
HAL Id: hal-02898963
https://inria.hal.science/hal-02898963

Submitted on 27 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A model of anytime algorithm performance for
bi-objective optimization

Alexandre Borges de Jesus, Luis Paquete, Arnaud Liefooghe

To cite this version:
Alexandre Borges de Jesus, Luis Paquete, Arnaud Liefooghe. A model of anytime algorithm per-
formance for bi-objective optimization. Journal of Global Optimization, 2021, 79, pp.329-350.
�10.1007/s10898-020-00909-9�. �hal-02898963�

https://inria.hal.science/hal-02898963
https://hal.archives-ouvertes.fr

Journal of Global Optimization manuscript No.
(will be inserted by the editor)

A model of anytime algorithm performance for bi-objective
optimization

Alexandre D. Jesus · Lúıs Paquete · Arnaud

Liefooghe

Received: date / Accepted: date

Abstract Anytime algorithms allow a practitioner to trade-off runtime for solu-
tion quality. This is of particular interest in multi-objective combinatorial opti-
mization since it can be infeasible to identify all efficient solutions in a reasonable
amount of time. We present a theoretical model that, under some mild assump-
tions, characterizes the “optimal” trade-off between runtime and solution quality,
measured in terms of relative hypervolume, of anytime algorithms for bi-objective
optimization. In particular, we assume that efficient solutions are collected sequen-
tially such that the collected solution at each iteration maximizes the hypervolume
indicator, and that the non-dominated set can be well approximated by a quad-
rant of a superellipse. We validate our model against an “optimal” model that has
complete knowledge of the non-dominated set. The empirical results suggest that
our theoretical model approximates the behavior of this optimal model quite well.
We also analyze the anytime behavior of an ε-constraint algorithm, and show that
our model can be used to guide the algorithm and improve its anytime behavior.

Keywords Multi-objective Optimization · Combinatorial Optimization · Anytime
Algorithms · Anytime Behavior · ε-constraint

This is a post-peer-review, pre-copyedit version of an article published in Journal of Global
Optimization. The final authenticated version is available online at: https://dx.doi.org/10.
1007/s10898-020-00909-9

A. D. Jesus
University of Coimbra, CISUC, DEI, Coimbra, Portugal
Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL, F-59000 Lille, France
E-mail: ajesus@dei.uc.pt

L. Paquete
University of Coimbra, CISUC, DEI, Coimbra, Portugal
E-mail: paquete@dei.uc.pt

A. Liefooghe
JFLI - CNRS IRL 3527, University of Tokyo, 113-0033 Tokyo, Japan
E-mail: arnaud.liefooghe@univ-lille.fr

https://dx.doi.org/10.1007/s10898-020-00909-9
https://dx.doi.org/10.1007/s10898-020-00909-9

2 Alexandre D. Jesus et al.

1 Introduction

Multi-objective combinatorial optimization (MOCO) problems, which arise in var-
ious real-life scenarios, deal with multiple, typically conflicting, objective functions
and are commonly solved according to the notion of efficiency [5]. Under this no-
tion there are usually several efficient solutions that represent the optimal trade-offs
between the objective functions. The goal in MOCO is often to find the set of all
efficient solutions, namely the efficient set. However, finding the complete set in a
reasonable amount of time is often infeasible due to the large number of efficient
solutions. In such cases, it can be more relevant to find a concise representation of
the efficient set with respect to some notion of representation quality [25]. Still, the
preferences of a practitioner in terms of desirable representation quality and/or
runtime can, in many cases, be uncertain or vary between calls of the algorithm,
e.g. a real-time system that has varying time available to report a result.

As such, anytime algorithms [3], which are characterized by their ability to
return an approximation of improving quality at anytime of the search process,
or for anytime budget, are an appealing concept since they allow to trade-off rep-
resentation quality with runtime. Many algorithms for MOCO problems can be
described as anytime algorithms, since they sequentially find improving solutions
during runtime. For example, ε-constraint approaches [5] sequentially collect effi-
cient solutions by solving a sequence of constrained single-objective optimization
problems. However, not every algorithm will present a good anytime behavior, i.e. a
good trade-off between representation quality and runtime [30].

In this work we aim to characterize the “optimal” anytime behavior of a class
of anytime algorithms for bi-objective combinatorial optimization that collect, at
each iteration, an efficient solution by solving a scalarized problem [5]. Optimal
anytime behavior here means that the collected efficient solution at each iteration
maximizes a measure of representation quality. In order to characterize this optimal
anytime behavior, we propose a theoretical model that estimates the trade-off
between runtime, given by the number of iterations performed by the algorithm,
and representation quality, given by the hypervolume [31] of the collected solutions.
This model acts under the assumption that the “shape” of the non-dominated set,
i.e. the image of the efficient set in the objective space, can be well approximated
by a quadrant of a superellipse. Although this seems to be a strong assumption,
empirical results suggest that this is the case for linear sum objective functions,
as is also illustrated in this work for two variants of the bi-objective knapsack
problem.

The model works by collecting minimal information about the non-dominated
set in order to approximate it with a piecewise linear function. Then, we consider
an oracle that returns, at each call, a point from this piecewise linear approximation
that maximizes the hypervolume indicator. We show that, for a particular case, the
relation between the number of calls to the oracle and the hypervolume achieved
can be expressed as a simple analytical formulation that depends on a “curvature”
parameter of the superellipse. For the general case, we present a simple method
that efficiently constructs the model by simulating the oracle.

To validate our theoretical model, we consider an “optimal” model that has
complete knowledge of the non-dominated set. Empirical results on two variants
of the bi-objective knapsack problem indicate that the theoretical model approxi-
mates the anytime behavior of this optimal model quite well. Moreover, we analyze

A model of anytime algorithm performance for bi-objective optimization 3

the anytime behavior of an ε-constraint approach [5], and show that how our model
can efficiently guide this approach in order to improve its anytime behavior. In par-
ticular, at each iteration we use the location of the point returned by the oracle as
a prediction of the location of the actual non-dominated point that maximizes the
hypervolume contribution. This information can then be used to set the constraint
in the scalarized single-objective problem solved by the ε-constraint algorithm at
each iteration.

The rest of this article is organized as follows. In Section 2, we present the back-
ground related to anytime algorithms and representation quality. In Section 3, we
introduce the relevant definitions. In Section 4, we describe the proposed theoret-
ical model. In Section 5, we present the empirical study and discuss the results
obtained. In Section 6, we present the concluding remarks and discuss possible
directions for future work.

