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Abstract. The `p regularization problem with 0 < p < 1 has been widely studied for finding sparse solutions

of linear inverse problems and gained successful applications in various mathematics and applied science fields. In

the present paper, we investigate the linear convergence issue of one inexact descent method and particularly two

inexact proximal gradient algorithms (PGA), the latter is one of the most popular algorithms for solving the `p
regularization problem. For this purpose, an optimality condition theorem is explored to provide the equivalences

among a local minimum, second-order optimality condition and second-order growth property of the `p regularization

problem. By virtue of the second-order optimality condition and second-order growth property, we establish the

linear convergence properties of the inexact descent method and inexact PGAs under some simple assumptions.

Both linear convergence to a local minimal value and linear convergence to a local minimum are provided. Finally,

the linear convergence results of the inexact numerical methods are extended to the infinite-dimensional Hilbert

spaces.
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1. Introduction. The following linear inverse problem is at the core of many problems in

various areas of mathematics and applied sciences: finding x ∈ Rn such that

Ax = b,

where A ∈ Rm×n and b ∈ Rm are known, and an unknown noise is included in b. If m � n,

the above linear inverse problem is seriously ill-conditioned and has infinitely many solutions, and

researchers are interested in finding solutions with certain structures, e.g., the sparsity structure.

A popular technique for approaching a sparse solution of the linear inverse problem is to solve the

`1 regularization problem

min
x∈Rn

‖Ax− b‖2 + λ‖x‖1,
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where ‖·‖ denotes the Euclidean norm, ‖x‖1 :=
∑n
i=1 |xi| is a sparsity promoting norm, and λ > 0 is

a regularization parameter providing a tradeoff between accuracy and sparsity. In the past decade,

the `1 regularization problem has been extensively investigated (see, e.g., [4, 17, 18, 35, 51, 54])

and gained successful applications in a wide range of fields, such as compressive sensing [12, 19],

image science [4, 20], systems biology [44, 48] and machine learning [3, 33].

However, in recent years, it has been revealed by extensive empirical studies that the solutions

obtained from the `1 regularization may be much less sparse than the true sparse solution, and

that the `1 regularization cannot recover a signal or an image with the least measurements when

applied to compressive sensing; see, e.g., [14, 53, 58]. To overcome these drawbacks, the following

`p regularization problem (0 < p < 1) was introduced in [14, 53] to improve the performance of

sparsity recovery:

min
x∈Rn

‖Ax− b‖2 + λ‖x‖pp, (1.1)

where ‖x‖p := (
∑n
i=1 |xi|p)

1/p
is the `p quasi-norm. It was shown in [14] that the `p regular-

ization requires a weaker restricted isometry property to guarantee perfect sparsity recovery and

allows to obtain a more sparse solution from fewer linear measurements than that required by the

`1 regularization; and it was illustrated in [23, 53] that the `p regularization has a significantly

stronger capability in obtaining a sparse solution than the `1 regularization. Benefitting from these

advantages, the `p regularization technique has been applied in many fields; see [23, 34, 38, 39]

and references therein. It is worth noting that the `p regularization problem (1.1) is a variant of

lower-order penalty problems, investigated in [11, 25, 31], for a constrained optimization problem.

The main advantage of the lower-order penalty functions over the classical `1 penalty function

in the context of constrained optimization is that they require weaker conditions to guarantee an

exact penalization property and that their least exact penalty parameter is smaller.

Motivated by these significant advantages and successful applications of the `p regularization,

tremendous efforts have been devoted to the study of optimization algorithms for the `p regu-

larization problem. Many practical algorithms have been investigated for solving problem (1.1),

such as an interior-point potential reduction algorithm [22], smoothing methods [15, 16], splitting

methods [27, 28] and iterative reweighted minimization methods [26, 29]. In particular, Xu et

al. [53] proposed an iterative half thresholding algorithm, which is efficient in signal recovery and

image deconvolution. In the present paper, we are particularly interested in the proximal gradient

algorithm (in short, PGA) for solving problem (1.1), which is reduced to the algorithm proposed

in [53] when p = 1
2 .

Algorithm PGA. Given an initial point x0 ∈ Rn and a sequence of stepsizes {vk} ⊆ R+.

For each k ∈ N, having xk, we determine xk+1 as follows:

zk := xk − 2vkA
>(Axk − b),

xk+1 ∈ arg min
x∈Rn

{
λ‖x‖pp +

1

2vk
‖x− zk‖2

}
. (1.2)

The PGA is one of the most widely studied first-order iterative algorithms for solving regularization

problems, and a special case of several iterative methods (see [1, 2, 8, 47, 40]) for solving the

composite minimization problem

min
x∈Rn

F (x) := H(x) + Φ(x), (1.3)
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where H : Rn → R := R ∪ {+∞} is smooth and convex, and Φ : Rn → R is nonsmooth and

possibly nonconvex. The convergence properties of these iterative methods have been explored

under the framework of so-call Kurdyka- Lojasiewicz (in short, KL) theory. In particular, Attouch

et al. [2] established the global convergence of abstract descent methods for minimizing a KL

function F : Rn → R (see [2, Definition 2.4] for the definition of a KL function), in which the

sequence {xk} satisfies the following hypotheses for two positive constants α and β:

(H1) (Sufficient decrease condition). For each k ∈ N,

F (xk+1)− F (xk) ≤ −α‖xk+1 − xk‖2;

(H2) (Relative error condition). For each k ∈ N, there exists wk+1 ∈ ∂F (xk+1) such that

‖wk+1‖ ≤ β‖xk+1 − xk‖;

(H3) (Continuity condition)∗. There exist a subsequence {xkj} and a point x∗ such that

lim
j→∞

xkj → x∗ and lim
j→∞

F (xkj )→ F (x∗).

The global convergence of Algorithm PGA follows from the established convergence results of [2].

The study of convergence rates of optimization algorithms is an important issue of numerical

optimization, and much attention has been paid to establish the convergence rates of relevant

iterative algorithms for solving the structured optimization problem (1.3); see [1, 7, 24, 27, 36, 46,

47, 50, 52] and references therein. For example, the linear convergence of the PGA for solving the

classical `1 (convex) regularization problem has been well investigated; see, e.g., [9, 45, 56, 57] and

references therein. Under the general framework of the KL (possibly nonconvex) functions, the

linear convergence of several iterative algorithms for solving problem (1.3), including the PGA as

a special case, have been established in [1, 8, 47, 52] under the assumption that the KL exponent

of the objective function is 1
2 . However, the KL exponent of the `q regularized function is still

unknown, and thus, the linear convergence result in these references cannot be directly applied

to the `q regularization problem (1.1). On the other hand, Zeng et al. [55] obtained the linear

convergence of the PGA for problem (1.1) with an upper bound on p, which may be less than 1,

and a lower bound on the stepsizes {vk}, and Hu et al. [23] established the linear convergence of

the PGA for the group-wised `p regularization problem under the assumption that the limiting

point is a local minimum.

Another important issue is the practicability of the PGA for solving the `p regularization

problem (1.1). It is worth noting that the main computation of the PGA is the calculation of the

proximity operator of the `p regularizer (1.2). The analytical solutions of the proximity operator

of the `p regularizer (1.2) when p = 1 (resp. 2
3 , 1

2 , 0) were provided in [18] (resp. [13], [53],

[6]); see also [23, Proposition 18] for the group-wised `p regularizer. However, in the scenario of

general p, the proximity operator of the `p regularizer may not have an analytic solution (see [23,

Remark 21]), and it could be computationally expensive to solve subproblem (1.2) exactly at each

iteration. Although some recent works showed impressive empirical performance of the inexact

versions of the PGA that use an approximate proximity operator (see, e.g., [23, 32] and references

∗This condition is satisfied automatically for the `p regularization problem (1.1).
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therein), there is few theoretical analysis, to the best of our knowledge, on how the error in the

calculation of the proximity operator affects the convergence rate of the inexact PGA for solving

the `p regularization problem (1.1). Two relevant papers on the linear convergence study of the

inexact PGA should be mentioned: (a) Schmidt et al. [43] proved the linear convergence of the

inexact PGA for solving the convex composite problem (1.3), in which H is strongly convex and

Φ is convex; (b) Frankel et al. [21] provided a framework of establishing the linear convergence for

descent methods satisfying (H1)-(H3), where (H2) is replaced by inexact form (H2◦), see section

4. However, the convergence analysis in [21] was based on the assumption that the KL exponent

of F is 1
2 and the inexact version would be not convenient to implement for applications; see the

explanation in Remark 5.2 below. Therefore, neither of the convergence analysis in [21, 43] can

be applied to establish the linear convergence of the inexact PGA for solving the `q regularization

problem. Thus, a clear analysis of the convergence rate of the inexact PGA is required to advance

our understanding of its strength for solving the `p regularization problem (1.1).

The aim of the present paper is to investigate the linear convergence issue of an inexact descent

method and inexact PGAs for solving the `p regularization problem (1.1). For this purpose, we first

investigate an optimality condition theorem for the local minima of the `p regularization problem

(1.1), in which we establish the equivalences among a local minimum, second-order optimality

condition and second-order growth property of the `p regularization problem (1.1). The established

optimality conditions are not only of independent interest in investigating the structure of local

minima, but also provide a crucial tool for establishing the linear convergence of the inexact descent

method and inexact PGAs for solving the `p regularization problem in sections 4 and 5.

We then consider a general framework of an inexact descent method, in which both (H1) and

(H2) are relaxed to inexact forms (see (H1◦) and (H2◦) in section 4), for solving the `p regularization

problem. Correspondingly, the solution sequence does not satisfy the descent property. This is

an essential difference from the extensive studies in descent methods and the work of Frankel et

al. [21]. Under some mild assumptions on the limiting points and inexact terms, we establish

the linear convergence of the inexact descent method by virtue of both second-order optimality

condition and second-order growth property (see Theorem 4.2), where the former guarantees that

the `p regularized function is convex near the local minimum and the latter is used to ensure the

linear convergence.

