn, 1k := (0, · · · , 1, · · · , 0)T ∈ Rn, [n] := {1, 2, · · · , n},

I− := {i ∈ [n] | z̄i < 0}, I0 := {i ∈ [n] | z̄i = 0}, I+ := {i ∈ [n] | z̄i > 0},
σ

(n)
α (z̄) :=

∏n
i=1 z̄

αi
i , η

(n)
α (z̄) :=

∏n
i=1

(
z̄i
αi

)αi
,

(49)

where 1k (k = 1, 2, · · · , n) is the kth column of the identity matrix In ∈ Rn×n. Now, the space R× Rn can

be divided into the following four blocks

Block I : B
(n)
1 := {(z1, z̄) ∈ R× Rn | z̄min · z̄max > 0 or (z̄min = z̄max = 0 and z1 6= 0)} .

Block II : B
(n)
2 := {(z1, z̄) ∈ R× Rn | z̄min · z̄max = 0 and z̄min + z̄max 6= 0} .

Block III : B
(n)
3 := {(z1, z̄) ∈ R× Rn | z̄min · z̄max < 0} .

Block IV : B
(n)
4 := {(z1, z̄) ∈ R× Rn | z̄min = z̄max = 0 and z1 = 0} .

(50)

We now establish two types of decompositions with respect to K(n)
α defined as in (48) in the following

theorems. The proofs are adapted from Theorem 1 and 2, we omit their details and only list the results.

Theorem 5 For any given z = (z1, z̄) ∈ R× Rn, its Type I decomposition with respect to K(n)
α is given by

(a) If z ∈ B(n)
1 , then

z =



(z1+η(n)
α (z̄))·σ(n)

α (z̄)

σ
(n)
α (z̄)+η

(n)
α (z̄)

·

[
1
z̄

σ
(n)
α (z̄)

]
+

(z1−σ(n)
α (z̄))·η(n)

α (z̄)

σ
(n)
α (z̄)+η

(n)
α (z̄)

·

[
1

− z̄

η
(n)
α (z̄)

]
, if |I+| = n,

(z1−η(n)
α (−z̄))·σ(n)

α (−z̄)
σ

(n)
α (−z̄)+η(n)

α (−z̄)
·

[
1
−z̄

σ
(n)
α (−z̄)

]
+

(z1+σ(n)
α (−z̄))·η(n)

α (−z̄)
σ

(n)
α (−z̄)+η(n)

α (−z̄)
·

[
1
z̄

η
(n)
α (−z̄)

]
, if |I−| = n,

z1·σ(n)
α (1(n))

σ
(n)
α (1(n))+η

(n)
α (1(n))

·

[
1

1(n)

σ
(n)
α (1(n))

]
+

z1·η(n)
α (1(n))

σ
(n)
α (1(n))+η

(n)
α (1(n))

·

[
1

− 1(n)

η
(n)
α (1(n))

]
, if |I0| = n,
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where 1(n), σ
(n)
α (x̄), η

(n)
α (x̄) are defined as in (49) and |I| denotes the cardinality of I.

(b) If z ∈ B(n)
2 , then

z =


1 ·

[
z1

˙̄x
(B

(n)
2 ,a)

]
+ 1 ·

[
0

˙̄y
(B

(n)
2 ,a)

]
, if |I−| = 0,

(−1) ·

[
−z1

˙̄x
(B

(n)
2 ,b)

]
+ (−1) ·

[
0

˙̄y
(B

(n)
2 ,b)

]
, if |I+| = 0,

where k is the smallest index in I0 and ˙̄x
(B

(n)
2 ,a)

, ˙̄y
(B

(n)
2 ,a)

, ˙̄x
(B

(n)
2 ,b)

, ˙̄y
(B

(n)
2 ,b)

are respectively defined as

follows:

(
˙̄x
(B

(n)
2 ,a)

j , ˙̄y
(B

(n)
2 ,a)

j

)
:=



(z̄j , 0) if j ∈ I+,
(1,−1) if j ∈ I0 and j 6= k,
 |z1|∏

i6=k

(
˙̄x
(B

(n)
2 ,a)

i

)αi


1
αk

,−

 |z1|∏
i6=k

(
˙̄x
(B

(n)
2 ,a)

i

)αi


1
αk

 if j = k.