2 Background

In this section, we start by introducing the notion of anytime algorithms and their
desirable properties. Then, we discuss different measures of representation quality,
and how they relate to these desirable properties. We conclude by briefly discussing
some related work.

2.1 Anytime algorithms

Anytime algorithms [3,30] allow to trade-off approximation quality with runtime,
such that quality improves as a function of runtime. Such algorithms are relevant
in various scenarios, for example in real-time systems where the available time for
the algorithm varies between calls, or in composite systems where the allocated
time for each algorithm varies between instances in order to improve the result of
the overall system.

A distinction is often made between two categories of anytime algorithms, in-

terruptible and contract [30]. Interruptible algorithms do not require a priori knowl-
edge of the available time budget and return an approximation when interrupted
at anytime of the search process. On the other hand, contract algorithms require
that the time budget is known prior to execution, and may or may not return a
solution if interrupted before the time budget ends. The anytime characteristic
of the former lies on the fact that an approximation can be found at anytime by
interrupting the algorithm, while on the latter an approximation can be found at
anytime by providing any time budget to the algorithm.

Many search heuristics and exact approaches for combinatorial optimization
problems naturally present the characteristics of interruptible algorithms. Still, not
every such algorithm is interesting from an anytime perspective. Zilberstein [30]
considers seven desirable properties of anytime algorithms:

1. Measurable quality, the quality of an approximation can be measured;
2. Recognizable quality, the quality of an approximation can be determined with

little or no overhead at runtime;
3. Monotonicity, the quality of the approximation improves monotonically as a

function of time;

4 Alexandre D. Jesus et al.

4. Consistency, the quality of the approximation as a function of time is consistent
for the same input parameters;

5. Diminishing returns, the improvement in quality for the approximation found
is greater at earlier steps of runtime, and diminishes over time;

6. Interruptibility, the algorithm returns an approximation when interrupted dur-
ing the execution; and

7. Preemptability, the algorithm can be resumed after being interrupted.

In the context of our work, we focus the following discussion on the first five
properties, for which, two main aspects need to be considered. First, the choice of
a measure of approximation quality, which is discussed in Section 2.2. Secondly,
the behavior of the anytime algorithm with respect to its trade-off between ap-
proximation quality and runtime, namely its anytime behavior.

The anytime behavior is often characterized in terms of performance pro-
files [30,9]. Two categories of profiles are commonly considered: expected perfor-

mance profiles, which map the expected quality as a function of time, and proba-

bilistic performance profiles, that describe the probability of finding a solution of
a certain quality after a specific amount of time. Performance profiles are often
empirically built by running the algorithm on several instances. However, this em-
pirical approach may be computationally expensive or infeasible if, for example,
not enough instances are known to build a meaningful profile. As such, it can be
more valuable to build a theoretical profile that describes a specific algorithmic
behavior.

2.2 Representation quality

In this work, we consider that anytime algorithms return approximations that
correspond to subsets of the efficient set, namely representation sets. Some scalar-
ization techniques [5] such as ε-constraint approaches and weighted sum methods
meet this assumption, since they can find efficient solutions by solving a sequence
of scalarized single-objective problems. In this section we discuss different repre-
sentation measures that describe the quality of a representation, and how they
relate to the properties defined in the previous section.

Several ways of defining representation measure can be found in the literature:

– Uniformity [25], is a measure of how far apart the points in the representation
are from each other, and is defined by the distance between the two closest
points in the representation.

– Coverage [25], is a measure of how distant the points in the representation are
from those in the non-dominated set, and is defined by the maximum distance
between a non-dominated point and its closest point in the representation set.

– ε-indicator (multiplicative) [27,13], is defined by the smallest multiplicative fac-
tor that can be applied to the all points in the representation, such that each
point of the non-dominated set is dominated by at least one point in the rep-
resentation set.

– Hypervolume [15], corresponds to the measure of the multi-dimensional region
dominated by the points in the representation set with respect to a reference
point.

A model of anytime algorithm performance for bi-objective optimization 5

Clearly, the uniformity measure allows for measurable quality since it only
requires that the points in the representation are known. On the other hand, the
coverage and ε-indicator measures are only measurable if the non-dominated set is
known, which is unrealistic in practice. Lastly, the hypervolume is measurable as
long as the reference point is known, for example, if it is provided by the decision
maker a priori, or if it can otherwise be defined by the practitioner, e.g. as the
nadir point of the non-dominated set. This may not be possible in cases where no
information is known regarding the objective space and objective functions.

With respect to the recognizable property, some overhead is commonly re-
quired to calculate the representation measure during runtime, unless the measure
is calculated during the execution of the algorithm, e.g. to guide its search pro-
cess, in which case we can reuse it. Whether this overhead is negligible or not
depends on the considered application. Still, it is worth noting that the coverage
indicator and the ε-indicator depend on the size of the non-dominated set, which
can be non-negligible relatively to the size of the representation set. Moreover,
the computational runtime of the hypervolume measure grows exponentially with
respect to the number of objective functions [29], while the remaining measures
grow linearly [25].

As for the monotonicity property, if we consider an algorithm that collects
efficient solutions and does not forget previously found solutions, then all four
indicators will improve monotonically as solutions are collected. However, only
the hypervolume indicator is strictly monotonic when a previously unseen non-
dominated point is found, under the common assumption that the reference point
is strictly dominated by all non-dominated points [32]. Strict monotonicity is im-
portant to guarantee the diminishing returns property since, otherwise, there may
be occasional iterations where a new solution is collected but no quality improve-
ment is observed, interleaved with iterations that show an improvement of quality.
Moreover, since the behavior during those occasional periods of runtime cannot
be measured, it is not possible to compare different approaches on these periods.

2.3 Related work

The study of anytime algorithms and their behavior commonly focuses on two
aspects. The first, meta-level control, is concerned with the optimal allocation of
runtime for systems with one or more anytime algorithms. This is often done ac-
cording to some utility function that models the practitioner preferences in terms
of the trade-off between solution quality and elapsed runtime. This allocation may
be performed prior to execution [1,11], in particular when the anytime behavior
is predictable and consistent between instances, or during execution [10] by mon-
itoring the anytime behavior of the algorithm. It is worth noting that monitoring
the algorithm can possibly take a significant amount of time, in which case the
monitorization needs to be scheduled accordingly [7].