The convergence theorem for the inexact descent method further provides a useful tool for

establishing the linear convergence of the inexact PGAs in section 5. Our convergence analysis

deviates significantly from that of [21] and relevant works in descent methods, where the KL

inequality is used as a standard technique. Indeed, we investigate the inexact versions of the PGA

for solving the `p regularization problem (1.1), in which the proximity operator of the `p regularizer

(1.2) is approximately solved at each iteration (with progressively better accuracy). Inspired by

the ideas in the seminal work of Rockafellar [41], we consider two types of inexact PGAs: one

measures the inexact term by the approximation of proximal regularized function value, and the

other is measured by the distance of the iterate to the exact proximal operator (see Algorithms

IPGA-I and IPGA-II). Under some suitable assumptions on the inexact terms, we establish the

linear convergence of these two inexact PGAs to a local minimum of problem (1.1); see Theorems

5.3 and 5.4. It is worth noting that neither of these inexact PGAs satisfies the conditions of

the inexact descent method mentioned earlier. In our analysis in this part, Theorem 4.2 plays
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an important role in such a way that we are able to show that the components sequence on the

support of the limiting point satisfies the conditions of Theorem 4.2. We further propose two

implementable inexact PGAs that satisfy the assumptions made in the convergence theorems and

thus share the linear convergence property.

Moreover, Bredies et al. [10] investigated the PGA for solving the `p regularization problem in

infinite-dimensional Hilbert spaces and proved its global convergence to a critical point under some

technical assumptions and using dedicated tools from algebraic geometry. Motivated by this work,

the results obtained above are extended to the infinite-dimensional Hilbert spaces. Improving

[10, Theorem 5.1], we prove the global convergence of the PGA under a simple assumption (see

Theorem 6.4), and further establish the linear convergence of descent method and PGAs, as well

as their inexact versions, for solving the `p regularization problem in infinite-dimensional Hilbert

spaces.

The paper is organized as follows. In section 2, we present the notations and preliminary

results to be used in the present paper. In section 3, we establish the equivalences among a

local minimum, second-order optimality condition and second-order growth property of the `p
regularization problem (1.1), as well as some interesting corollaries. By virtue of the second-order

optimality condition and second-order growth property, the linear convergence of an inexact descent

method and inexact PGAs for solving problem (1.1) are established in sections 4 and 5, respectively.

Finally, the convergence properties of relevant algorithms are extended to the infinite-dimensional

Hilbert spaces in section 6.

2. Notation and preliminary results. We consider the n-dimensional Euclidean space Rn

with inner product 〈· , ·〉 and Euclidean norm ‖ · ‖. For 0 < p < 1 and x ∈ Rn, the `p “norm” on

Rn is denoted by ‖ · ‖p and defined as follows:

‖x‖p :=

(
n∑
i=1

|xi|p
) 1

p

for each x ∈ Rn;

while ‖x‖0 denotes the number of nonzero components of x. It is well-known (see, e.g., [23, Eq.

(7)]) that

‖x‖p ≥ ‖x‖q for each x ∈ Rn and 0 < p ≤ q. (2.1)

We write supp : Rn → R and sign : R → R to denote the support function and signum function,

respectively. For an integer l ≤ n, fixing x ∈ Rl and δ ∈ R+, we use B(x, δ) to denote the open

ball of radius δ centered at x (in the Euclidean norm). Moreover, we write

Rl6= := {x ∈ Rl : xi 6= 0 for each i = 1, . . . , l}.

Let Rl×l denote the space of all l × l matrices. We endow Rl×l with the partial orders � and �,

which are defined for any Y, Z ∈ Rl×l by

Y � (resp.,�)Z ⇐⇒ Y − Z is positive definite (resp., positive semi-definite).

Thus, for Z ∈ Rl×l, Z � 0 (resp., Z � 0, Z ≺ 0) means that Z is positive definite (resp., positive

semi-definite, negative definite). In particular, we use diag(x) to denote a square diagonal matrix

with the components of vector x on its main diagonal.



6 LINEAR CONVERGENCE OF INEXACT DESCENT METHODS

For simplicity, associated with problem (1.1), we use F : Rn → R to denote the `p regularized

function, and H : Rn → R and Φ : Rn → R are the functions defined by

F (·) := H(·) + Φ(·), H(·) := ‖A · −b‖2 and Φ(·) := λ‖ · ‖pp. (2.2)

Letting x∗ ∈ Rn \ {0}, we write

s := ‖x∗‖0 and I := supp(x∗), (2.3)

We write Ai to denote the i-th column of A, AI := (Ai)i∈I and xI := (xi)i∈I . Let f : Rs → R,

h : Rs → R and ϕ : Rs → R be the functions defined by

f(·) := h(·) + ϕ(·), h(·) := ‖AI · −b‖2 and ϕ(·) := λ‖ · ‖pp (2.4)

Obviously, ϕ is smooth (of arbitrary order) on Rs6=, and so is f . The first- and second-order

derivatives of ϕ at each y ∈ Rs6= are respectively given by

∇ϕ(y) = λp
((
|yi|p−1sign(yi)

)
i∈I

)
and ∇2ϕ(y) = λp(p− 1)diag

((
|yi|p−2

)
i∈I

)
. (2.5)

Since 0 < p < 1, it is clear that ∇2ϕ(y) ≺ 0 for any y ∈ Rs6=. By (2.2) and (2.4), one sees that

Φ(x) = ϕ(xI) and F (x) = f(xI) for each x satisfying supp(x) = I. (2.6)

The point x∗ is called a critical point of problem (1.1) if it satisfies that ∇f(x∗I) = 0. The following

elementary equality is repeatedly used in our convergence analysis:

‖Ay − b‖2 − ‖Ax− b‖2 = 〈y − x, 2A>(Ax− b)〉+ ‖A(y − x)‖2 (2.7)

(by Taylor’s formula applied to the function ‖A · −b‖2). We end this section by providing the

following lemma, which is useful to establish the linear convergence of inexact decent methods.

Lemma 2.1. Let η ∈ (0, 1), and let {ak} and {δk} be two sequences of nonnegative scalars

such that

ak+1 ≤ akη + δk for each k ∈ N and lim sup
k→∞

δk+1

δk
< 1. (2.8)

Then there exist θ ∈ (0, 1) and K > 0 such that

ak ≤ Kθk for each k ∈ N. (2.9)

Proof. We first claim that there exist θ ∈ (0, 1) and a sequence of nonnegative scalars {ck}
such that

ak+1 ≤ akθ + ckθ
k for each k ∈ N and

∞∑
k=0

ck < +∞. (2.10)

Indeed, by the second inequality of (2.8), there exist τ ∈ (0, 1) and N ∈ N such that δk+1 ≤ τ2δk
for each k ≥ N . Letting ci := τ i−2NδN when i ≥ N and ci := δi

τ i otherwise, this shows that

δk ≤ ckτk for each k ∈ N. (2.11)



YAOHUA HU, CHONG LI, KAIWEN MENG AND XIAOQI YANG 7

Consequently, we check that
∑∞
k=0 ck =

∑N−1
k=0 ck + τ−N

1−τ δN < +∞. Letting θ := max{η, τ} and

combining (2.8) and (2.11), we arrive at (2.10), as desired.

Next, we show by mathematical induction that the following relation holds for each k ∈ N:

ak ≤ max

{
1,

a1

c0 + θ

} k−1∏
i=0

(ci + θ). (2.12)

Clearly, (2.12) holds for k = 1. Assuming that (2.12) holds for each k ≤ N , we estimate aN+1 in

the following two cases.

Case 1. If aN < θN , it follows from the first inequality of (2.10) that

aN+1 ≤ (θ + cN )θN ≤
N∏
i=0

(ci + θ) ≤ max

{
1,

a1

c0 + θ

} N∏
i=0

(ci + θ).

Case 2. If aN ≥ θN , one sees by (2.10) and (2.12) (when k = N) that

aN+1 ≤ (θ + cN )aN ≤ max

{
1,

a1

c0 + θ

} N∏
i=0

(ci + θ).

Hence, for both cases, (2.12) holds for k = N + 1, and so, it holds for each k ∈ N by mathematical

induction. Clearly, (2.12) can be reformulated as

ak ≤ max

{
1,

a1

c0 + θ

}
θk exp

(
k−1∑
i=0

ln
(

1 +
ci
θ

))
. (2.13)

Note that ln(1 + t) ≤ t for any t ≥ 0. It follows that

k−1∑
i=0

ln(1 +
ci
θ

) ≤ 1

θ

k−1∑
i=0

ci ≤
1

θ

∞∑
i=0

ci < +∞

(by (2.10)). Letting K := max
{

1, a1
c0+θ

}
exp

(
1
θ

∑∞
i=0 ci

)
, we conclude (2.9) by (2.13), and the

proof is complete.

3. Characterizations of local minima. Optimality condition is a crucial tool for optimiza-

tion problems, either providing the useful characterizations of (local) minima or designing effective

optimization algorithms. Some sufficient or necessary optimality conditions for the `p regulariza-

tion problem (1.1) have been developed in the literature; see [16, 23, 30, 37] and references therein.