(
˙̄x
(B

(n)
2 ,b)

j , ˙̄y
(B

(n)
2 ,b)

j

)
:=



(−z̄j , 0) if j ∈ I−,
(1,−1) if j ∈ I0 and j 6= k,
 |z1|∏

i6=k

(
˙̄x
(B

(n)
2 ,b)

i

)αi


1
αk

,−

 |z1|∏
i6=k

(
˙̄x
(B

(n)
2 ,b)

i

)αi


1
αk

 if j = k.

(c) If z ∈ B(n)
3 , then

z =


1 ·

[
z1

˙̄x
(B

(n)
3 ,a)

]
+ 1 ·

[
0

˙̄y
(B

(n)
3 ,a)

]
, if |I0| = 0,

1 ·

[
z1

˙̄x
(B

(n)
3 ,b)

]
+ 1 ·

[
0

˙̄y
(B

(n)
3 ,b)

]
, if |I0| 6= 0,

where t is the smallest index in I− and ˙̄x
(B

(n)
3 ,a)

, ˙̄y
(B

(n)
3 ,a)

are respectively defined as follows:

(
˙̄x
(B

(n)
3 ,a)

j , ˙̄y
(B

(n)
3 ,a)

j

)
:=



(z̄j , 0) if j ∈ I+,
(−z̄j , 2z̄j) if j ∈ I− and j 6= t,
 |z1|∏

i6=t

(
˙̄x
(B

(n)
3 ,a)

i

)αi


1
αt

, z̄t −

 |z1|∏
i6=t

(
˙̄x
(B

(n)
3 ,a)

i

)αi


1
αt

 if j = t.

Similarly, q is the smallest index in I0 and ˙̄x
(B

(n)
3 ,b)

, ˙̄y
(B

(n)
3 ,b)

are respectively defined as follows:

(
˙̄x
(B

(n)
3 ,b)

j , ˙̄y
(B

(n)
3 ,b)

j

)
:=



(z̄j , 0) if j ∈ I+,
(−z̄j , 2z̄j) if j ∈ I−,
(1,−1) if j ∈ I0 and j 6= q,
 |z1|∏

i6=q

(
˙̄x
(B

(n)
3 ,b)

i

)αi


1
αq

,−

 |z1|∏
i6=q

(
˙̄x
(B

(n)
3 ,b)

i

)αi


1
αq

 if j = q.

(d) If z ∈ B(n)
4 , then

z = 1 ·
[

0

1(n) − 1k

]
+ 1 ·

[
0

1k − 1(n)

]
,

where 1k (k = 1, 2, · · · , n) is the kth column of the identity matrix In.
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Theorem 6 For any given z = (z1, z̄) ∈ R×Rn, its Type II decomposition with respect to K(n)
α is given by

(a) If z ∈ B(n)
1 , then

z =



z1+σ(n)
α (z̄)

2 ·

[
1
z̄

σ
(n)
α (z̄)

]
+

σ(n)
α (z̄)−z1

2 ·

[
−1
z̄

σ
(n)
α (z̄)

]
, if |I+| = n,

z1−σ(n)
α (−z̄)
2 ·

[
1
−z̄

σ
(n)
α (−z̄)

]
+
−σ(n)

α (z̄)−z1
2 ·

[
−1
−z̄

σ
(n)
α (−z̄)

]
, if |I−| = n,

z1
2 ·

[
1

1(n)

σ
(n)
α (1(n))

]
+ −z1

2 ·

[
−1
1(n)

σ
(n)
α (1(n))

]
, if |I0| = n.

(b) If z ∈ B(n)
2 , then

z =


1 ·

[
z1

¨̄x
(B

(n)
2 ,a)

]
+ (−1) ·

[
0

¨̄y
(B

(n)
2 ,a)

]
, if |I−| = 0,

(−1) ·

[
−z1

¨̄x
(B

(n)
2 ,b)

]
+ 1 ·

[
0

¨̄y
(B

(n)
2 ,b)

]
, if |I+| = 0,

where k is the smallest index in I0 and ¨̄x
(B

(n)
2 ,a)

, ¨̄y
(B

(n)
2 ,a)

, ¨̄x
(B

(n)
2 ,b)

, ¨̄y
(B

(n)
2 ,b)

are respectively defined as

follows:

(
¨̄x

(B
(n)
2 ,a)

j , ¨̄y
(B

(n)
2 ,a)

j

)
:=



(z̄j , 0) if j ∈ I+,
(1, 1) if j ∈ I0 and j 6= k,
 |z1|∏

i6=k

(
¨̄x
(B

(n)
2 ,a)

i

)αi


1
αk

,

 |z1|∏
i6=k

(
¨̄x
(B

(n)
2 ,a)

i

)αi


1
αk

 if j = k.