The second aspect is concerned with the development and improvement of
anytime algorithms with respect to their anytime behavior [4,19]. This is often
done by manually analyzing the performance profiles of different algorithms and
configurations. However, this requires human intervention, which can be undesir-
able or infeasible at times. As such, a more interesting approach is to consider
methodologies to automatically compare the performance profiles of different al-

6 Alexandre D. Jesus et al.

gorithms. In recent works, this has been done by considering the trade-off between
solution quality and runtime as a bi-dimensional non-dominated set, which al-
lows the practitioner to use bi-objective quality indicators to compare different
performance profiles for heuristic methods [24,18,17]. In particular, these studies
consider the hypervolume indicator [31] to describe anytime behavior as a scalar
value, and use irace [16] to automatically tune the parameters of an algorithm
with the goal of improving its anytime behavior. Up to our knowledge no studies
exist on theoretical models of optimal anytime behavior for MOCO scalarization
techniques, which can be used, for example, to improve the anytime behavior of
these techniques, as we show in this paper.

3 Definitions

In this section, we introduce the relevant definitions for MOCO, and for the hy-
pervolume as a representation measure.

3.1 Multi-objective combinatorial optimization

We consider MOCO problems with two maximizing objective functions, w.l.o.g.,
defined as follows

max
x∈X

f(x) = (f1(x), f2(x)) (1)

where X denotes the feasible set of solutions, and fi : X → R, i ∈ {1, 2} are
the two objective functions. The image of X in the objective space is denoted by
Y = {f(x) | x ∈ X}. We consider the following two orderings in the objective space

f(x) ≥ f(x′) iff fi(x) ≥ fi(x′), i ∈ {1, 2} and f(x) 6= f(x′)

f(x) > f(x′) iff fi(x) > fi(x
′), i ∈ {1, 2}

(2)

such that a solution x ∈ X is said to be efficient if no other solution x′ ∈ X exists
such that f(x′) ≥ f(x), and weakly efficient if no other solution x′ ∈ X exists such
that f(x′) > f(x). The image of these solutions in the objective space are called
non-dominated and weakly non-dominated respectively.

The set of all efficient solutions is called the efficient set and denoted by X∗, and
its image in the objective space is called the non-dominated set and denoted by Y ∗.
A representation set R corresponds to a subset of the efficient set, i.e. R ⊆ X∗, and
its image in the objective space is denoted by YR = {f(x) | x ∈ R}.

3.2 Hypervolume indicator

To measure the quality of a representation set for a bi-objective optimization
problem, we consider the hypervolume indicator [31], which corresponds to the
measure of the bi-dimensional area dominated by the image of a representation
set in the objective space YR ⊂ R2, bounded by a reference point r ∈ R2, that is

H(YR) = λ
({
q ∈ R2 | ∃ s ∈ YR : r ≤ q ≤ s

})
(3)

A model of anytime algorithm performance for bi-objective optimization 7

where λ denotes the Lebesgue measure. We also introduce the notion of hypervolume

contribution, which corresponds to the contribution of a point q ∈ R2 with respect
to a set YR ⊂ R2, and is given by

∆H(q, YR) = H(YR ∪ {q})−H(YR) (4)

Noteworthily, the hypervolume is a monotone submodular function [26]. As
such, an algorithm that sequentially collects efficient solutions that maximize
the hypervolume contribution provides, after collecting k solutions, an (1 − 1/e)-
approximation to the maximal hypervolume value of a representation with size
k [22], where e is the base of the natural logarithm. Moreover, the hypervolume
is scaling independent [14], and as such the ordering defined by the hypervolume
among all representation sets is not affected by a scaling in the objective space.
However, the ordering between representation sets given by the hypervolume in-
dicator depends on the choice of the reference point [14].

4 A theoretical model of anytime behavior

In this section, we propose a theoretical model of optimal anytime behavior for
bi-objective optimization anytime algorithms that collect efficient solutions se-
quentially. We consider that optimal anytime behavior means that the collected
solution at each iteration maximizes the hypervolume contribution. For clarity of
exposition, the model is split into two parts.

First, in Section 4.1, we define a piecewise linear approximation of the non-
dominated set under some assumptions. In particular, we assume that the objec-
tive values of the lexicographic optimal solutions are known and that the non-
dominated set can be well approximated by the positive quadrant of a superel-
lipse. Although it is not expected that the non-dominated set matches the positive
quadrant of a superellipse exactly, our findings suggest that this gives a good ap-
proximation in practice for many problems with linear sum objective functions.
Superellipses have also been studied in the context of multi-objective continuous
optimization for the generation of test problems [6].

Then, we present two formulations of the model. In Section 4.2, we define an
analytical formulation for the particular case where the piecewise linear approxi-
mation consists of two segments and is convex, and when the reference point for
the hypervolume indicator is the nadir point. Then, in Section 4.3, we present a
more general algorithm that works for both the convex and non-convex cases, for
any reference point setting, and for a piecewise linear approximation defined by
any number of linear segments.

4.1 Estimating the non-dominated set as a piecewise linear function

We assume that the non-dominated set, scaled down to the unit square [0, 1]2,
can be well approximated by the positive quadrant of a superellipse centered in
the origin with both semi-diameters of length one. Formally, this is given by the
following parametric equation

y1
d + y2

d = 1 (5)

8 Alexandre D. Jesus et al.

0

1

0 1

f2

f1

0

1

0 1

f2

f1

0

1

0 1

f2

f1

Fig. 1 Example of superellipse curve (continuous line) for d = 2 and corresponding piecewise
linear approximation (dashed line) for ` ∈ {1, 2, 3}, from left to right.

where d > 0 is a parameter that controls the curvature of the superellipse and
y1, y2 ∈ [0, 1]. Alternatively, the values of y1 and y2 can also be defined with
respect to a parameter θ ∈ [0, π/2] as follows

y1 = cos2/d θ (6)

y2 = sin2/d θ (7)

Note that, for d < 1 the resulting approximation is non-convex, whereas for d ≥ 1
it is convex.

We then consider a piecewise linear approximation, denoted by G, with ` > 0
linear segments defined between consecutive points in the curve approximation

pi =
(

cos2/d θi, sin
2/d θi

)
(8)

where i ∈ {1, . . . , ` + 1} and θi < θi+1, such that θi are set to evenly spaced
values in the interval [0, π/2]. This setting of θi provides a good approximation for
the purposes of our model. Still, other techniques are available to sample these
points, see for example [23]. Figure 1 illustrates the curve given by Equation 5 for
a particular value of d, and corresponding piecewise linear approximations G for
a varying number of segments.