In particular, Chen et al. [16] established the following first- and second-order necessary optimality

conditions for a local minimum x∗ of problem (1.1), i.e.,

2A>I (AIx
∗
I − b) + λp

((
|x∗i |p−1sign(x∗i )

)
i∈I

)
= 0, (3.1)

and

2A>I AI + λp(p− 1)diag
((
|x∗i |p−2

)
i∈I

)
� 0, (3.2)

where I = supp(x∗) is defined by (2.3). These necessary conditions were used to estimate the

(lower/upper) bounds for the absolute values and the number of nonzero components of local
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minima. However, it seems that a complete optimality condition that is both necessary and

sufficient for the local minima of the `p regularization problem has not been established yet in the

literature. To remedy this gap, this section is devoted to providing some necessary and sufficient

characterizations for the local minima of problem (1.1).

To begin with, the following lemma (i.e., [23, Lemma 10]) illustrates that the `p regularized

function satisfies a first-order growth property at 0, which is useful for proving the equivalent

characterizations of its local minima. This property also indicates a significant advantage of the `p
regularization over the `1 regularization that the `p regularization has a strong sparsity promoting

capability.

Lemma 3.1. Let h : Rn → R be a continuously differentiable function. Then there exist ε > 0

and δ > 0 such that

h(x) + λ‖x‖pp ≥ h(0) + ε‖x‖ for any x ∈ B(0, δ).

The main result of this section is presented in the following theorem, in which we establish the

equivalences among a local minimum, second-order optimality condition and second-order growth

property of the `p regularization problem (1.1). Note that the latter two conditions were provided

in [23] as necessary conditions for the group-wised `p regularization problem, while the second-order

optimality condition is an improvement of the result in [16] in that the matrix in the left-hand side

of (3.2) is indeed positive definite. Recall that F : Rn → R is the `p regularized function defined

by (2.2) and I = supp(x∗) is defined by (2.3).

Theorem 3.2. Let x∗ ∈ Rn \ {0}. Then the following assertions are equivalent:

(i) x∗ is a local minimum of problem (1.1).

(ii) (3.1) and the following condition hold:

2A>I AI + λp(p− 1)diag
((
|x∗i |p−2

)
i∈I

)
� 0. (3.3)

(iii) Problem (1.1) satisfies the second-order growth property at x∗, i.e., there exist ε > 0 and

δ > 0 such that

F (x) ≥ F (x∗) + ε‖x− x∗‖2 for any x ∈ B(x∗, δ). (3.4)

Proof. Without loss of generality, we assume that I = {1, . . . , s}.

(i) ⇒ (ii). Suppose that (i) holds. Then x∗I is a local minimum of f (by (2.6)), and (3.1) and

(3.2) hold by [16, pp. 76] (they can also be checked directly by the optimality condition for smooth

optimization in [5, Proposition 1.1.1]): ∇f(x∗I) = 0 and ∇2f(x∗I) � 0. Thus, it remains to prove

(3.3), i.e., ∇2f(x∗I) � 0. To do this, suppose on the contrary that (3.3) does not hold. Then, by

(3.2), there exists w 6= 0 such that 〈w,∇2f(x∗I)w〉 = 0. Let ψ : R→ R be defined by

ψ(t) := f(x∗I + tw) for each t ∈ R.

Then one sees that ψ′(0) = 〈w,∇f(x∗I)〉 = 0 and ψ′′(0) = 〈w,∇2f(x∗I)w〉 = 0, and 0 is a local

minimum of ψ (as x∗I is a local minimum of f). Therefore, ψ(3)(0) = 0 and ψ(4)(0) ≥ 0. However,
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by the elementary calculus, one can check that

ψ(4)(0) = λp(p− 1)(p− 2)(p− 3)
∑
i∈I

(
w4
i |x∗i |p−4

)
< 0,

which yields a contradiction. Hence, assertion (ii) holds.

(ii) ⇒ (iii). Suppose that assertion (ii) of this theorem holds. Then

∇f(x∗I) = 0 and ∇2f(x∗I) � 0. (3.5)

By Taylor’s formula, we have that

f(y) = f(x∗I) +∇f(x∗I)(y − x∗I) +
1

2
〈y − x∗I ,∇2f(x∗I)(y − x∗I)〉+ o(‖y − x∗I‖2) for each y ∈ Rs.

This, together with (3.5), implies that there exist ε1 > 0 and δ1 > 0 such that

f(y) ≥ f(x∗I) + 2ε1‖y − x∗I‖2 for any y ∈ B(x∗I , δ1). (3.6)

Let τ > 0 be such that
√
ε1τ ≥ ‖AI‖‖AIc‖, and define g : Rn−s → R by

g(z) := ‖AIcz‖2 + 2〈AIx∗I − b, AIcz〉 − 2τ‖z‖2 for each z ∈ Rn−s. (3.7)

Clearly, g is continuously differentiable on Rn−s with g(0) = 0. Then, by Lemma 3.1, there exist

ε2 > 0 and δ2 > 0 such that

g(z) + λ‖z‖pp ≥ g(0) + ε2‖z‖ = ε2‖z‖ ≥ 0 for any z ∈ B(0, δ2). (3.8)

Fix x :=

(
xI
xIc

)
with xI ∈ B(x∗I , δ1) and xIc ∈ B(0, δ2). Then it follows from the definitions of the

functions F , f and g (see (2.2), (2.4) and (3.7)) that

F (x) = ‖AIxI +AIcxIc − b‖2 + λ‖xI‖pp + λ‖xIc‖pp
= ‖AIxI − b‖2 + ‖AIcxIc‖2 + 2〈AIxI − b, AIcxIc〉+ λ‖xI‖pp + λ‖xIc‖pp
= f(xI) + g(xIc) + 2τ‖xIc‖2 + λ‖xIc‖pp + 2〈AI(xI − x∗I), AIcxIc〉.

Applying (3.6) (to xI in place of y) and (3.8) (to xIc in place of z), we have that

F (x) ≥ f(x∗I) + 2ε1‖xI − x∗I‖2 + 2τ‖xIc‖2 + 2〈AI(xI − x∗I), AIcxIc〉.

By the definition of τ , we have that

2|〈AI(xI − x∗I), AIcxIc〉| ≤ 2
√
ε1τ‖xI − x∗I‖‖xIc‖ ≤ ε1‖xI − x∗I‖2 + τ‖xIc‖2,

and then, it follows that

F (x) ≥ f(x∗I) + ε1‖xI − x∗I‖2 + τ‖xIc‖2 ≥ f(x∗I) + min{ε1, τ}‖x− x∗‖2

(noting that xIc = xIc − x∗Ic). Hence F (x) ≥ F (x∗) + min{ε1, τ}‖x − x∗‖2, as f(x∗I) = F (x∗)

by (2.6). This means that (3.4) holds with ε := min{ε1, τ} and δ := min{δ1, δ2}, and so (iii) is

verified.
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(iii) ⇒ (i). It is trivial. The proof is complete.

Remark 3.1. As shown in Lemma 3.1, for the case when x∗ = 0, the equivalence between

assertions (i) and (iii) in Theorem 3.2 is true, while assertion (ii) is not well defined (as I = ∅).

The structure of local minima is a useful property for the numerical study of the `p regular-

ization problem; see, e.g., [16, 53]. As a byproduct of Theorem 3.2, we will prove that the number

of local minima of problem (1.1) is finite, which was claimed in [16, Corollary 2.2] but with an

incomplete proof (because their proof is based on the fact that f has at most one local minimum

whenever A>I AI is of full rank, which is unclear).

Corollary 3.3. The `p regularization problem (1.1) has only a finite number of local min-

ima.

Proof. Let I ⊆ {1, . . . , n}. We use LM(F,Rn; I) to denote the set of local minima x∗ of

problem (1.1) with supp(x∗) = I, and set

Θ(I) := {xI : x ∈ LM(F,Rn; I)} . (3.9)

Then the set of local minima of problem (1.1) can be expressed as the union of LM(F,Rn; I) over

all subsets I ⊆ {1, . . . , n}. Clearly, LM(F,Rn; I) and Θ(I) have the same cardinality. Thus, to

complete the proof, it suffices to show that Θ(I) is finite. To do this, we may assume that, without

loss of generality, I = {1, . . . , s}, and write

O := {y ∈ Rs6= : ∇2f(y) � 0}, (3.10)

where f : Rs → R is defined by (2.4). Clearly, O is open in Rs, and Θ(I) ⊆ O by Theorem 3.2.

Thus, it follows from (3.9) that

Θ(I) ⊆ LM(f,Rs) ∩O (3.11)

(we indeed can show an equality), where, for an open subset U of Rs, LM(f, U) stands for the set

of local minima of f over U . For simplicity, we set

RsJ := {y ∈ Rs : yj > 0 for j ∈ J, yj < 0 for j ∈ I \ J}

and OJ := O ∩ RsJ for any J ⊆ I. Then each OJ is open in Rs (as so are O and RsJ). This

particularly implies that

LM(f,Rs) ∩OJ = LM(f,OJ) for each J ⊆ I. (3.12)

Moreover, it is clear that O = ∪J⊆IOJ . Hence

Θ(I) ⊆ LM(f,Rs) ∩O = ∪J⊆I (LM(f,Rs) ∩OJ) = ∪J⊆I LM(f,OJ) (3.13)

(thanks to (3.11) and (3.12)). Below we show that

OJ is convex for each J ⊆ I. (3.14)

Granting this, one concludes that each LM(f,OJ) is at most a singleton, because ∇2f � 0 on

OJ by (3.10) and then f is strictly convex on OJ by the higher-dimensional derivative tests for

convexity (see, e.g., [42, Theorem 2.14]); hence Θ(I) is finite by (3.13), completing the proof.
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To show (3.14), fix J ⊆ I, and let y, z ∈ OJ . Then, by definition, one has that

∇2f(y) � 0 and ∇2f(z) � 0. (3.15)

By elementary calculus, the map t 7→ tp−2 is convex on (0,+∞), and so

|yi|p−2 + |zi|p−2

2
≥
(
|yi|+ |zi|

2

)p−2

for each i ∈ I.

