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Abstract
We consider a real-time emergency medical service (EMS) vehicle patient transportation
problem in which vehicles are assigned to patients so they can be transported to hospitals
during an emergency. The objective is to minimize the total travel time of all vehicles while
satisfying two types of timewindow constraints. The first requires each EMS vehicle to arrive
at a patient’s locationwithin a specified timewindow.The second requires the vehicle to arrive
at the designated hospital within another time window. We allow an EMS vehicle to serve up
to two patients instead of just one. The problem is shown to be NP-complete. We, therefore,
develop a simulated annealing (SA) heuristic for efficient solution in real-time. A column
generation algorithm is developed for determining a tight lower bound. Numerical results
show that the proposed SA heuristic provides high-quality solutions in much less CPU time,
when compared to the general-purpose solver. Therefore, it is suitable for implementation in
a real-time decision support system, which is available via a web portal (www.rtdss.org).

Keywords Vehicle routing · Meta-heuristics

1 Introduction

This paper considers dispatching EMS vehicles in emergencies, e.g., a large scale pandemic
viral attack such as COVID-19, when the demand for vehicles is high. It is developed in a
way that makes it suitable for use during demand surge as well as during normal operations.
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As suggested in [1–3] and as is current practice, EMS vehicles may need to serve up to two
patients in these situations.

The EMS vehicle patient transportation problem (EMSVPTP) we consider assigns vehi-
cles to patients so they can be transported to hospitals they choose or those selected by EMS
personnel. During normal operations, patients may choose hospitals based on their medical
insurance considerations. During a medical surge, hospitals may be chosen by EMS per-
sonnel based on availability, wait time, drive time and patient condition. Each EMS vehicle
can serve up to two patients. The objective is to minimize the total travel time among all
vehicles subject to two time-windows—the time window within which a vehicle must arrive
at a patient’s location and another time window within which the patient must be transported
to the hospital. Two reasons have led to the use of total travel time as the objective function.
First, an industry advisory board recommended that models for emergency response should
not only be designed for use during a demand surge, but also during normal operations. This
will ensure dispatchers trained to use a tool during normal operations can use it effectively
when a demand surge occurs due to a pandemic. Second, minimizing total travel distance is a
commonly used objective in software adopted by EMS departments in the U.S. and Canada,
as they seek to minimize their overall cost while incorporating response time compliance
as constraints. The proposed model has been implemented in a real-time decision support
system, which is available on a web portal (www.rtdss.org).

The remainder of this paper is organized as follows. Section 2 reviews the relevant lit-
erature. Section 3 introduces the EMSVPTP and describes its computational complexity.
Section 4 presents a mixed-integer programming (MIP) model of the EMSVPTP. A column
generation method to obtain a lower bound for the EMSVPTP is presented in Sect. 5. Next,
a simulated annealing heuristic method for the EMSVPTP is presented in Sect. 6. Numerical
experiments and computational results with CPLEX [4] are provided in Sect. 7. Conclusions
are drawn in Sect. 8.

2 Literature review

The problemof dispatching EMSvehicles has been considered in the literature from twomain
aspects: the dispatching decision to serve current patient requests; and coverage decision in
anticipation of serving future patient requests. An overview of these papers can be found in
[5–7].

Yang et al. [8] develop an integrated approach for dispatching EMS vehicles, police
vehicles, and fire trucks. Their model can be used in real-time to decide a subsequent desti-
nation for each vehicle. The objective of their model is to minimize travel times. Penalties
are incurred for not reaching a patient in the desired time window and not covering demand
nodes. Other researchers have also considered the coverage and dispatching decisions jointly.
For example, Andersson and Varbrand [9] study an EMS vehicle dispatching and dynamic
relocation problem. Ibri et al. [10] study an integrated dispatch and coverage problem model
and develop a method combining ant colony and tabu search techniques for its solution.
Majzoubi et al. [11] propose a mathematical model to dispatch and relocate these vehicles
when the demand for the EMS vehicles is high. In the current paper, we only deal with
dispatching part of the problem and the focus is on utilizing the capacity of EMS vehicles
during a demand surge.

Mathematically, the EMS dispatching problem can be considered as a real-time vehicle
routing problem (VRP) which is addressed abundantly in the literature. Because each patient
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has pickup and drop-off points, it has characteristics that are similar to the VRP with pickup
and delivery (VRPPD). Gendreau et al. [12] propose a tabu search heuristic for the VRPPD
and use parallel computing for real-time fleet dispatch whenever there is a new request.
Bent and Hentenryck [13] develop a hybrid algorithm for the VRPPD. They use simulated
annealing for minimizing the number of vehicles and the travel cost. Further, Ropke and
Pisinger [14] propose an extended large neighborhood search algorithm for the VRPPD.