4.2 Analytical model

We define the behavior of an oracle that returns, at each call, a point in G that
maximizes the hypervolume by a function C(j) that denotes the hypervolume
contribution of the j-th point returned by the oracle, and by a function M(k) that
denotes the relative hypervolume after k points, that is

M(k) =
1

H(G)

k∑
j=1

C(j) (9)

Under some assumptions we can define closed formulations for C(j) and M(k).
In particular, we assume that: the approximation curve is convex (d ≥ 1), the
piecewise linear approximation has only two linear segments such that θ1 = 0,

A model of anytime algorithm performance for bi-objective optimization 9

0

0.5

p

1

0 0.5 p 1

f2

f1

0

0.5

p

1

0 0.5 p 1

f2

f1

Fig. 2 Example of the dominated (in black) and uncovered (in gray) regions after collecting
one (left) and three (right) points with the oracle.

θ2 = π/4, and θ3 = π/2, and the reference point for the hypervolume indicator is
set to the nadir point, i.e. r = (0, 0).

Under these assumptions, the piecewise linear approximation is defined by

G = {(y1, g(y1)) | y1 ∈ [0, 1]} (10)

g(y1) =

{
p−1
p y1 + 1 , 0 ≤ y1 ≤ p
p

p−1y1 + p
1−p , p < y1 ≤ 1

(11)

such that
p = cos2/d

π

4
= sin2/d π

4
(12)

Then, the first point returned by the oracle for this piecewise linear approxi-
mation can be found by solving

arg max
y1∈[0,1]

y1 · g(y1) (13)

which for d ≥ 1 has a single global optimum at coordinates (p, p). As such, the
hypervolume contribution of the first point collected by the oracle is C(1) = p2.

Subsequent points can be found by considering the regions that are not domi-
nated by any of the points collected. These regions are said to be uncovered. After
the first point (p, p) has been identified, each uncovered region is defined by a right
triangle, such that the hypotenuse contains the non-dominated points of the un-
covered region. Figure 2 illustrates the uncovered and dominated regions, which
are colored in gray and black respectively, after collecting one point (left-hand
side) and three points (right-hand side).

In order to find the largest hypervolume contribution for an uncovered region
defined by such a right triangle, we solve the following problem

max y1 · y2

s.t. y2 = −c2
c1
· y1 + c2

y1 ∈ [0, c1]

y2 ∈ [0, c2]

(14)

where c1 and c2 denote the length of the catheti of the right triangle on the
f1 and f2 axes, respectively. This problem has a global optimum at coordinates

10 Alexandre D. Jesus et al.

(c1/2, c2/2), which gives an hypervolume of c1 · c2/4, corresponding to half of the
area of the uncovered region. Also note that, after collecting this optimal point for
an uncovered region, the latter is further split into two smaller uncovered regions
that are also right triangles. Each of these uncovered regions has catheti with half
the length of the original triangle, and consequently covers a quarter of the area.

After collecting the first point, the resulting uncovered regions are two equiv-
alent right triangles with catheti of size (1− p) and p, and an area of (1− p) · p/2.
Then, it follows that the second and third largest hypervolume contributions are
given by C(2) = C(3) = (1 − p) · p/4. After excluding the regions dominated by
the two points that provide these contributions, one for each uncovered region,
there are four equivalent uncovered regions as illustrated on the right-hand side of
Figure 2. Each time the points that provide the largest hypervolume contribution
for all equivalent uncovered regions are collected, the number of uncovered regions
doubles. As such, a general equation for C(j) is given by

C(j) =

{
p2 j = 1
(1−p)·p
4blog2 jc j ≥ 2

(15)

which expectedly shows that the relative hypervolume has a logarithmic rate
of convergence. Finally, note that for reference point r = (0, 0) and ` = 2 lin-
ear segments, the hypervolume of the piecewise linear approximation is given by
H(G) = p.

4.3 Algorithmic model

For the general case, i.e. any number of linear segments ` > 0, any curvature pa-
rameter d > 0, and any reference point r ∈ R2, the previous analytical model does
not hold. Instead, we present an algorithm that computes the sequence of maximal
hypervolume contributions. This algorithm works by keeping an updated set of un-
covered regions. Since, at each iteration, only one point from a single uncovered
region is collected, we can keep a cache of the largest hypervolume contribution for
each region to avoid repeated calculations. Additionally, to quickly find the next
point with the largest hypervolume contribution, the uncovered regions can be kept
in a priority queue with respect to the largest possible hypervolume contribution.

These uncovered regions are represented by a simple polygon such that the
non-dominated set is defined by a simple polygonal chain, as illustrated in Fig-
ure 3. Note that each segment of the polygonal chain is part of the hypotenuse
of a right triangle with its right angle on the origin, as illustrated in the same
figure. Furthermore, we know from Equation 14 that the point with the largest
hypervolume for a right triangle is z = (c1/2, c2/2), where c1, c2 are the lengths of
the catheti on axes f1, f2 respectively. Then, the point with maximal hypervolume
contribution for a segment of the polygon chain is given by finding the closest
point to z. To find the largest hypervolume contribution for an uncovered region
we can loop over the segments and find the point with the largest hypervolume
contribution. Figure 4 illustrates the three first steps of the algorithmic model for
a non-convex piecewise approximation with ` = 2 linear segments.

To describe the complexity of the algorithmic model for function C(j), let us
consider a piecewise linear approximation defined by ` segments. At each iteration,

A model of anytime algorithm performance for bi-objective optimization 11

0

1

0 1

f2

f1

0

1

0 1

f2

f1

0

1

0 1

f2

f1

Fig. 3 On the left, an example of an uncovered region defined by a simple polygon (gray
area). On the middle and on the right, the individual segments (black line) of the polygonal
chain, and their respective triangular regions (gray area).

0

1

0 1

f2

f1

0

1

0 1

f2

f1

0

1

0 1

f2

f1

Fig. 4 First three steps of the algorithmic model for curvature parameter d = 0.5, number of
linear segments ` = 2, and reference point r = (0, 0).

the algorithm needs to find the uncovered region with the largest hypervolume
contribution, remove it from the data structure that contains all uncovered regions,
split the region into two new uncovered regions and insert those regions into the
data structure. As such, after j calls, there will be at most j+ 1 uncovered regions
in the data structure. To perform these operations efficiently we can consider a
priority queue supported by a binary heap which has a worst case complexity of
O(log j) for the insert and delete operations, and O(1) worst case complexity to
find the region with the largest hypervolume contribution. Still, at each iteration,
the algorithm needs to compute the maximum hypervolume contribution within
each of the two new uncovered regions before inserting them in the priority queue.
Since finding the point for a linear segment that has the largest hypervolume
contribution can be done in constant time, and there are at most ` segments in
each uncovered region, the worst case complexity is given by O(`) for each of the
two regions. As a result, for function C(j), the algorithmic model has a worst case
complexity of O(j`+ j log j).