Consequently, we have

diag

((
|yi|p−2 + |zi|p−2

2

)
i∈I

)
� diag

(((
|yi|+ |zi|

2

)p−2
)
i∈I

)
.

This, together with (2.5) and (3.15), implies that

∇2f

(
y + z

2

)
� ∇

2f(y) +∇2f(z)

2
� 0.

Since y+z
2 ∈ RsJ ⊆ Rs6=, it follows that y+z

2 ∈ O ∩ RsJ = OJ and (3.14) is proved.

Another byproduct of Theorem 3.2 is the following corollary, in which we show the isolation

of a local minimum of problem (1.1) in the sense of critical points. This property is useful for

establishing the global convergence of the inexact descent method and inexact PGA.

Corollary 3.4. Let x∗ be a local minimum of the `p regularization problem (1.1). Then x∗

is an isolated critical point of problem (1.1).

Proof. Recall that I = supp(x∗) and f are defined by (2.3) and (2.4), respectively. Since x∗ is

a local minimum of problem (1.1), it follows from (2.6) that x∗I is a local minimum of f and from

Theorem 3.2 (cf. (3.3)) that ∇2f(x∗I) � 0. By the fact that x∗I ∈ Rs6= and by the smoothness of f

at x∗I , we can find a constant τ with

0 < τ <

(
4

λp
‖A>(Ax∗ − b)‖∞

) 1
p−1

(3.16)

such that

B(x∗I , τ) ⊆ Rs6= ∩ {y ∈ Rs : ∇2f(y) � 0}. (3.17)

We aim to show that B(x∗, τ) includes only one critical point of problem (1.1), that is x∗. To do

this, let x ∈ B(x∗, τ) be a critical point of problem (1.1). We first claim that supp(x) = I. It is

clear by (3.17) that

xi 6= 0 when i ∈ I, and |xi| < τ otherwise. (3.18)

If i ∈ supp(x), by the definition of critical point, it follows that 2A>i (Ax−b)+λp|xi|p−1sign(xi) = 0;

consequently, by the fact that x is closed to x∗, we obtain that

|xi| =
(

2|A>i (Ax− b)|
λp

) 1
p−1

>

(
4|A>i (Ax∗ − b)|

λp

) 1
p−1

>

(
4‖A>(Ax∗ − b)‖∞

λp

) 1
p−1

> τ
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(due to (3.16)). This, together with (3.18), shows that supp(x) = I, as desired.

Finally, we show that x = x∗. By (3.17), one has that f is strongly convex on B(x∗I , τ). Since

x is a critical point of problem (1.1), one has by the definition of critical point that ∇f(xI) = 0,

and so xI is a minimum of f on B(x∗I , τ). By the strongly convexity of f on B(x∗I , τ), we obtain

xI = x∗I , and hence that x = x∗ (since supp(x) = I). The proof is complete.

4. Linear convergence of inexact descent method. In order to investigate the linear

convergence issue of descent methods (satisfying (H1) and (H2)) and inexact PGAs for solving

the `p regularization problem (1.1), this section aims to establish the linear convergence of an

inexact version of descent methods in a general framework. In our analysis, we will employ both

second-order optimality condition and second-order growth property, established in Theorem 3.2.

Let α and β be fixed positive constants and {εk} ⊆ R+ be a sequence of nonnegative scalars,

and recall that F : Rn → R is the `p regularized function defined by (2.2). We consider a sequence

{xk} that satisfies the following relaxed conditions of (H1) and (H2).

(H1◦) For each k ∈ N,

F (xk+1)− F (xk) ≤ −α‖xk+1 − xk‖2 + ε2k; (4.1)

(H2◦) For each k ∈ N, there exists wk+1 ∈ ∂F (xk+1) such that

‖wk+1‖ ≤ β‖xk+1 − xk‖+ εk.

Frankel et al. [21] proposed an inexact version of descent methods, in which only (H2) is relaxed

to the inexact form (H2◦) while the exact form (H1) is maintained; consequently, the sequence

{xk} satisfies a descent property. However, in our framework, note by (4.1) that the sequence {xk}
does not satisfy a descent property. This is an essential difference from [21] and extensive studies

in descent methods.

We begin with the following useful properties of the inexact descent method; in particular, a

consistent property that xk has the same support as x∗ when k is large (assertion (ii)) is useful for

providing a uniform decomposition of {xk} in convergence analysis.

Proposition 4.1. (i) Let {xk} be a sequence satisfying (H1◦) with

∞∑
k=0

ε2k < +∞. (4.2)

Then
∑∞
k=0 ‖xk+1 − xk‖2 < +∞.

(ii) Let {xk} be a sequence satisfying (H2◦) with limk→∞ εk = 0. Suppose that {xk} converges

to x∗. Then there exists N ∈ N such that

supp(xk) = supp(x∗) for each k ≥ N. (4.3)

Proof. Assertion (i) of this theorem is trivial by the assumption and the fact that F ≥ 0.

Below, we prove assertion (ii). Write

γ :=

(
λp

β + 1 + 4‖A>(Ax∗ − b)‖∞

) 1
1−p

. (4.4)
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By the assumption that {xk} converges to x∗, there exists N ∈ N such that for each k ≥ N

xki 6= 0 when i ∈ supp(x∗), and |xki | < γ otherwise. (4.5)

Fix k ≥ N and i ∈ supp(xk). By the assumption (H2◦), there exists wk ∈ ∂F (xk) such that

‖wk‖ ≤ β‖xk − xk−1‖+ εk < β + 1 (4.6)

(by the assumptions that limk→∞ εk = 0 and limk→∞ xk = x∗). Noting that i ∈ supp(xk), we

obtain by (2.5) that

|wki | = |2A>i (Axk − b) + λp|xki |p−1sign(xki )| ≥ λp|xki |p−1 − 4‖A>(Ax∗ − b)‖∞.

This, together with (4.6) and (4.4), shows that |xki | > γ when i ∈ supp(xk). This, together with

(4.5), shows that supp(xk) = supp(x∗) for each k ≥ N . The proof is complete.

The main theorem of this section is as follows. The convergence theorem is not only of

independent interest in establishing the linear convergence of inexact descent method, but also

provides a useful approach for the linear convergence study of the inexact PGA in the next section.

Recall that functions F and f are defined by (2.2) and (2.4), respectively.

Theorem 4.2. Let {xk} be a sequence satisfying (H1◦) and {εk} satisfy (4.2). Suppose one

of limiting points of {xk}, denoted by x∗, is a local minimum of problem (1.1). Then the following

assertions are true.

(i) {xk} converges to x∗.

(ii) Suppose further that {xk} satisfies (H2◦) and

lim sup
k→∞

εk+1

εk
< 1. (4.7)

Then {xk} converges linearly to x∗, that is, there exist C > 0 and η ∈ (0, 1) such that

F (xk)− F (x∗) ≤ Cηk and ‖xk − x∗‖ ≤ Cηk for each k ∈ N. (4.8)

Proof. (i) It follows from Proposition 4.1(i) that limk→∞ ‖xk+1− xk‖ = 0. By the assumption

that x∗ is a local minimum of problem (1.1), it follows from Lemma 3.4 that x∗ is an isolated critical

point of problem (1.1). Then, we can prove that {xk} converges to x∗ (the proof is standard; see,

e.g., the proof of [10, Proposition 2.3]).

(ii) If x∗ = 0, it follows from Proposition 4.1(ii) that there exists N ∈ N such that xk = 0 for

each k ≥ N , and so the conclusion holds. Then it remains to prove (4.8) for the case when x∗ 6= 0.

Suppose that x∗ 6= 0. Recall that I = supp(x∗) is defined by (2.3). By the assumption that x∗

is a local minimum of problem (1.1), assertions (ii) and (iii) of Theorem 3.2 are satisfied; hence, it

follows from (3.3) and (2.5) that 2A>I AI +∇2ϕ(x∗I) = ∇2f(x∗I) � 0. This, together with x∗I ∈ Rs6=
(cf. (2.3)) and the smoothness of ϕ at x∗I , implies that there exist ε > 0, δ > 0 and Lϕ > 0 such

that (3.4) holds and

B(x∗I , δ) ⊆ Rs6= ∩ {y ∈ Rs : ∇2ϕ(y) � −2A>I AI}, (4.9)

‖∇ϕ(y)−∇ϕ(z)‖ ≤ Lϕ‖y − z‖ for any y, z ∈ B(x∗I , δ).
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By assertion (i) of this theorem that {xk} converges to x∗, there exists N ∈ N such that (4.3) holds

(by Proposition 4.1(ii)) and xkI ∈ B(x∗I , δ) for each k ≥ N . In particular, the following relations

hold for each k ≥ N :

F (xk+1) ≥ F (x∗) + ε‖xk+1 − x∗‖2, (4.10)

and

‖∇ϕ(xkI )−∇ϕ(xk+1
I )‖ ≤ Lϕ‖xkI − xk+1

I ‖. (4.11)

Noting by (2.5) and (4.9) that

∇2ϕ(w) ≺ 0 and ∇2f(w) � 0 for any w ∈ B(x∗I , δ),

it follows that ϕ is concave and f is convex on B(x∗I , δ). Fix k ≥ N . Then one has that

〈∇ϕ(xkI ), xkI − xk+1
I 〉 ≤ ϕ(xkI )− ϕ(xk+1

I ) (4.12)

and

f(xkI )− f(x∗I) ≤ 〈∇f(xkI ), xkI − x∗I〉 (4.13)

(as xkI , x
k+1
I ∈ B(x∗I , δ)). To proceed, we define

rk := F (xk)− F (x∗) for each k ∈ N, (4.14)

and then it follows from (4.3) and (2.6) that

rk = f(xkI )− f(x∗I). (4.15)

Hence, using (4.13), we obtain that

rk ≤ 〈∇f(xkI ), xkI − x∗I〉 = 〈∇f(xkI ), xkI − xk+1
I 〉+ 〈∇f(xkI ), xk+1

I − x∗I〉. (4.16)

By (2.4) and (4.12), it follows that

〈∇f(xkI ), xkI − x
k+1
I 〉 = 〈∇h(xkI ), xkI − x

k+1
I 〉+ 〈∇ϕ(xkI ), xkI − x

k+1
I 〉

≤ 〈∇h(xkI ), xkI − x
k+1
I 〉+ ϕ(xkI )− ϕ(xk+1

I ).