(
¨̄x

(B
(n)
2 ,b)

j , ¨̄y
(B

(n)
2 ,b)

j

)
:=



(−z̄j , 0) if j ∈ I−,
(1,−1) if j ∈ I0 and j 6= k,
 |z1|∏

i6=k

(
¨̄x
(B

(n)
2 ,b)

i

)αi


1
αk

,

 |z1|∏
i6=k

(
¨̄x
(B

(n)
2 ,b)

i

)αi


1
αk

 if j = k.

(c) If z ∈ B(n)
3 , then

z =


1 ·

[
z1

¨̄x
(B

(n)
3 ,a)

]
+ (−1) ·

[
0

¨̄y
(B

(n)
3 ,a)

]
, if |I0| = 0,

1 ·

[
z1

¨̄x
(B

(n)
3 ,b)

]
+ (−1) ·

[
0

¨̄y
(B

(n)
3 ,b)

]
, if |I0| 6= 0,

where t is the smallest index in I− and ¨̄x
(B

(n)
3 ,a)

, ¨̄y
(B

(n)
3 ,a)

are respectively defined as follows:

(
¨̄x

(B
(n)
3 ,a)

j , ¨̄y
(B

(n)
3 ,a)

j

)
:=



(z̄j , 0) if j ∈ I+,
(−z̄j ,−2z̄j) if j ∈ I− and j 6= t,
 |z1|∏

i6=t

(
¨̄x
(B

(n)
3 ,a)

i

)αi


1
αt

,−z̄t +

 |z1|∏
i6=t

(
¨̄x
(B

(n)
3 ,a)

i

)αi


1
αt

 if j = t.
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Similarly, q is the smallest index in I0 and ¨̄x
(B

(n)
3 ,b)

, ¨̄y
(B

(n)
3 ,b)

are respectively defined as follows:

(
¨̄x

(B
(n)
3 ,b)

j , ¨̄y
(B

(n)
3 ,b)

j

)
:=



(z̄j , 0) if j ∈ I+,
(−z̄j ,−2z̄j) if j ∈ I−,
(1, 1) if j ∈ I0 and j 6= q,
 |z1|∏

i6=q

(
¨̄x
(B

(n)
3 ,b)

i

)αi


1
αq

,

 |z1|∏
i6=q

(
¨̄x
(B

(n)
3 ,b)

i

)αi


1
αq

 if j = q.

(d) If z ∈ B(n)
4 , then

z = 1 ·
[

0

1(n) − 1k

]
+ (−1) ·

[
0

1(n) − 1k

]
.

5 Concluding remarks

In this paper, we propose two types of decomposition approaches for the power cone Kα and the exponential

cone Kexp, which are the generators of many well-known nonsymmetric cones. In particular, the correspond-

ing explicit decomposition formulas are established based on different classifications for the reference points

with respect to the given cones and the decomposition types. In contrast to the setting of Kexp, the power

cone Kα seems to be more regular, because its two types of decompositions share the same space division.

At the same time, we also define their conic functions, namely fpower and fexp as Definition 1 and 2. As

a byproduct, we can extend the decomposition results of the power cone Kα to its high-dimensional case

K(n)
α by slight modifications.

Although the results are not quite complete due to the difficulty of handling nonsymmetric cones, they

are very crucial to subsequent study towards nonsymmetric cone optimization. Further investigations are

definitely desirable. We summarize and list out some future topics as below.

1. Exploring more structures and properties for the power cone and the exponential cone, such as their

variational geometries including normal cones, tangent cones, second-order tangent sets, critical cone

and ”sigma” terms.

2. Similar to the second cone and its generalization circular cone, can the properties of continuity, strict

continuity, Lipschitz continuity, directional differentiability, differentiability, continuous differentiability,

and semismoothness be each inherited by fpower and fexp from f?