Another specific type of VRP that is related to the EMSVPTP is the dial-a-ride (DAR)
problem which has also been studied in the past. A survey of models and algorithms for
the DAR problem is provided in Cordeau and Laporte [15]. A more recent survey of the
DAR literature is provided in Ho et al. [16]. Using the DAR framework, Beaudry et al. [17]
consider a problem for transporting patients on a hospital campus. Their problem considers
the dynamic arrivals of new transportation requests. The objective in [17] is to minimize
a weighted sum of three criteria: total travel time, lateness, and earliness. The authors use
insertion movements and tabu search to develop a two-phase heuristic procedure in solving
their particular DAR problem. Kergosien et al. [18] consider the problem of transporting
patients between care units. They use a tabu search method similar to the method used in
[12]. Parragh [19] develops two mathematical models for the DAR problem similar to those
in [15] and proposes a branch-and-cut algorithmwith a variable neighborhood search to solve
the problem. Hu and Chang [20] propose a revised branch-and-price for the DAR problem,
while Liu et al. [21] present a branch-and-cut algorithm for the problem. Markovic et al.
[22] develop a Mobile Resource Management System for the DAR problem, designing a
customized heuristic for dynamic dispatching. They consider a case study in Maryland and
show their proposed solution can reduce the expenses for that case by 18%.

3 Computational complexity

Krumke et al. [23] study a general vehicle dispatching problem with at most two requests
(VDP2), which simply dispatches vehicles so that the total transportation cost is minimized.
Note that unlike a k-customer VRP (e.g., Haimovich et al. [24]), all vehicles in VDP2 are geo-
graphically dispersed and thus are not necessarily based at one depot. Furthermore, Krumke
et al. [23] show that the VDP2 is NP-complete. In analyzing the computational complexity
for the EMSVPTP, we demonstrate that essentially VDP2 is reducible to the EMSVPTP in
polynomial time.

First, we formally introduce the VDP2 in [23]. We then show that a slight variation of
VDP2, namely, a vehicle dispatching problem with two requests and a common destination
depot (VDP2CDD), is NP-complete. Finally, we establish the proof that the EMSVPTP is
NP-complete through a reduction from VDP2CDD.

Vehicle dispatching problemwith two requests (VDP2): Given a set of requests R, a
set of vehiclesU (|U | ≤ 2|R|), cost function c : (U∪R)×(U∪R) �→ R+, the vehicle
dispatching problem with two requests (VPD2) finds a tour tu = (u, ru,1, ru,l(u)) for
each vehicle u ∈ U that serves l(u) ≤ 2 requests, such that each request is served in
exactly one tour and the total cost of all tours is minimized.

Vehicle dispatching problem with two requests and a common destination depot
(VDP2CDD): Given a set of requests R, a set of vehicles U (|U | ≤ 2|R|), a common
destination depot d , cost function c : (U ∪ R) × (U ∪ R ∪ {d}) �→ R+, the vehicle
dispatching problem with two requests and a common destination depot (VDP2CDD)
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finds a tour tu = (u, ru,1, ru,l(u), d) for each vehicle u ∈ U that serves l(u) ≤ 2
requests, such that each request is served in exactly one tour, all tours end at d , and the
total cost of all tours is minimized.

Lemma 1 The VDP2CDD is NP-hard.

Proof Consider any VDP2 instance (R,U , c). Construct a VDP2CDD instance (R,U , c, d),
where c(r , d) = a �= 0 for all r ∈ R and a is a constant. As described, the construction
of VDP2CDD can be done is polynomial time. In addition, any optimal solution to VDP2
solves the above constructed VDP2CDD and vice versa. In Krumke et al. [23], it is shown
that the decision version of the VDP2 is NP-complete, thus VDP2 is NP-hard. Therefore,
VDP2CDD is also NP-hard.

To prove EMSVPTP’s complexity, we restate the EMSVPTP as follows. �	
EMS Vehicle Patient Transportation Problem (EMSVPTP): Consider a set of
patients P , a set of their corresponding requested hospitals H = {h(p)|∀p ∈ P}
(|H | = |P|), and a set of vehicles V (|V | ≤ 2|P|) each with a capacity of k patients.
Define N = P ∪ H and the cost function s : (V ∪ N ) × (V ∪ N ) �→ R+. Then,
the EMS vehicle patient transportation problem, denoted as EMSVPTP(V , P, H , s),
finds a tour tv = (v, nv,i1 , nv,i2 , . . . , nv,i2l(v)

) for each vehicle v ∈ V that serves at
most l(v) ≤ k patient requests, i.e., picks up each patient and drops each patient off at
the requested hospital, such that each patient is served in exactly one tour and the total
cost of all tours is minimized.