Recall from (2.4) that ∇h(xkI ) = 2A>I (AIx
k
I − b). Then, by (2.7) (with AI , x

k+1
I , xk+1

I in place of

A, y, x), we have that

〈∇f(xkI ), xkI − x
k+1
I 〉 ≤ f(xkI )− f(xk+1

I ) + ‖AI(xk+1
I − xkI )‖2

≤ rk − rk+1 + ‖A‖2‖xk+1 − xk‖2 (4.17)

(due to (4.15)). On the other hand, one has that

〈∇f(xkI ), xk+1
I − x∗I〉 = 〈∇f(xk+1

I ), xk+1
I − x∗I〉+ 〈∇f(xkI )−∇f(xk+1

I ), xk+1
I − x∗I〉. (4.18)

By the assumption (H2◦), we obtain that

〈∇f(xk+1
I ), xk+1

I − x∗I〉 ≤ ‖∇f(xk+1
I )‖‖xk+1

I − x∗I‖
≤ ‖wk+1‖‖xk+1

I − x∗I‖
≤ β‖xk+1 − xk‖‖xk+1 − x∗‖+ εk‖xk+1 − x∗‖;
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while by (2.4) and (4.11), we conclude that

〈∇f(xkI )−∇f(xk+1
I ), xk+1

I − x∗I〉
= 〈∇h(xkI )−∇h(xk+1

I ) +∇ϕ(xkI )−∇ϕ(xk+1
I ), xk+1

I − x∗I〉
≤ (2‖A‖2 + Lϕ)‖xk+1

I − xkI‖‖x
k+1
I − x∗I‖

≤ (2‖A‖2 + Lϕ)‖xk+1 − xk‖‖xk+1 − x∗‖.

Combining the above two inequalities, it follows from (4.18) that

〈∇f(xkI ), xk+1
I − x∗I〉 ≤

(
β + 2‖A‖2 + Lϕ

)
‖xk+1 − xk‖‖xk+1 − x∗‖+ εk‖xk+1 − x∗‖.

Let

σ := β + 2‖A‖2 + Lϕ and τ ∈ (0, ε). (4.19)

Then one has that

〈∇f(xkI ), xk+1
I − x∗I〉 ≤

σ2

2τ
‖xk+1 − xk‖2 +

τ

2
‖xk+1 − x∗‖2 +

1

2τ
ε2k +

τ

2
‖xk+1 − x∗‖2

=
σ2

2τ
‖xk+1 − xk‖2 + τ‖xk+1 − x∗‖2 +

1

2τ
ε2k.

This, together with (4.16) and (4.17), shows that

rk ≤ rk − rk+1 +

(
‖A‖2 +

σ2

2τ

)
‖xk+1 − xk‖2 + τ‖xk+1 − x∗‖2 +

1

2τ
ε2k. (4.20)

Recalling (4.14), we obtain by the assumption (H1◦) that

‖xk+1 − xk‖2 ≤ 1

α

(
F (xk)− F (xk+1)

)
+

1

α
ε2k =

1

α
(rk − rk+1) +

1

α
ε2k,

and by (4.10) that

‖xk+1 − x∗‖2 ≤ 1

ε

(
F (xk+1)− F (x∗)

)
=

1

ε
rk+1.

Hence, (4.20) reduces to

rk ≤ rk − rk+1 +
2τ‖A‖2 + σ2

2τα
(rk − rk+1) +

2τ‖A‖2 + σ2

2τα
ε2k +

τ

ε
rk+1 +

1

2τ
ε2k,

that is,

rk+1 ≤

(
1−

1− τ
ε

1 + 2τ‖A‖2+σ2

2τα − τ
ε

)
rk +

(
2τ‖A‖2 + σ2 + α

2τα+ 2τ‖A‖2 + σ2 − 2τ2α 1
ε

)
ε2k. (4.21)

Let

η̄ := 1−
1− τ

ε

1 + 2τ‖A‖2+σ2

2τα − τ
ε

and c̄ :=
2τ‖A‖2 + σ2 + α

2τα+ 2τ‖A‖2 + σ2 − 2τ2α 1
ε

.

Then (4.21) reduces to

rk+1 ≤ η̄rk + c̄ε2k for each k ≥ N.
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One can check that 0 < η̄ < 1 and c̄ > 0 by (4.19), and note (4.7). Applying Lemma 2.1 (with rk,

η̄ and c̄ε2k in place of ak, η and δk), there exist θ ∈ (0, 1) and K > 0 such that

F (xk)− F (x∗) = rk ≤ Kθk for each k ≥ N

(by (4.14)). Furthermore, using (4.10), we have that

‖xk − x∗‖ ≤
(
F (xk)− F (x∗)

ε

) 1
2

≤
(
K

ε

) 1
2 (√

θ
)k

for each k ≥ N.

This shows that (4.8) holds with C := max
{
K,
(
K
ε

) 1
2

}
and η :=

√
θ. The proof is complete.

Remark 4.1. It is worth noting in (4.8) that the linear convergence of {F (xk)} to F (x∗) is a

direct consequence of that of {xk} to x∗. Indeed, recalling from [23, Lemma 2] that ‖x‖pp−‖y‖pp ≤
‖x− y‖pp for any x, y ∈ Rn, we obtain by (2.2) that

F (xk)− F (x∗) ≤ ‖A‖2‖xk − x∗‖2 + λ‖xk − x∗‖pp.

As an application of Theorem 4.2 for the case when εk ≡ 0, the linear convergence of the

descent methods investigated in [1, 2] for solving the `p regularization problem (1.1) is presented

in the following theorem.

Theorem 4.3. Let {xk} be a sequence satisfying (H1) and (H2). Then {xk} converges to a

critical point x∗ of problem (1.1). Suppose that x∗ is a local minimum of problem (1.1). Then

{xk} converges linearly to x∗.

5. Linear convergence of inexact proximal gradient algorithms. The linear conver-

gence of the (inexact) proximal gradient algorithms (in short, PGA) is an important issue in the

development of numerical optimization and relevant application fields. In the scenario of the gen-

eral `p regularization problem, the proximal operator of the `p regularizer (1.2) may not have an

analytic solution and it could be computationally expensive to solve subproblem (1.2) exactly at

each iteration, except when p = 1, 2
3 , 1

2 , 0 (see [18, 13, 53, 6])). Due to the impressive empirical

performance of the inexact versions of the PGA (see, e.g., [23, 32]), there is a great demand for

investigating their convergence properties, although the linear convergence of the exact PGA has

been established in [23, 55]. The main interest of this section is to investigate the linear convergence

issue of the inexact PGA for solving the `p regularization problem (1.1).

Associated to problem (1.2), we denote the (inexact) proximal operator of the `p regularizer

by

Pv,ε(x) := ε-arg min
y∈Rn

{
λ‖y‖pp +

1

2v
‖y − x‖2

}
. (5.1)

In the special case when ε = 0, we write Pv(x) for Pv,0(x) for simplicity. Recall that functions F

and H are defined by (2.2). It is clear that the iterative formula of Algorithm PGA is

xk+1 ∈ Pvk
(
xk − vk∇H

(
xk
))
.
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Some useful properties of the proximal operator of the `p regularizer are presented as follows.

Proposition 5.1. Let v > 0, ε > 0, x ∈ Rn, ξ ∈ Rn, y ∈ Pv(x − v∇H(x)) and z ∈
Pv,ε(x− v(∇H(x) + ξ)). Then the following assertions are true.

(i) F (z)− F (x) ≤ −
(

1
2v − ‖A‖

2
)
‖z − x‖2 − 〈z − x, ξ〉+ ε.

(ii) For each i ∈ N, the following implication holds

yi 6= 0 ⇒ |yi| ≥ (vλp(1− p))
1

2−p .

Proof. (i) Recall that H and Φ are defined by (2.2), that is, H(·) = ‖A ·−b‖2 and Φ(·) = λ‖·‖pp.
It follows from (5.1) that

Φ(z) +
1

2v
‖z − (x− v(∇H(x) + ξ))‖2 ≤ Φ(x) +

1

2v
‖v(∇H(x) + ξ)‖2 + ε,

that is,

Φ(z)− Φ(x) ≤ − 1

2v
‖z − x‖2 − 〈z − x, 2A>(Ax− b)〉 − 〈z − x, ξ〉+ ε.

Combining this with (2.7), we prove assertion (i) of this theorem.

(ii) Let i ∈ N be such that yi 6= 0. Then, by (5.1) (with ε = 0), one has that

yi ∈ arg min
t∈R

{
λ|t|p +

1

2v
(t− (x− v∇H(x))i)

2

}
.

Thus, using its second-order necessary condition, we obtain that λp(p− 1)|yi|p−2 + 1
v ≥ 0; conse-

quently, |yi| ≥ (vλp(1− p))
1

2−p . The proof is complete.

Inspired by the ideas in the seminal work of Rockafellar [41], we propose the following two

types of inexact PGAs.