For function M(k), the algorithm first needs to compute the maximal hyper-
volume of the piecewise linear approximation. This can be done by calculating the
area of the first uncovered region which is described by a polygon. The area of
a polygon can be calculated, for example, with the surveyor’s area formula [2].
Assuming that the points that make the linear segments of the piecewise approxi-
mation are given in a clockwise or counterclockwise order, which is the case for the

12 Alexandre D. Jesus et al.

101 102 103 104 105

Calls to the oracle

10 5

10 4

10 3

10 2

10 1

Ti
m

e
(s

)

Number of linear segments
10
100
1000

Fig. 5 Execution times in seconds of the algorithmic model for a varying number of calls
to the oracle, a varying number of linear segments, reference point r = (0, 0) and curvature
parameter d = 2.

points described in Equation 8, the calculation of the area with the surveyor’s area
formula has a worst case complexity of O(`). It is worth noting that to define the
polygon, we may need to consider some extra points. However, there are at most
`−1 extra points between the segments, and two extra points between the extreme
linear segments and the reference point. As such, the worst case complexity remains
O(`). Then, the algorithm needs the value of C(j) for j ∈ {1, . . . , k}. However, to
calculate C(j) for j > 1 we inevitably calculate values C(j − 1), C(j − 2), . . . , C(1)
as well. Then for M(k) we only need to call C(k) and keep the intermediate values.
As such, the worst case complexity for function M(k) is given by O(k`+ k log k).

An implementation of this algorithmic model is made available in [12]. Figure 5
shows the execution time in seconds of the implementation for a varying number
of calls to the oracle and a varying number of linear segments. The reference point
and curvature parameter d are fixed, since they have a negligible impact on the
results. We observe that the algorithm is very fast (less than 0.1 seconds) for most
practical scenarios, which we expect to have a number of linear segments and
iterations within the values reported.

5 Experimental analysis

In this section, we compare the relative hypervolume obtained from our theoretical
model described in Section 4 with an “optimal” model that has complete knowl-
edge of the non-dominated set and selects a non-dominated point that maximizes
the hypervolume contribution at each iteration. We also show the anytime behav-
ior of two variants of an ε-constraint approach that collects efficient solutions by
solving a sequence of constrained single-objective problems, such that one of the
variants is guided by our theoretical model and the other is not. The guided vari-
ant takes into account the points found by the algorithmic model and uses them
to set the constraint of the scalarized problem at each iteration.

We perform this study on an unconstrained bi-objective binary knapsack prob-
lem and a variant thereof. Throughout this section, it is assumed that the non-
dominated set of the test instances is scaled to the unit square [0, 1]2. In particular,
this is done by applying a transformation of the form f ′i(x) = (fi(x)−yli)/(y

u
i −y

l
i),

A model of anytime algorithm performance for bi-objective optimization 13

where yli and yui are the lower and upper bounds of the non-dominated set on the
ith objective function. These bounds are found by finding the lexicographic opti-
mal solutions.

5.1 Problems and instance generation

For the experimental study we consider the bi-objective unconstrained knapsack
problem (UBKP). Formally, given a set of items, where each item j = 1, . . . , n has
a value vj and a weight wj , the problem is defined as

max
x∈X

f1 (x) =
n∑

j=1

vjxj , f2 (x) = −
n∑

j=1

wjxj

 (16)

where xj denotes a binary variable that indicates whether or not item j has been
chosen for the knapsack. The weights and values of the items are randomly gen-
erated according to a multivariate uniform distribution in the range]0, 1[, with
correlation ρ ∈ [−1, 1] following the procedure described in [28].

Noteworthily, for ρ = 1 the points in the non-dominated set fall on a line,
which means that the approximation to a positive quadrant of the superellipse
is parameterized by d = 1. As the value of ρ decreases we expect that the front
can be approximated by a convex positive quadrant of a superellipse of increasing
parameter d. To illustrate this, Figures 6(a)–(c) show the non-dominated set for
instances of size n = 100 and correlation values ρ ∈ {−0.8, 0.0, 0.8}. In these
figures, we can see that for ρ = 0.8 the shape of the non-dominated set almost
resembles a line, and as ρ decreases, the non-dominated set resembles a more
accentuated convex curve. The same figures show that the approximation set can
be well approximated with the positive quadrant of a superellipse with curvature
parameter d = logp 0.5, where p is found by considering the solution to the following
optimization problem

arg max
x∈X

min {f1(x), f2(x)} (17)

such that if x′ ∈ X is the optimal solution to this formulation, then the parameter
is given by p = (f1(x′) + f2(x′))/2.

As expected, and evidenced in Figures 6(a)–(c), the test instances generated
for the UBKP do not show non-dominated sets that are approximated by a non-
convex superellipse approximation. As such, to validate our model for such cases,
we consider a variant of this problem characterized by a tight capacity constraint
c = 1 on the number of items to be included in knapsack, that is

n∑
j=1

xi ≤ c (18)

We note that, for c = 1, this problem is easy to solve since the non-dominated set is
composed by the empty solution and all the non-dominated solutions that contain
only a single item. We use this problem as a simple example to study our model
for non-convex fronts. We refer to this variant as the capacity-constrained UBKP
(CCUBKP). To generate test instances for the CCUBKP, we sample the value and
weight vectors from equally parameterized Weibull distributions. In particular we

14 Alexandre D. Jesus et al.

consider a fixed scale parameter λ = 1, and a varying shape parameter s. Then,
we sort the value vector in increasing order and the weight vector in decreasing
order.

We expect that by varying the shape parameter s we can vary the curvature
of the non-dominated set. In particular, it is expected that as s increases, so
does the parameter d for the superellipse approximation. To illustrate this, we
show in Figures 6(d)–(f) the non-dominated set of test instances generated for
shape parameter values s ∈ {1.6, 2.0, 3.0} and problem size n = 2000. A larger
problem size for the CCUBKP was chosen in order to have a similar number of
non-dominated points between the two problems. From these figures, it is clear
that as s increases we get a non-dominated set that more closely resembles a line.
To conclude, we show in Figures 6(d)–(f) that the non-dominated sets generated
for the CCUBKP can also be well approximated with the positive quadrant of a
superellipse. The parameterization of the positive quadrant is done in the same
manner as in the case of the UBKP, by solving Problem 17.