Note that in the above definition for EMSVPTP, (i1, i2, . . . , i2l(v)) is a permutation for
{1, 2, . . . , 2l(v)}. Further, if patient p0 is the it th stop for vehicle v in its tour and its asso-
ciated hospital h0 = h(p0) is the iq th stop for the vehicle, i.e., p0 = nv,it , h0 = nv,iq , then
iq > it .

Theorem 1 establishes the NP-hardness result for the EMSVPTP with k = 2 from the
reduction of the VDP2CDD problem in Lemma 1 in polynomial time.

Theorem 1 The EMS patient transportation problem with k = 2 is NP-hard.

Proof Consider any instance of VDP2CDD (R,U , c, d). To construct an equivalent
EMSVPTP with k = 2, let V = U , P = R, s = c, and H = {d, d, . . . , d}, i.e., all the
destination hospitals are at the same location. Clearly, the EMSVPTP(V , P, H , s) problem
can be constructed in polynomial time.

Let t∗ = {t∗u }u∈U be an optimal solution to VDP2CDD. Then, for each vehicle u, the
optimal tour serves either one or two requests.

(i) If u ∈ U serves one request , i.e., t∗u = (u, r∗
u,1, d), then the corresponding solution to

the EMSVPTP with k = 2 is w∗
v = (v, p∗

v,1 = r∗
u,1, h = d).

(ii) If u ∈ U serves two requests , i.e. t∗u = (u, r∗
u,1, r

∗
u,2, d), the corresponding solution to

the EMSVPTP with k = 2 is w∗
v = (v, p∗

v,1, p
∗
v,2, h = d).

Note that (ii) is true because both requests have a common destination. We show that
{w∗

v}v∈V is optimal to the above-constructed EMSVPTP with k = 2 by contradiction. If
there exists a solution w̄ = {w̄v∈V } with total cost

∑
v s̄v ≤ ∑

v s
∗
v , then solution w̄ will

induce an alternative solution t̄ using (i)–(ii) with lower cost for VDP2CDD. This contradicts
that t∗ is an optimal solution to VDP2CDD. Thus, any optimal solution to VDP2CDD solves
the above constructed EMSVPTP. Similarly, it can be shown that any optimal solution w∗ to
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the EMSVPTP with k = 2 solves the VDP2CDD. Thus, the VDP2CDD is equivalent to the
constructed EMSVPTP. From Lemma 1, EMSVPTP with k = 2 is NP-hard.

Due to the above complexity results for EMSVPTP, we focus on developing efficient
heuristic methods for solving EMSVPTP in a real-time decision support system. Because the
current paper deals with the EMSVPTP with k = 2 as a prototype problem, in subsequent
sections we refer to the EMSVPTP with k = 2 simply as EMSVPTP without explicitly
specifying k = 2. �	

4 Themathematical formulation for the EMSVPTP

To formulate a mixed integer linear program for the EMSVPTP, we define the following sets
and mapping functions:

Sets

K Set of vehicles
K H ⊆ K Set of vehicles en route to hospitals
P Set of patients
H Set of hospitals
O Set of virtual depots for vehicles
Mapping functions
o(k) ∈ O A function mapping vehicle k to its virtual depot
p(k) ∈ P A function mapping vehicle k to the patient

currently on board, ∀k ∈ K H

In the above notation, O refers to a set of virtual depots for the vehicles. It is assumed that
the current location of an EMS vehicle is that of its (virtual) depot. Based on the defined sets
and mapping functions, and following the notation in the three-index formulation in [15], we
define a network G = {N , A}, where N = O ∪ P ∪ H ∪ {d} is the set of all nodes including
virtual depots, patients, hospitals, and a common virtual destination node d for all vehicles.
After the last patient is dropped off at a hospital, it is assumed that the EMS vehicle travels
to the virtual destination node d , for which the travel time is assumed to be zero.

Assuming there are m EMS vehicles and n patients, we index all nodes in N as follows:

P = {1, 2, . . . , n}, H = {n + 1, n + 2, . . . , 2n},
O = {2n + 1, 2n + 2, . . . , 2n + m}, d = {2n + m + 1}.