Algorithm IPGA-I. Given an initial point x0 ∈ Rn, a sequence of stepsizes {vk} ⊆ R+ and

a sequence of inexact terms {εk} ⊆ R+. For each k ∈ N, having xk, we determine xk+1 by

xk+1 ∈ Pvk,εk
(
xk − vk∇H

(
xk
))
. (5.2)

Algorithm IPGA-II. Given an initial point x0 ∈ Rn, a sequence of stepsizes {vk} ⊆ R+ and

a sequence of inexact terms {εk} ⊆ R+. For each k ∈ N, having xk, we determine xk+1 satisfying

dist
(
xk+1,Pvk

(
xk − vk∇H

(
xk
)))
≤ εk. (5.3)

Remark 5.1. Algorithms IPGA-I and IPGA-II adopts two popular inexact schemes in the

calculation of proximal operators, respectively: Algorithm IPGA-I (resp., Algorithm IPGA-II)

measures the inexact term by the approximation of proximal regularized function value (resp., by

the distance of the iterate to the exact proximal operator). The latter type of inexact scheme is

commonly considered in theoretical analysis, while the former one is more attractive to implement

in practical applications. Recently, Frankel et al. [21] proposed an inexact PGA (based on a similar

inexact scheme to Algorithm IPGA-II) for solving the general problem (1.3).
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Using Theorem 4.2, the global convergence result of Algorithm IPGA-I is presented in the

following theorem. However, we are not able to prove the global convergence of Algorithm IPGA-

II at this moment.

Theorem 5.2. Let {xk} be a sequence generated by Algorithm IPGA-I with {vk} satisfying

0 < v ≤ vk ≤ v̄ <
1

2
‖A‖−2 for each k ∈ N. (5.4)

and {εk} satisfying (4.2). Suppose that one of limiting points of {xk}, denoted by x∗, is a local

minimum of problem (1.1). Then {xk} converges to x∗.

Proof. In view of Algorithm IPGA-I (cf. (5.2)) and by Proposition 5.1(i) (with xk+1, xk, vk,

0, εk in place of z, x, v, ξ, ε), we obtain that

F (xk+1)− F (xk) ≤ −
(

1

2vk
− ‖A‖2

)
‖xk+1 − xk‖2 + εk ≤ −

(
1

2v̄
− ‖A‖2

)
‖xk+1 − xk‖2 + εk

(by (5.4)). Note also by (5.4) that 1
2v̄ − ‖A‖

2 > 0. This shows that {xk} satisfies (H1◦) with
1
2v̄ − ‖A‖

2 and
√
εk in place of α and εk, respectively. Then the conclusion directly follows from

Theorem 4.2(i). The proof is complete.

Recall that, for the inexact proximal point algorithm (see, e.g., [41, 49]), the inexact term

is assumed to have progressively better accuracy to investigate its convergence rate; specifically,

it is assumed that xk+1 ∈ Pvk,εk(xk) with εk = o(‖xk+1 − xk‖2) or that dist
(
xk+1,Pvk(xk)

)
≤

o(‖xk+1−xk‖). However, we are not able to prove the linear convergence of the inexact PGAs under

this assumption of inexact term yet (due to the nonconvexity of the `p regularized function), and

we need some additional assumptions to ensure the linear convergence. Recall that I = supp(x∗) is

defined by (2.3). Let {tk} ⊆ R+ and {τk} ⊆ R+. For Algorithms IPGA-I and IPGA-II, we assume

xk+1
I ∈ Pvk,εk

((
xk − vk∇H(xk)

)
I

)
with εk ≤ τk‖xk+1

I − xkI‖2, (5.5)

xk+1
Ic ∈ Pvk,εk

((
xk − vk∇H(xk)

)
Ic

)
with εk ≤ τk‖xk+1

Ic − xkIc‖2, (5.6)

and

dist
(
xk+1
I ,

(
Pvk

(
xk − vk∇H

(
xk
)))

I

)
≤ tk‖xk+1

I − xkI‖, (5.7)

dist
(
xk+1
Ic ,

(
Pvk

(
xk − vk∇H

(
xk
)))

Ic

)
≤ tk‖xk+1

Ic − xkIc‖, (5.8)

respectively. Note that (5.5)-(5.6) and (5.7)-(5.8) are sufficient conditions for guaranteeing (5.2)

with εk = tk‖xk+1 − xk‖ and (5.3) with εk = tk‖xk+1 − xk‖, respectively. (The implementable

strategy of inexact PGAs that conditions (5.5)-(5.6) or (5.7)-(5.8) are satisfied will be proposed at

the end of this section.) Now, we establish the linear convergence of the above two inexact PGAs

for solving the `p regularization problem under the additional assumptions, respectively. Recall

that f , h and ϕ are defined by (2.4).

Theorem 5.3. Let {xk} be a sequence generated by Algorithm IPGA-II with {vk} satisfying

(5.4). Suppose that {xk} converges to a local minimum x∗ of problem (1.1) and that (5.7) and

(5.8) are satisfied for each k ∈ N with limk→∞ tk = 0. Then {xk} converges linearly to x∗.

Proof. Note that Pvk
(
xk − vk∇H

(
xk
))

is closed for each k ∈ N. Then, by (5.7) and (5.8),

one can choose

yk ∈ Pvk
(
xk − vk∇H

(
xk
))

(5.9)
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such that

‖xk+1
I − ykI ‖ ≤ tk‖xk+1

I − xkI‖ and ‖xk+1
Ic − ykIc‖ ≤ tk‖xk+1

Ic − xkIc‖ for each k ∈ N. (5.10)

Noting that x∗I ∈ Rs6= (cf. (2.3)) and recalling that f , h and ϕ are defined by (2.4), there exists

0 < δ < (vλp(1− p))
1

2−p such that B(x∗I , δ) ⊆ Rs6= and

‖∇ϕ(y)−∇ϕ(z)‖ ≤ Lϕ‖y − z‖ for any y, z ∈ B(x∗I , δ). (5.11)

By the assumption that limk→∞ xk = x∗ and I = supp(x∗) (cf. (2.3)), we have by (5.10) that

limk→∞ ykI = x∗I and limk→∞ ykIc = x∗Ic = 0. Then there exists N ∈ N such that

‖xkI − x∗I‖ ≤ δ, ‖ykI − x∗I‖ ≤ δ and ‖ykIc‖ ≤ δ for each k ≥ N.

Consequently, one sees that

xkI , y
k
I ∈ B(x∗I , δ) ⊆ Rs6= and ykIc = 0 for each k ≥ N (5.12)

(by Proposition 5.1(ii)), and by (5.11) that

‖∇ϕ(xk+1
I )−∇ϕ(ykI )‖ ≤ Lϕ‖xk+1

I − ykI ‖ for each k ≥ N. (5.13)

We first provide an estimate on {xkIc}k≥N . By the assumption that limk→∞ tk = 0, we can

assume, without loss of generality, that tk <
1
2 for each k ≥ N . By (5.12), we obtain from the

second inequality of (5.10) that

‖xk+1
Ic ‖ ≤ tk‖x

k+1
Ic − xkIc‖ ≤ tk‖xk+1

Ic ‖+ tk‖xkIc‖,

and so,

‖xk+1
Ic ‖ ≤

tk
1− tk

‖xkIc‖ < 2tk‖xkIc‖ for each k ≥ N. (5.14)

Below, we estimate {xkI}k≥N . To do this, we fix k ≥ N and let τ be a constant such that

0 < τ < 1
4v̄ −

1
2‖A‖

2 (recalling (5.4)). By (5.10) and using the triangle inequality, one has that

1

2
‖xk+1

I − xkI‖ < (1− tk)‖xk+1
I − xkI‖ ≤ ‖ykI − xkI‖ ≤ (1 + tk)‖xk+1

I − xkI‖ <
3

2
‖xk+1

I − xkI‖ (5.15)

(by tk <
1
2 ). By (5.9), (2.2) and (2.4), we check that ykI ∈ Pvk

(
xkI − vk

(
∇h(xkI ) + 2AIAIcx

k
Ic

))
,

and so, we obtain from Proposition 5.1(i) (with f , h, AI , y
k
I , xkI , vk, 2A>I AIcx

k
Ic , 0 in place of F ,

H, A, z, x, v, ξ, ε) that

f(ykI )− f(xkI ) ≤ −
(

1

2vk
− ‖AI‖2

)
‖ykI − xkI‖2 − 〈ykI − xkI , 2A>I AIcxkIc〉

≤ −
(

1

2vk
− ‖A‖2

)
‖ykI − xkI‖2 + τ‖ykI − xkI‖2 +

1

τ
‖A‖4‖xkIc‖2 (5.16)

≤ −1

4

(
1

2v̄
− ‖A‖2 − τ

)
‖xk+1

I − xkI‖2 +
1

τ
‖A‖4‖xkIc‖2

(by (5.4) and (5.15)). By the smoothness of f on B(x∗I , δ)(⊆ Rs6=) and (5.12), there exists L > 0

such that

f(xk+1
I )− f(ykI ) ≤ ‖∇f(ykI )‖‖xk+1

I − ykI ‖+ L‖xk+1
I − ykI ‖2. (5.17)
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(by Taylors formula). The first-order optimality condition of (5.9) says that

∇ϕ(ykI ) +
1

vk

(
ykI − xkI + 2vkA

>
I (Axk − b)

)
= 0. (5.18)

Then we obtain by (2.4) that

∇f(ykI ) = 2A>I (AIy
k
I − b) +∇ϕ(ykI ) = −

(
1

vk
− 2A>I AI

)
(ykI − xkI )− 2A>I AIcx

k
Ic ;

consequently,

‖∇f(ykI )‖ ≤
(

1

vk
− 2‖A‖2

)
‖ykI − xkI‖+ 2‖A‖2‖xkIc‖

≤ 3

2

(
1

v̄
− 2‖A‖2

)
‖xk+1

I − xkI‖+ 2‖A‖2‖xkIc‖

(due to (5.4) and (5.15)). Combing this with (5.17), we conclude by the first inequality of (5.10)

that

f(xk+1
I )− f(ykI )

≤ 3

2

(
1

v̄
− 2‖A‖2

)
tk‖xk+1

I − xkI‖2 + 2‖A‖2tk‖xkIc‖‖xk+1
I − xkI‖+ Lt2k‖xk+1

I − xkI‖2 (5.19)

≤
(

3

2

(
1

v̄
− 2‖A‖2

)
tk + t2k(L+ τ)

)
‖xk+1

I − xkI‖2 +
1

τ
‖A‖4‖xkIc‖2.