5.2 Models and ε-constraint algorithms

In this section, we describe the theoretical model, optimal model, and ε-constraint
algorithms used for the empirical study.

Theoretical model We consider Problem 17 to find the parameter d of the piecewise
linear approximation. Moreover, the theoretical model is implemented according
to the algorithmic model described in Section 4.3.

Optimal model The optimal model is implemented with a greedy approach that,
given the non-dominated set, selects the non-dominated point that provides the
largest hypervolume contribution at each iteration. In case there is more than
one point with maximal hypervolume contribution, the model selects the lexico-
graphically smaller with respect to the order (f1, f2). The non-dominated set is
calculated using the Nemhauser-Ullman algorithm [21] for the UBKP, and with a
simple enumeration algorithm for the CCUBKP.

ε-constraint algorithm We consider an ε-constraint [5] technique that solves a se-
quence of constrained single-objective problems by transforming one of the objec-
tives into a constraint

arg max
x∈X

f1(x)

s.t. f2(x) ≥ ε
(19)

where ε is varied at each iteration of the algorithm, denoted by εk for the kth
iteration. We start by setting ε1 = p, and then our algorithm bisects the intervals
[0, ε1] and [ε1, 1] to set the constraints ε2 = p/2 and ε3 = p + (1 − p)/2 for the
second and third iterations, respectively. This bisection procedure is repeated for
each point found until a predefined number of iterations is reached. Clearly, this
bisection follows the same pattern as the analytical model, where at each iteration
we bisect the uncovered regions.

A model of anytime algorithm performance for bi-objective optimization 15

0

0.5

p

1

0 0.5 p 1

f2

f1

(a) ρ = −0.8

0

0.5

p

1

0 0.5 p 1

f2

f1

(b) ρ = 0.0

0

0.5

p

1

0 0.5 p 1

f2

f1

(c) ρ = 0.8

0

p

0.5

1

0 p 0.5 1

f2

f1

(d) s = 1.6

0

p

0.5

1

0 p 0.5 1

f2

f1

(e) s = 2.0

0

p
0.5

1

0 p 0.5 1

f2

f1

(f) s = 3.0

Fig. 6 Non-dominated set (points in gray) and respective superellipse approximation
(straight black line) for instances of the UBKP with varying correlation ρ and problem
size n = 100 (left), and for instances of the CCUBKP with varying shape parameter s and
problem size n = 2000 (right).

16 Alexandre D. Jesus et al.

Since Problem 19 can return a weakly efficient solution [5], we solve at each
iteration a second single-objective constrained problem to guarantee an efficient
solution, defined as

arg max
x∈X

f2(x)

s.t. f1(x) ≥ f1(x′)
(20)

where x′ ∈ X denotes an optimal solution for Problem 19. Both optimization
problems are solved using the GNU Linear Programming Kit MILP Solver [20].

Guided ε-constraint algorithm We consider an ε-constraint variant defined by the
same formulations presented in Problems 19 and 20, but where the εk constraint
at each iteration is set according to our model. In particular, the algorithmic
model returns, at each iteration, the point in the piecewise linear approximation
that maximizes the hypervolume contribution. Then, the value of εk is set to the
second coordinate of the kth point returned by the model.

5.3 Results and discussion

In this section, we report the solution quality over runtime for the different models
and algorithms described in the previous section. In particular, we consider the-
oretical models with two and ten linear segments, i.e. ` ∈ {2, 10}. Moreover, we
consider a theoretical model with ` = 10 linear segments to use with the guided
ε-constraint algorithm. In the reported results, runtime corresponds to the number
of calls to the oracle for the theoretical and optimal models, and iterations for the
two ε-constraint algorithms. The quality of a representation set R is expressed in
terms of its relative hypervolume, that is, H(YR)/H(Z), where Z = G for the theo-
retical model, i.e. the approximation to the non-dominated set, and Z = Y ∗ for the
optimal model and ε-constraint algorithms, i.e. the actual non-dominated set of
the problem instance. We also report quality in terms of the relative hypervolume
deviation, that is, (H(Z)−H(YR))/H(Z).

Figures 7 and 8 show the results for the first 128 iterations of the ε-constraint
algorithms and calls to the oracle for the UBKP. In the former, the reference point
is set to r = (0, 0), while in the latter it is set to r = (−1,−1). The instances
considered have a problem size n = 100, and correlation values ρ ∈ {−0.8, 0.0, 0.8}.
The corresponding non-dominated sets are shown in Figures 6(a)–(c). Figures 9
and 10 show the corresponding results for the CCUBKP. The instances considered
have a problem size n = 2000, and varying shape parameter s ∈ {1.6, 2.0, 3.0}. The
corresponding non-dominated sets are shown in Figures 6(d)–(f).

These results indicate that our model approximates quite well the performance
of the optimal model. In particular, for ` = 10 linear segments the theoretical model
is very close to the optimal model. For ` = 2 linear segments there is a larger
difference during the first few steps due to the difference between the maximal
hypervolume of the non-dominated set and of the piecewise linear approximation.
This difference is smaller for reference point r = (−1,−1) and when d is closer
to 1 since the relative difference between the maximal hypervolume of the non-
dominated set and of the piecewise approximation is smaller in those cases.

Furthermore, the results show that the basic ε-constraint algorithm has a good
anytime behavior for r = (0, 0) and d close to 1, but its behavior deteriorates for

A model of anytime algorithm performance for bi-objective optimization 17

other values. By contrast, the variant guided by our theoretical model shows very
good anytime behavior on all the experiments.

To conclude, we note that these results are coherent for instances with different
problem sizes, different parameters, and different reference points. Moreover, we
expect the results to generalize for any problem where the scaled non-dominated
set can be approximated by the quadrant of a superellipse.

6 Conclusion

In this work, we presented a simple theoretical model to characterize the trade-
off between runtime and hypervolume in the context of anytime algorithms for
bi-objective optimization. The experimental results indicate that this theoretical
model can finely approximate the anytime behavior of an optimal model with
complete knowledge of the non-dominated set, especially when the number of linear
segments is larger. We also show a potential application of our model, which is
to guide scalarization techniques in order to improve their anytime behavior. In
particular, we present an improved variant of an ε-constraint algorithm guided by
our model that shows a particularly good anytime behavior.