3. Designing new algorithms for these nonsymmetric cones based on the non-interior-point framework, such

as augmented Lagrangian method, proximal point method and their variants.

On the other hand, there are so many non-symmetric cones in real world. Can we figure out a way to clarify

them? This is another important direction for our future study.
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6 Appendix

6.1 The concepts of α-representable and extended α-representable sets

For a given convex set K, it is α-representable [4, Page 110] if there exist a finite integer M , scalars αi ∈ [0, 1],

i = 1, 2, · · · ,M , vectors c1, c2, · · · , cM ∈ R3, matrices A1, A2, · · · , AM with three columns and an appropriate
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number of rows, a matrix Af and a vector cf such that

u ∈ K ⇔ ci −ATi
[
u
v

]
∈ Kαi (i = 1, 2, · · · ,M), ATf

[
u
v

]
= cf

for some artificial variables or modelling variables v. Similarly, the set K is extended α-representable [4, Page

122] if there exist finite integers M1,M2, matrices Aα, Aexp, Af and vectors cα, cexp, cf of appropriate sizes

such that

u ∈ K ⇔ cα −ATα
[
u
v

]
∈
M1∏
i=1

Kαi , cexp −ATexp

[
u
v

]
∈
M2∏
i=1

Kexp, A
T
f

[
u
v

]
= cf .

6.2 Optimization models involving the power cone and the exponential cone

Location problem [4,19]: The generalized location problem is to find a point x ∈ Rn whose sum of weight

distances from a given set of locations L1, · · · , Lm is minimized, which has the following form

(P ) minx∈Rn
∑m
i=1 wi‖x− Li‖pi

where ‖ · ‖pi(pi ≥ 1) denotes the pi-norm defined on Rn. If pi is equal to 2, then the above problem reduces

to the classical Weber-Point problem. Denote by x := (x1, · · · , xn)T ∈ Rn and a := (a1, · · · , an)T ∈ Rn,

Problem (P ) can be rewritten as

minx,a,yi
∑m
i=1 wiai

s.t. (yi,j , ai, xj − Li,j) ∈ K 1
pi

, i = 1, · · · ,m, j = 1, · · · , n,∑n
j=1 yi,j = ai, i = 1, · · · ,m,

where Li,j and yi,j stand for the j-th component of Li ∈ Rn and yi ∈ Rn, respectively.

Geometric programming [3,31,34]: Let x := (x1, · · · , xn)T ∈ Rn be a vector with real positive components

xi . A real valued function m, of the form m(x) := c
∏n
i=1 x

αi
i , is called a monomial function, where c > 0

and αi are its coefficient and exponents, respectively. A sum of one or more monomials, i.e., a function that

looks like f(x) :=
∑K
k=1mk(x), is called a posynomial function, where mk(x) := ck

∏n
i=1 x

αi,k
i . A geomet-

ric program is composed of a posynomial objective with posynomial inequality constraints and monomial

equality constraints, which can be described as

(GP )
minx f0(x)
s.t. fs(x) ≤ 1, s = 1, · · · , p,

gt(x) = 1, t = 1, · · · , q,

where fs :=
∑K
k=1 ck,s

∏n
i=1 x

αi,k,s
i , s ∈ {0, 1, · · · , p} and gt(x) := ct

∏n
i=1 x

αi,t
i , t ∈ {1, · · · , q}. Using the

following change of variables as xi := exp(ui), ck,i := exp(dk,i), ct := exp(dt) and adding some additional

variables, Problem (GP) can be rewritten as

minui,w,ξk,0,ηk,s w

s.t. (dk,0 +
∑n
i=1 ui · αi,k,0, ξk,0, 1) ∈ Kexp,

∑K
k=1 ξk,0 = w,

(dk,s +
∑n
i=1 ui · αi,k,s, ηk,s, 1) ∈ Kexp,

∑K
k=1 ηk,s = 1, s = 1, · · · , p,

dt +
∑n
i=1 ui · αi,t = 0, t = 1, · · · , q.



The decompositions with respect to two core non-symmetric cones 25

6.3 The decomposition with respect to the circular cone

Consider the circular cone

Lθ := {(x1, x̄) ∈ R× Rn−1 |x1 tan θ ≥ ‖x̄‖}.