Note that there is a distinct hospital node corresponding to each patient node. In reality,
two or more of the hospital nodes may correspond to the same hospital, but we formulate
our model so that the transfer of each patient to a hospital has a unique arc associated with
it, following the convention used in general VRPs with unique pick-up and drop-off points.

In the EMSVPTP, there are six possible vehicle movements at any given time as listed
below.

1. From the virtual starting depot to a patient;
2. From first patient to a second patient;
3. From a patient to a hospital;
4. From a hospital to pick up a second patient;
5. From first patient’s hospital to the second patient’s hospital and vice versa;
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6. From hospital to the common virtual destination.

Therefore, the set of valid arcs A is defined as

A = {(i, j)| i ∈ O, j ∈ P ∪ {d};
i ∈ P ∪ H , j ∈ P ∪ H , for i �= j and i �= n + j;
i ∈ H , j = 2n + m + 1},

where the first set of (i, j)’s for i ∈ O, j ∈ P represents the first type of EMS vehicle
movement, the third set of (i, j)’s represents the sixth type of vehicle movement, and the
second set represents the remaining four types of movements.

Let binary variable xki j (where (i, j) ∈ A and k ∈ K ) be 1 if vehicle k goes from node
i to j ; 0 otherwise. Also, let variable yik represent the time that vehicle k arrives at node i .
Let ti j be the travel time on arc (i, j) ∈ A and ψi be the desired time by which node i must
be visited. Then, similar to [15], the EMSVPTP can be formulated as follows:

min
∑

(i, j)∈A

∑

k∈K
ti j x

k
i j (1)

s.t.
∑

j∈N

∑

k∈K
xki j = 1, ∀i ∈ P (2)

∑

i∈N
xk2n+k,i =

∑

i∈N
xki,2n+m+1 = 1, ∀k ∈ K (3)

∑

j∈N
xki j −

∑

j∈N
xkj,n+i = 0, ∀i ∈ P, ∀k ∈ K (4)

∑

j∈N
xkji −

∑

j∈N
xki j = 0, ∀i ∈ P ∪ H , ∀k ∈ K (5)

xk2n+k,p(k) = 1, ∀k ∈ K H (6)
∑

i∈N

∑

j∈P

xki j ≤ 2, ∀k ∈ K (7)

yik + ti,i+n ≤ yi+n,k, ∀i ∈ P, ∀k ∈ K (8)

y jk ≥ yik + ti j − M(1 − xki j ), ∀(i, j) ∈ A,∀k ∈ K (9)

yik ≤ ψi , ∀i ∈ N ,∀k ∈ K (10)

Recall that xki j is defined only on permissible arc (i, j) ∈ A for vehicle k. Then, in the
above formulation (EMSVPTP), the objective function (1) minimizes the total travel time for
all the vehicles. Constraint (2) states that each patient must be served by a vehicle. Constraint
(3) ensures each vehicle begins at the virtual depot and returns to the virtual destination
node. Constraint (4) ensures the same vehicle will pick up a patient and transport them to the
associated hospital. In other words, if vehicle k serves patient i , vehicle k has to transport that
patient to hospital node n + i as well. Constraint (5) is the flow balance equation at either a
patient or a hospital node, ensuring the vehicle that comes into node i must leave that node.
Constraint (6) ensures that a vehicle en-route to a hospital with a patient is assigned to that
patient. Of course, this vehicle may then serve one more patient, as specified by constraint
(7). Finally, constraints (8)–(10) ensure the desired time window constraints are satisfied at
both patient and hospital nodes.

The above model can be used in a real-time environment for an EMS department with a
CAD (computer-aided dispatcher) and AVL (automatic vehicle locations).When latitude and
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longitude of a vehicle are provided, the origin-destination matrix ti j can be readily calculated
using real-time routing applications. To further reduce processing time, the time between
street segment centroids can be pre-calculated and the vehicles can be snapped back to these
segments when we receive the AVL data.

The mixed-integer program (1)–(10) is implemented using C# via CPLEX 12.10 [4].
Because the NP-hardness results from Sect. 3, it is not surprising that general-purpose solvers
such asCPLEX take excessive amount ofCPU time for even small-sized instances, as reported
in detail in Sect. 7. Thus, the next section proposes an efficient heuristic method for obtaining
a lower bound and a high-quality solution faster.