Another interesting application of our model is on algorithm survival analy-
sis [8]. Based on our model it is possible to detect if an algorithm that follows a
similar behavior is taking too long to find each efficient solution, and whether or
not it will achieve some desirable quality within a desired time budget. This may
justify a restart or a switch to a different search strategy. Moreover, our theoreti-
cal model can be used to define measurable metrics of comparison for the anytime
behavior of techniques that collect efficient solutions iteratively.

As for future research, one possible direction is to extend the model for ap-
proximations of the non-dominated set other than a quadrant of a superellipse.
In practice, this can already be accomplished by our algorithmic model by giv-
ing it any set of non-dominated, possibly disconnected, linear segments. However,
the main challenge is to define a good piecewise linear approximation to the non-
dominated set. A related idea is to consider a feedback loop between our model and
a scalarization technique that sequentially finds efficient solutions. In particular, if
the set of linear segments corresponds to an approximation of the non-dominated
set, and throughout the execution of the scalarization technique we find the ac-
tual non-dominated points, then we can insert these points back into the model
to increase the quality of the approximation in an online fashion. Lastly, our work
has focused on the bi-objective case. Thus, a clear direction for future research is
to extend it for more objectives. A model for more than two objective functions
seems more challenging in part due to the splitting and tracking of the uncovered
regions after a point with maximal hypervolume contribution is found.

Acknowledgements The authors would like to acknowledge the anonymous reviewers whose
comments contributed to improve the quality of the paper. This work was partially supported
by COST Action CA15140 (STSM n. 39531), and by the PICS project MOCO-SEARCH co-
funded by the French National Center for Scientific Research (CNRS) and the Portuguese
Foundation for Science and Technology (FCT). The first author acknowledges the FCT for
Ph.D. studentship SFRH/BD/132275/2017, co-funded by the European Social Fund and by
the State Budget of the Portuguese Ministry of Education and Science. This work was partially
funded by national funds through the FCT - Foundation for Science and Technology, I.P. within

18 Alexandre D. Jesus et al.

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

0.6

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 3

10 2

10 1

100

Re
la

tiv
e

Hy
pe

rv
ol

um
e

De
vi

at
io

n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(a) ρ = −0.8, r = (0, 0), and d ≈ 2.099

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

0.6

0.5

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 3

10 2

10 1

100
Re

la
tiv

e
Hy

pe
rv

ol
um

e
De

vi
at

io
n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(b) ρ = 0.0, r = (0, 0), and d ≈ 1.644

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

0.6

0.5

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 3

10 2

10 1

100

Re
la

tiv
e

Hy
pe

rv
ol

um
e

De
vi

at
io

n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(c) ρ = 0.8, r = (0, 0), and d ≈ 1.219

Fig. 7 Results for the UBKP with n = 100, reference point r = (0, 0), and varying correlation
ρ ∈ {−0.8, 0.0, 0.8}.

A model of anytime algorithm performance for bi-objective optimization 19

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Hy
pe

rv
ol

um
e

De
vi

at
io

n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(a) ρ = −0.8, r = (−1,−1), and d ≈ 2.099

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 4

10 3

10 2

10 1

100
Re

la
tiv

e
Hy

pe
rv

ol
um

e
De

vi
at

io
n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(b) ρ = 0.0, r = (−1,−1), and d ≈ 1.644

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

0.6

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Hy
pe

rv
ol

um
e

De
vi

at
io

n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(c) ρ = 0.8, r = (−1,−1), and d ≈ 1.219

Fig. 8 Results for the UBKP with n = 100, reference point r = (−1,−1), and varying
correlation ρ ∈ {−0.8, 0.0, 0.8}.

20 Alexandre D. Jesus et al.

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 3

10 2

10 1

100

Re
la

tiv
e

Hy
pe

rv
ol

um
e

De
vi

at
io

n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(a) s = 1.6, r = (0, 0), and d ≈ 0.476

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 3

10 2

10 1

100
Re

la
tiv

e
Hy

pe
rv

ol
um

e
De

vi
at

io
n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(b) s = 2.0, r = (0, 0), and d ≈ 0.592

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 3

10 2

10 1

100

Re
la

tiv
e

Hy
pe

rv
ol

um
e

De
vi

at
io

n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(c) s = 3.0, r = (0, 0), and d ≈ 0.866

Fig. 9 Results for the CCUBKP with n = 2000, capacity constraint c = 1, reference point
r = (0, 0), and varying shape parameter s ∈ {1.6, 2.0, 3.0}.

A model of anytime algorithm performance for bi-objective optimization 21

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Hy
pe

rv
ol

um
e

De
vi

at
io

n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(a) s = 1.6, r = (−1,−1), and d ≈ 0.476

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

0.6

0.5

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 4

10 3

10 2

10 1

100
Re

la
tiv

e
Hy

pe
rv

ol
um

e
De

vi
at

io
n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(b) s = 2.0, r = (−1,−1), and d ≈ 0.592

20 21 22 23 24 25 26 27

Runtime

1.0

0.9

0.8

0.7

0.6

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

20 21 22 23 24 25 26 27

Runtime

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Hy
pe

rv
ol

um
e

De
vi

at
io

n

Optimal Model
Theoretical Model (= 2)
Theoretical Model (= 10)
-constraint

Guided -constraint (= 10)

(c) s = 3.0, r = (−1,−1), and d ≈ 0.866

Fig. 10 Results for the CCUBKP with n = 2000, capacity constraint c = 1, reference point
r = (−1,−1), and varying shape parameter s ∈ {1.6, 2.0, 3.0}.

22 Alexandre D. Jesus et al.

the scope of the project CISUC - UID/CEC/00326/2020 and by the European Social Fund,
through the Regional Operational Program Centro 2020.