For any given z = (z1, z̄) ∈ R× Rn−1, the projection mappings ΠLθ (z), ΠL◦θ (z) are respectively given by

ΠLθ (z) :=


z, if z ∈ Lθ,
0, if z ∈ L◦θ ,
u, otherwise,

ΠL◦θ (z) :=


0, if z ∈ Lθ,
z, if z ∈ L◦θ ,
v, otherwise,

where

u =


z1 + ‖z2‖ tan θ

1 + tan2 θ(
z1 + ‖z2‖ tan θ

1 + tan2 θ
tan θ

)
z2

‖z2‖

 , v =


z1 − ‖z2‖ cot θ

1 + cot2 θ(
z1 − ‖z2‖ cot θ

1 + cot2 θ
cot θ

)
−z2

‖z2‖

 .
Combining these results with the Moreau decomposition theorem, the decomposition with respect to Lθ is

z = λ̃1(z) · ũ(1)
z + λ̃2(z) · ũ(2)

z , (51)

where

λ̃1(z) := z1 − ‖z̄‖ cot θ, λ̃2(z) := z1 + ‖z̄‖ tan θ,

ũ
(1)
z :=

1

1 + cot2 θ

[
1 0
0 cot θ

] [
1
−w

]
, ũ(2)

z :=
1

1 + tan2 θ

[
1 0
0 tan θ

] [
1
w

]
with w = z̄

‖z̄‖ if x̄ 6= 0 and w is any unit vector in Rn−1 if x̄ = 0. It is easy to see that

ΠLθ (z) = max{0, λ̃1(z)} · ũ(1)
z + max{0, λ̃2(z)} · ũ(2)

z .

More properties of the circular cone can be found in [45, Section 3].

6.4 Proof of Lemma 1

By definition, Kα is closed, since the functions x̄α1
1 x̄α2

2 and |x1| are continuous on R2
+ and R, respectively.

To proof that Kα is a convex cone, we only need to verify that it is closed under the addition and the

nonnegative multiplication. For any given (x1, x̄) ∈ Kα and β ≥ 0, one can obtain that

(βx̄1)α1(βx̄2)α2 = βx̄α1
1 x̄α2

2 ≥ β|x1| = |βx1|, βx̄1 ≥ 0, βx̄2 ≥ 0,

where the first equation uses the fact α1 + α2 = 1. Therefore, we have β(x1, x̄) ∈ Kα. For any given

(x1, x̄), (y1, ȳ) ∈ Kα, we know
|x1| ≤ x̄α1

1 x̄α2
2 , x̄1 ≥ 0, x̄2 ≥ 0,

|y1| ≤ ȳα1
1 ȳα2

2 , ȳ1 ≥ 0, ȳ2 ≥ 0.

It is easy to see that x̄1 + ȳ1 ≥ 0, x̄2 + ȳ2 ≥ 0 and |x1 + y1| ≤ |x1| + |y1| ≤ x̄α1
1 x̄α2

2 + ȳα1
1 ȳα2

2 . In order to

finish our proof, it suffices to show that

x̄α1
1 x̄α2

2 + ȳα1
1 ȳα2

2 ≤ (x̄1 + ȳ1)α1(x̄2 + ȳ2)α2 , ∀(x1, x̄), (y1, ȳ) ∈ Kα. (52)

We divide it into the following two cases. Suppose that there exists an index i ∈ {1, 2} such that x̄i = 0 or

ȳi = 0, it is trivial to show (52). Otherwise, we obtain x̄, ȳ ∈ R2
++. Consider the function f : R2

++ → R:

f(x̄) = x̄α1
1 x̄α2

2 ,

where x̄ := (x̄1, x̄2)T ∈ R2 and x̄1, x̄2 > 0. By calculation, we obtain

∇2f(x̄) =

[
α1(α1 − 1)x̄α1−2

1 0

0 α2(α2 − 1)x̄α2−2
2

]
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Since αi ∈ (0, 1) and x̄i is strictly positive, the Hessian matrix ∇2f(x̄) is negative definite, which shows

that f is concave defined on R2
++. Therefore, we have

f
( x̄+ ȳ

2

)
≥ 1

2
(f(x̄) + f(ȳ)) ,

which is equivalent to the above inequality (52). ut
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