Skip to main content
Log in

Using symbolic calculations to determine largest small polygons

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A small polygon is a polygon of unit diameter. The question of finding the largest area of small n-gons has been answered for some values of n. Regular n-gons are optimal when n is odd and kites with unit length diagonals are optimal when \(n=4\). For \(n=6\), the largest area is a root of a degree 10 polynomial with integer coefficients and height 221360 (the height of a polynomial is the largest coefficient in absolute value). The present paper analyses the and octogonal cases, and under an axial symmetry conjecture, we propose a methodology that leads to a polynomial of degree 344 with integer coefficients that factorizes into a polynomial of degree 42 with height 23588130061203336356460301369344. A root of this last polynomial corresponds to the area of the largest small axially symmetrical octagon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Graham [10] claims that the optimal hexagon is axially symmetrical, but states that “the details of the proof are not particularly interesting and are omitted”.

  2. These polynomials were obtained using the Maple symbolic calculation commands factor(resultant(PAz(u), Pz(u), u)) and factor(discrim(RA(z),z)).

References

  1. Audet, C.: Maximal area of equilateral small polygons. Am. Math. Monthly 124(2), 175–178 (2017)

    Article  MathSciNet  Google Scholar 

  2. Audet, C., Hansen, P., Messine, F.: Extremal problems for convex polygons. J. Global Optim. 38(2), 163–179 (2007)

    Article  MathSciNet  Google Scholar 

  3. Audet, C., Hansen, P., Messine, F.: Extremal problems for convex polygons—an update. In: Pardalos, P.M., Coleman, T.F. (eds.) Lectures on Global Optimization, Volume 55 of Fields Institute Communications, pp. 1–16. American Mathematical Society, Providence (2009)

    Google Scholar 

  4. Audet, C., Hansen, P., Messine, F.: Ranking small regular polygons by area and by perimeter. J. Appl. Ind. Math. 3(1), 21–27 (2009). Original Russian text: Diskretnyi Analiz i Issledovanie Operatsii, 15(3), 65–73 (2008)

  5. Audet, C., Hansen, P., Messine, F., Xiong, J.: The largest small octagon. J. Comb. Theory Appl. Ser. A 98(1), 46–59 (2002)

    Article  MathSciNet  Google Scholar 

  6. Borwein, P., Mossinghoff, M.J.: Polynomials with height 1 and prescribed vanishing at 1. Exp. Math. 9(3), 425–433 (2000)

    Article  MathSciNet  Google Scholar 

  7. Deaux, R.: Introduction to the Geometry of Complex Numbers. Ungar, New York (1954)

    Google Scholar 

  8. Foster, J., Szabo, T.: Diameter graphs of polygons and the proof of a conjecture of Graham. J. Combin. Theory Ser. A 114(8), 1515–1525 (2007)

    Article  MathSciNet  Google Scholar 

  9. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Boston (2009)

    MATH  Google Scholar 

  10. Graham, R.L.: The largest small hexagon. J. Combin. Theory 18, 165–170 (1975)

    Article  MathSciNet  Google Scholar 

  11. Henrion, D., Messine, F.: Finding largest small polygons with GloptiPoly. J. Global Optim. 56(3), 1017–1028 (2013)

    Article  MathSciNet  Google Scholar 

  12. Johnson, S.C., Graham, R.L.: Problem #7. SIGSAM Bull. 8(1), 4–4 (1974)

    Article  Google Scholar 

  13. Lazard, D.: Problem 7 and systems of algebraic equations. SIGSAM Bull. 14(2), 26–29 (1980)

    Article  Google Scholar 

  14. Mossinghoff, M.J.: Isodiametric problems for polygons. Discrete Comput. Geom. 36(2), 363–379 (2006)

    Article  MathSciNet  Google Scholar 

  15. Reinhardt, K.: Extremale polygone gegebenen durchmessers. Jahresber. Deutsch. Math. Verein 31, 251–270 (1922)

    Google Scholar 

  16. Yuan, B.: The largest small hexagon. Master’s Thesis, Department of Mathematics, National University of Singapore, (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Audet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Audet, C., Hansen, P. & Svrtan, D. Using symbolic calculations to determine largest small polygons . J Glob Optim 81, 261–268 (2021). https://doi.org/10.1007/s10898-020-00908-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00908-w

Keywords

Navigation