References

1. Boddy, M., Dean, T.L.: Deliberation scheduling for problem solving in time-constrained
environments. Artificial Intelligence 67(2), 245–285 (1994). DOI 10.1016/0004-3702(94)
90054-X

2. Braden, B.: The surveyor’s area formula. The College Mathematics Journal 17(4), 326–337
(1986). DOI 10.1080/07468342.1986.11972974

3. Dean, T., Boddy, M.: An analysis of time-dependent planning. In: Proceedings of the
Seventh AAAI National Conference on Artificial Intelligence, AAAI’88, pp. 49–54. AAAI
Press (1988)

4. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime Pareto local search. European
Journal of Operational Research 243(2), 369–385 (2015). DOI 10.1016/j.ejor.2014.10.062

5. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin, Heidelberg (2005).
DOI 10.1007/3-540-27659-9

6. Emmerich, M.T.M., Deutz, A.H.: Test problems based on Lamé superspheres. In: Evolu-
tionary Multi-Criterion Optimization, EMO 2007, pp. 922–936. Springer, Berlin, Heidel-
berg (2007). DOI 10.1007/978-3-540-70928-2 68

7. Finkelstein, L., Markovitch, S.: Optimal schedules for monitoring anytime algorithms.
Artificial Intelligence 126(1–2), 63–108 (2001). DOI 10.1016/S0004-3702(00)00072-2

8. Gagliolo, M., Legrand, C.: Algorithm survival analysis. In: Experimental Methods for the
Analysis of Optimization Algorithms, pp. 161–184. Springer, Berlin, Heidelberg (2010).
DOI 10.1007/978-3-642-02538-9 7

9. Hansen, E.A., Zilberstein, S.: Monitoring anytime algorithms. SIGART Bulletin 7(2),
28–33 (1996). DOI 10.1145/242587.242593

10. Hansen, E.A., Zilberstein, S.: Monitoring and control of anytime algorithms: A dynamic
programming approach. Artificial Intelligence 126(1–2), 139–157 (2001). DOI 10.1016/
S0004-3702(00)00068-0

11. Horvitz, E.J.: Reasoning about beliefs and actions under computational resource con-
straints. In: Proceedings of the Third Conference on Uncertainty in Artificial Intelligence,
UAI-87, pp. 429–447. AUAI Press, Corvallis, Oregon (1987)

12. Jesus, A.D.: moco abm v0.2.0 (2019). DOI 10.5281/zenodo.3548869
13. Jesus, A.D., Paquete, L., Figueira, J.R.: Finding representations for an unconstrained

bi-objective combinatorial optimization problem. Optimization Letters 12(2), 321–334
(2018). DOI 10.1007/s11590-017-1129-6

14. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proceedings
of the 2002 Congress on Evolutionary Computation, CEC’02, vol. 1, pp. 711–716. IEEE
(2002). DOI 10.1109/CEC.2002.1007013

15. Kuhn, T., Fonseca, C.M., Paquete, L., Ruzika, S., Duarte, M.M., Figueira, J.R.: Hyper-
volume subset selection in two dimensions: Formulations and algorithms. Evolutionary
Computation 24(3), 411–425 (2015). DOI 10.1162/EVCO a 00157

16. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package: Iter-
ated racing for automatic algorithm configuration. Operations Research Perspectives 3,
43–58 (2016). DOI 10.1016/j.orp.2016.09.002

17. López-Ibáñez, M., Liao, T., Stützle, T.: On the anytime behavior of IPOP-CMA-ES. In:
Parallel Problem Solving from Nature - PPSN XII, PPSN 2012, pp. 357–366. Springer,
Berlin, Heidelberg (2012). DOI 10.1007/978-3-642-32937-1 36

18. López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of opti-
misation algorithms. European Journal of Operational Research 235(3), 569–582 (2014).
DOI 10.1016/j.ejor.2013.10.043

19. Loudni, S., Boizumault, P.: Combining VNS with constraint programming for solving
anytime optimization problems. European Journal of Operational Research 191(3), 705–
735 (2008). DOI 10.1016/j.ejor.2006.12.062

20. Makhorin, A.: GNU Linear Programming Kit - v4.65 (2018). URL https://www.gnu.org/
software/glpk/

21. Nemhauser, G.L., Ullmann, Z.: Discrete dynamic programming and capital allocation.
Management Science 15(9), 494–505 (1969). DOI 10.1287/mnsc.15.9.494

https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/

A model of anytime algorithm performance for bi-objective optimization 23

22. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for max-
imizing submodular set functions. Mathematical Programming 14(1), 265–294 (1978).
DOI 10.1007/BF01588971

23. Pilu, M., Fisher, R.B.: Equal-distance sampling of superellipse models. In: Procedings of
the British Machine Vision Conference, BMVC 1995, pp. 257–266. BMVA Press (1995).
DOI 10.5244/C.9.26

24. Radulescu, A., López-Ibáñez, M., Stützle, T.: Automatically improving the anytime
behaviour of multiobjective evolutionary algorithms. In: Evolutionary Multi-Criterion
Optimization, EMO 2013, pp. 825–840. Springer, Berlin, Heidelberg (2013). DOI
10.1007/978-3-642-37140-0 61

25. Sayın, S.: Measuring the quality of discrete representations of efficient sets in multiple
objective mathematical programming. Mathematical Programming 87(3), 543–560 (2000).
DOI 10.1007/s101070050011

26. Ulrich, T., Thiele, L.: Bounding the effectiveness of hypervolume-based (µ+λ)-archiving
algorithms. In: Learning and Intelligent Optimization, LION 2012, pp. 235–249. Springer,
Berlin, Heidelberg (2012). DOI 10.1007/978-3-642-34413-8 17

27. Vaz, D., Paquete, L., Fonseca, C.M., Klamroth, K., Stiglmayr, M.: Representation of the
non-dominated set in biobjective discrete optimization. Computers & Operations Research
63, 172–186 (2015). DOI 10.1016/j.cor.2015.05.003

28. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: Analyzing the effect of objec-
tive correlation on the efficient set of mnk-landscapes. In: Learning and Intelligent
Optimization, LION 2011, pp. 116–130. Springer, Berlin, Heidelberg (2011). DOI
10.1007/978-3-642-25566-3 9

29. Yildiz, H., Suri, S.: On Klee’s measure problem for grounded boxes. In: Proceedings of
the Twenty-Eigth Annual Symposium on Computational Geometry, SoCG ’12, pp. 111–
120. Association for Computing Machinery, New York, NY, USA (2012). DOI 10.1145/
2261250.2261267

30. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Magazine 17(3), 73–83
(1996). DOI 10.1609/aimag.v17i3.1232

31. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms — A
comparative case study. In: Parallel Problem Solving from Nature — PPSN V, PPSN
1998, pp. 292–301. Springer, Berlin, Heidelberg (1998). DOI 10.1007/BFb0056872

32. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance
assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on
Evolutionary Computation 7(2), 117–132 (2003). DOI 10.1109/TEVC.2003.810758

	Introduction
	Background
	Definitions
	A theoretical model of anytime behavior
	Experimental analysis
	Conclusion