Recalling that limk→∞ tk = 0, we can assume, without loss of generality, that

3

2

(
1

v̄
− 2‖A‖2

)
tk + t2k(L+ τ) ≤ 1

4
τ for each k ≥ N.

This, together with (5.16) and (5.19), yields that

f(xk+1
I )− f(xkI ) ≤ −1

4

(
1

2v̄
− ‖A‖2 − 2τ

)
‖xk+1

I − xkI‖2 +
2

τ
‖A‖4‖xkIc‖2. (5.20)

On the other hand, by the smoothness of f on B(x∗I , δ), we obtain by (5.12) and (2.4) that

‖∇f(xk+1
I )‖ ≤ ‖∇h(xkI ) +∇ϕ(ykI )‖+ ‖∇h(xk+1

I )−∇h(xkI )‖+ ‖∇ϕ(xk+1
I )−∇ϕ(ykI ))‖. (5.21)

Note by (5.18), (5.15) and (5.4) that

‖∇h(xkI ) +∇ϕ(ykI )‖ = ‖ 1

vk
(xkI − ykI )− 2A>I AIcx

k
Ic‖ ≤

3

2v
‖xk+1

I − xkI‖+ 2‖A‖2‖xkIc‖,

‖∇h(xk+1
I )−∇h(xkI )‖ ≤ 2‖A‖2‖xk+1

I − xkI‖,

and by (5.13) and (5.10) that

‖∇ϕ(xk+1
I )−∇ϕ(ykI )‖ ≤ Lϕ‖xk+1

I − ykI ‖ ≤ Lϕtk‖xk+1
I − xkI‖.
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Hence, (5.21) implies that

‖∇f(xk+1
I )‖ ≤

(
3

2v
+ 2‖A‖2 + Lϕtk

)
‖xk+1

I − xkI‖+ 2‖A‖2‖xkIc‖.

This and (5.20) show that {xkI}k≥N satisfies (H1◦) and (H2◦) with f , xkI , 1
4

(
1
2v̄ − ‖A‖

2 − 2τ
)
,(

3
2v + 2‖A‖2 + Lϕtk

)
and max

{√
2
τ , 2
}
‖A‖2‖xkIc‖ in place of F , xk α, β and εk, respectively.

Furthermore, it follows from (5.14) that limk→∞
‖xk+1

Ic
‖

‖xk
Ic
‖ ≤ limk→∞ 2tk = 0. This verifies (4.7)

assumed in Theorem 4.2(ii). Therefore, the assumptions of Theorem 4.2(ii) are satisfied, and so it

follows that {xkI} converges linearly to x∗I . Recall from (5.14) that {xkIc} converges linearly to x∗Ic
(=0). Therefore, {xk} converges linearly to x∗. The proof is complete.

Remark 5.2. Frankel et al. [21] considered an inexact PGA similar to Algorithm IPGA-II

with the inexact control being given by

εk = tk dist
(
Pvk

(
xk − vk∇H

(
xk
))
,Pvk

(
xk−1 − vk−1∇H

(
xk−1

)))
.

However, this inexact control would be not convenient to implement for applications because εk
is expressed in terms of Pv(·) that is usually expensive to calculate exactly. In Theorem 5.3, we

established the linear convergence of Algorithm IPGA-II with the inexact control being given by

(5.7) and (5.8). Our convergence analysis deviates significantly from that of [21], in which the KL

inequality is used as a standard technique.

Theorem 5.4. Let {xk} be a sequence generated by Algorithm IPGA-I with {vk} satisfying

(5.4). Suppose that {xk} converges to a global minimum x∗ of problem (1.1) and that (5.5) and

(5.6) are satisfied for each k ∈ N with limk→∞ τk = 0. Then {xk} converges linearly to x∗.

Proof. For simplicity, we write yk ∈ Pvk(xk − vk∇H(xk)) for each k ∈ N. By Proposition

5.1(i) (with yk, xk, vk, 0, 0 in place of z, x, v, ξ, ε) and by (5.4), one has that(
1

2v̄
− ‖A‖2

)
‖yk − xk‖2 ≤ F (xk)− F (yk) ≤ F (xk)− min

x∈Rn
F (x).

Then, by the assumption that {xk} converges to a global minimum x∗ of F , we have that {yk} also

converges to this x∗. By Theorem 3.2, it follows from (3.3) that 2A>I AI +∇2ϕ(x∗I) = ∇2f(x∗I) � 0.

This, together with x∗I ∈ Rs6= (cf. (2.3)) and the smoothness of ϕ at x∗I , implies that there exists

0 < δ < (vλp(1− p))
1

2−p such that

B(x∗I , δ) ⊆ Rs6= ∩ {y ∈ Rs : ∇2ϕ(y) � −2A>I AI}. (5.22)

By the convergence of {xk} and {yk} to x∗, there exists N ∈ N such that

xkI , y
k
I ∈ B(x∗I , δ), xkIc ∈ B(0, δ) and ykIc = 0 for each k ≥ N (5.23)

(by Proposition 5.1(ii)). Fix k ≥ N . Then, by (5.6) and (5.1), we have that

ϕ(xk+1
Ic ) +

1

2vk
‖xk+1

Ic − xkIc + 2vkA
>
Ic(Axk − b)‖2 ≤ εk +

1

2vk
‖ − xkIc + 2vkA

>
Ic(Axk − b)‖2.

This implies that

ϕ(xk+1
Ic ) ≤ εk +

1

2vk

(
‖xkIc‖2 − ‖xkIc − xk+1

Ic ‖
2
)
− 〈xk+1

Ic , 2AIc(Axk − b)〉. (5.24)
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Note that limk→∞ xkIc = 0 and limk→∞ τk = 0. By (5.24) and (5.6), there exists K > 0 such that

‖xk+1
Ic ‖

p
p ≤ K(‖xk+1

Ic ‖+ ‖xkIc‖).

Then it follows from (2.1) (as p < 1) that(
1−K‖xk+1

Ic ‖
1−p) ‖xk+1

Ic ‖
p ≤ ‖xk+1

Ic ‖
p
p −K‖xk+1

Ic ‖ ≤ K‖x
k
Ic‖.

Since limk→∞ xkIc = 0, we assume, without loss of generality, that ‖xk+1
Ic ‖ ≤ (2K)−

1
1−p . Hence,

‖xk+1
Ic ‖

p ≤ 2K‖xkIc‖ =
(
2K‖xkIc‖1−p

)
‖xkIc‖p.

Let αk :=
(
2K‖xkIc‖1−p

) 1
p . Then it follows that

‖xk+1
Ic − xkIc‖ ≥ ‖xkIc‖ − ‖xk+1

Ic ‖ ≥
1− αk
αk

‖xk+1
Ic ‖. (5.25)

On the other hand, let fk : Rs → R be an auxiliary function defined by

fk(y) := ϕ(y) +
1

2vk
‖y −

(
xkI − 2vkA

>
I (Axk − b)

)
‖2 for each y ∈ Rs. (5.26)

Obviously, fk is smooth on Rs6= and note by Taylor’s formula of fk at ykI that

fk(y) = fk(ykI ) +∇fk(ykI )(y − ykI ) +
1

2
〈y − ykI ,∇2fk(ykI )(y − ykI )〉+ o(‖y − ykI ‖2),∀y ∈ Rs. (5.27)

By (5.26), it is clear that ykI ∈ arg miny∈Rs fk(y). Its first-order necessary optimality condition

says that ∇fk(ykI ) = 0, and its second-order derivative is ∇2fk(ykI ) = ∇2ϕ(ykI ) + 1
vk

Is, where Is
denotes the identical matrix in Rs×s. Note by (5.22) and (5.23) that ∇2ϕ(ykI ) � −2A>I AI . Then

∇2fk(ykI ) � 1

vk
Is − 2A>I AI �

1

v̄
Is − 2A>I AI � 0

(by (5.4)). Hence, letting σ be the smallest eigenvalue of 1
v̄ Is − 2A>I AI , we obtain by (5.27) that

fk(y) ≥ fk(ykI ) +
σ

2
‖y − ykI ‖2 for any y ∈ B(ykI , 2δ) (5.28)

(otherwise we can select a smaller δ). By (5.23), one observes that

‖xk+1
I − ykI ‖ ≤ ‖xk+1

I − x∗I‖+ ‖ykI − x∗I‖ ≤ 2δ,

and so, (5.28) and (5.5) imply that

‖xk+1
I − ykI ‖2 ≤

2

σ

(
fk(xk+1

I )− fk(ykI )
)
≤ 2

σ
τk‖xk+1

I − xkI‖2.

Note that yk ∈ Pvk(xk) is arbitrary. This, together with (5.25), shows that {xk} can be seen as a

special sequence generated by Algorithm IPGA-II that satisfies (5.7) and (5.8) with max{ αk

1−αk
, 2
σ τk}

in place of tk. Since limk→∞ τk = 0 and limk→∞ αk = 0 (by the definition of αk), one has that

limk→∞max{ αk

1−αk
, 2
σ τk} = 0, and so, the conclusion directly follows from Theorem 5.3.
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It is a natural question how to design the inexact PGA that satisfies (5.5)-(5.6) or (5.7)-(5.8).

Note that both functions ‖ · ‖pp and ‖ ·−x‖2 in the proximal operator are separable (see (5.1)). We

can propose two implementable inexact PGAs, Algorithms IPGA-Ip and IPGA-IIp, which are the

parallel versions of Algorithms IPGA-I and IPGA-II, respectively.

Algorithm IPGA-Ip. Given an initial point x0 ∈ Rn, a sequence of stepsizes {vk} ⊆ R+

and a sequence of nonnegative scalars {εk} ⊆ R+. For each k ∈ N, having xk, we determine xk+1

by

xk+1
i ∈ Pvk,εk

((
xk − vk∇H(xk)

)
i

)
with εk = τk‖xk+1

i − xki ‖2 for each i = 1, . . . , n.

Algorithm IPGA-IIp. Given an initial point x0 ∈ Rn, a sequence of stepsizes {vk} ⊆ R+

and a sequence of nonnegative scalars {tk} ⊆ R+. For each k ∈ N, having xk, we determine xk+1

satisfying

dist
(
xk+1
i ,

(
Pvk

(
xk − vk∇H

(
xk
)))

i

)
≤ tk‖xk+1

i − xki ‖ for each i = 1, . . . , n.

It is easy to verify that Algorithms IPGA-Ip and IPGA-IIp satisfy conditions (5.5)-(5.6) and

(5.7)-(5.8) respectively, and so, their linear convergence properties follow directly from Theorems

5.3 and 5.4.

6. Extension to infinite dimensional cases. This section extends the results in preceding

sections to the infinite-dimensional Hilbert spaces. In this section, we adopt the following notations.

Let H be a Hilbert space, and let `2 denote the Hilbert space consisting of all square-summable

sequences. We consider the following `p regularized least squares problem in infinite-dimensional

Hilbert spaces

min
x∈l2

F (x) := ‖Ax− b‖2 +

∞∑
i=1

λi|xi|p, (6.1)

where A : `2 → H is a bounded linear operator, and λ := (λi) is a sequence of weights satisfying

λi ≥ λ > 0 for each i ∈ N. (6.2)

We start from some useful properties of the (inexact) descent methods and then present the

linear convergence of (inexact) descent methods and PGA for solving problem (6.1).

Proposition 6.1. Let {xk} ⊆ `2 be a sequence satisfying (H1◦) and (H2◦), and {εk} satisfy

(4.2). Then there exist N ∈ N and a finite index set J ⊆ N such that

supp(xk) = J for each k ≥ N. (6.3)

Proof. Fix k ∈ N. By (H1◦), one has that

F (xk) ≤ F (xk−1)− α‖xk − xk−1‖2 + ε2k−1 ≤ F (xk−1) + ε2k−1 ≤ F (x0) +

∞∑
i=0

ε2i < +∞
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(due to (4.2)). Then, it follows from (2.1) and (6.2) that

‖xk‖p ≤ ‖xk‖pp ≤
1

λ

∞∑
i=1

λi|xki |p ≤
1

λ
F (xk) < +∞.

Then {xk} is bounded, denoting the upper bound of their norms by M . Let

τ := min

{
1

β
,

(
λp

2 + 2‖A‖2M + 2‖A‖‖b‖

)1−p
}

(> 0). (6.4)

Note by Proposition 4.1(i) that limk→∞ ‖xk+1 − xk‖ = 0, which, together with (4.2), shows that

there exists N ∈ N such that

‖xk+1 − xk‖ ≤ τ and εk < 1 for each k ≥ N. (6.5)

We claim that the following implication is true for for each k ≥ N and i ∈ N

xki 6= 0 ⇒ |xki | > τ ; (6.6)

hence, this, together with (6.5), implies (6.3), as desired.

Finally, we complete the proof by showing (6.6). Fix k > N and i ∈ N, and suppose that

xki 6= 0. Then, it follows from (6.2) and (H2◦) that

λp|xki |p−1 + 2A>i (Axk − b) ≤ ‖wk‖ ≤ β‖xk − xk−1‖+ εk < 2

(due to (6.5) and τ ≤ 1
β by (6.4)). Noting that ‖xk‖ ≤M , we obtain from the above relation that

|xki | >
(

λp

2 + 2‖A‖2M + 2‖A‖‖b‖

)1−p

≥ τ

(by (6.4)), which verifies (6.6), as desired.

Remark 6.1. (i) Problem (6.1) for the n-dimensional Euclidean space has an equivalent

formula to that of problem (1.1). Indeed, let ui :=
(
λi

λ

) 1
p xi and Ki :=

(
λ
λi

) 1
p

Ai for i = 1, . . . , n.

Then, problem (6.1) is reformulated to minu∈Rn ‖Ku− b‖2 + λ‖u‖pp that is (1.1) with K and u in

place of A and x.

(ii) It is easy to verify by the similar proofs that Theorem 3.2 and Corollary 3.4 are also true

for problem (6.1) in the infinite-dimensional Hilbert spaces.

Theorem 6.2. Let {xk} ⊆ `2 be a sequence satisfying (H1) and (H2). Then {xk} converges

to a critical point x∗ of problem (6.1). Suppose that x∗ is a local minimum of problem (6.1). Then

{xk} converges linearly to x∗.

Proof. By the assumptions, it follows from Proposition 6.1 that there exist N ∈ N and a finite

index set J such that (6.3) is satisfied. Let fJ : R|J| → R be a function denoted by

fJ(y) := ‖AJy − b‖2 +
∑
i∈J

λi|yi|p for any y ∈ R|J|.
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By the assumptions and (6.3), we can check that {xkJ}k≥N satisfies (H1) and (H2) with xkJ and fJ
in place of xk and F . Hence, the convergence of {xkJ} to a critical point x∗J of fJ directly follows

Theorem 4.3. Let x∗Jc = 0. Then, by (6.3), it follows that {xk} converges to this x∗, which is a

critical point of problem (6.1). Furthermore, suppose that x∗ is a local minimum of problem (6.1).

Then x∗J is also a local minimum of fJ , and so, the linear convergence of {xkJ} to x∗J also follows

from Theorem 4.3. Then, by (6.3), we conclude that {xk} converges linearly to this x∗.

Theorem 6.3. Let {xk} ⊆ `2 be a sequence satisfying (H1◦) and {εk} satisfy (4.2). Suppose

one of limiting points of {xk}, denoted by x∗, is a local minimum of problem (6.1). Then the

following assertions are true.

(i) {xk} converges to x∗.

(ii) Suppose further that {xk} satisfies (H2◦) and {εk} satisfies (4.7). Then {xk} converges

linearly to x∗.

Proof. The proofs of assertions (i) and (ii) of this theorem use the lines of analysis similar to

that of assertion (i) of Theorem 4.2 (recalling from Remark 6.1(ii) that Corollary 3.4 is true for

the infinite-dimensional cases) and that of Theorem 6.2, respectively. The details are omitted.

Bredies et al. [10] investigated the PGA for solving problem (6.1) in infinite-dimensional

Hilbert spaces and proved that the generated sequence converges to a critical point under the

following additional assumptions: (a) {x ∈ `2 : A>Ax = ‖A>A‖x} is finite dimensional, (b)

‖A>A‖ is not an accumulation point of the eigenvalues of A>A, (c) A satisfies a finite basis

injectivity property, and (d) p is a rational. Improving [10, Theorem 5.1], we prove the global

convergence of the PGA under a simple assumption, and further establish its linear convergence in

the following theorem. Recall from [2, Theorem 5.1] that the sequence {xk} generated by Algorithm

PGA satisfies conditions (H1) and (H2) under the assumption (5.4). Hence, as an application of

Theorem 6.2, the results in the following theorem directly follow.

Theorem 6.4. Let {xk} ⊆ `2 be a sequence generated by Algorithm PGA with {vk} satisfying

(5.4). Then {xk} converges to a critical point x∗ of problem (6.1). Furthermore, suppose that x∗

is a local minimum of problem (6.1). Then {xk} converges linearly to x∗.

Let x∗ be a local minimum of problem (6.1). It was reported in [16, Theorem 2.1(i)] that

|x∗i | ≥
(
λp(1− p)
2‖Ai‖2

) 1
2−p

for each i ∈ supp(x∗).

This indicates that supp(x∗) is a finite index set. Then, following the proof lines of Theorems 5.2-

5.4, we can obtain the linear convergence of inexact PGAs for infinite-dimensional Hilbert spaces,

which are provided as follows.

Theorem 6.5. Let {xk} ⊆ `2 be a sequence generated by Algorithm IPGA-I with {vk} satis-

fying (5.4). Then the following assertions are true.

(i) Suppose that (4.2) is satisfied, and that one of limiting points of {xk}, denoted by x∗, is a

local minimum of problem (6.1). Then {xk} converges to x∗.

(ii) Suppose that {xk} converges to a global minimum x∗ of problem (6.1) and that (5.5) and

(5.6) are satisfied for each k ∈ N with limk→∞ τk = 0. Then {xk} converges linearly to x∗.
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Theorem 6.6. Let {xk} ⊆ `2 be a sequence generated by Algorithm IPGA-II with {vk}
satisfying (5.4). Suppose that {xk} converges to a local minimum x∗ of problem (6.1) and that

(5.7) and (5.8) are satisfied for each k ∈ N with limk→∞ tk = 0. Then {xk} converges linearly to

x∗.

Remark 6.2. Algorithms IPGA-Ip and IPGA-IIp, the parallel versions of Algorithms IPGA-

I and IPGA-II, are implementable for solving problem (6.1) in the infinite-dimensional Hilbert

spaces, and the generated sequences share the same linear convergence properties as shown in

Theorems 6.5 and 6.6, respectively.
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