5 Column generation

In this section, we present a column generation approach for obtaining a tight lower bound
for the EMSVPTP.We then exploit this method to solve the and find a good feasible solution.
First, we present the basics of applying the column generation technique to the general VRP
similar to many papers in the literature (e.g., Desrochers et al. [25], Xu et al. [26], Fillet [27],
and Ropke and Cordeau [28]). Then we discuss a special pricing algorithm for solving the
subproblem in the column generation method for the EMSVPTP.

In the literature, many researchers have used the column generation technique to solve
the VRP through a reformulation as a set covering problem (e.g., Xu et al. [26]). When
considered as a set covering problem, the VRP is to determine the set of routes with the
minimum total travel cost given the entire set of all possible routes.

More formally, let aiku = 1, if route u includes a visit of node i by vehicle k; 0 otherwise.
Let cku be the cost of route u for vehicle k. In addition, let Ω be the set of all feasible routes
and Ω1 ⊆ Ω be an arbitrary subset of Ω . A route is feasible if it satisfies the required time
window constraints. Suppose decision variable θku = 1 if route u is served by vehicle k; 0
otherwise. Then, the VRP can be written as the set covering problem as follows:

(VRP-SC) min
∑

k∈V

∑

u∈Ω

ckuθku (11)

s.t.
∑

k∈V

∑

u∈Ω

aikuθku ≥ 1, ∀i ∈ N (12)

∑

u∈Ω

θku ≤ 1, ∀k ∈ V (13)

θku ∈ {0, 1} (14)

The column generation approach begins with a subset of routes Ω1 ⊂ Ω to solve the
following (restricted) master problem of (VRP-SC).

(MP) min
∑

k∈V

∑

u∈Ω1

ckuθku (15)

s.t.
∑

k∈V

∑

u∈Ω1

aikuθku ≥ 1, ∀i ∈ N (16)

∑

u∈Ω1

θku ≤ 1, ∀k ∈ V (17)

θku ∈ {0, 1}, ∀k ∈ V (18)
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Consider the linear relaxation of the master problem (MP). Let λi and ωk be the dual
variables associated with constraints (16) and (17), respectively. We solve the subproblem
of minimizing the reduced cost for all routes u ∈ Ω . If the minimum reduced cost is zero,
then the optimal route is found; otherwise, we update Ω1 by including the route with the
minimum reduced cost and resolve the master problem (MP). Therefore, the subproblem is
commonly referred to as the “pricing” problem. Rather compactly, the subproblem can be
written as:

(PP) : min
u∈Ω

{−
∑

i∈N
aikuλi + ωk + cku}

Let bi jku = 1 if route u uses vehicle k to visit arc (i, j) and 0 otherwise. Then, aiku =∑
j∈N bi jku and cku = ∑

(i, j)∈(N∪O)×N bi jkuti j = ∑
i, j∈N bi jkuti j + ∑

j∈N bo(k) jku to(k) j .
Thus, the objective function in (PP) can be rewritten as

cku −
∑

i∈N
aikuλi + ωk =

∑

i, j∈N
bi jku(ti j − λi ) +

∑

j∈N
bo(k) jku to(k) j + ωk (19)

In other words, the travel cost between nodes is (ti, j − λi ) for i, j ∈ N and (to(k), j + ωk)

for (o(k), j) ∈ O × N . Therefore, the subproblem (PP) can be considered as an elementary
shortest path problem with resource constraints (ESPPRC) (see e.g., Desrochers et al. [25]
and Ropke and Cordeau [28]), where the resource constraints correspond to the time window
constraints in the underlying route selection.

Finally, we make two notes regarding the implementation of the pricing problem (PP).
First, because each vehicle cannot servemore than two patients in our problem, themaximum
length of a route (excluding depots) is four. Therefore, we simply enumerate all routes
and add the best route to Ω1. Second, as detailed in Sect. 7, our implementation adds M
routes/columns (with the M most negative reduced costs) at a time, where M is a pre-
defined parameter representing the maximum number of columns to add in the column
generation algorithm. This process is continued until we are not able to find any negative
cost routes.

6 A simulated annealing algorithm for the EMSVPTP

In this section, we present a meta-heuristic method for the EMSVPTP using the simulated
annealing approach. We define a pairwise exchange type of neighborhood function/search
in Subroutine 1, followed by Subroutine 2 which describes how we optimally sequence
the nodes visited by a vehicle after the selections of nodes are determined for all vehicles.
Finally, Subroutine 3 conducts a specialized local search attempting to introducemore diverse
solutions at later stages (with lower temperatures) of the SA procedure. We refer to the
combination of this local search with the pairwise exchange neighborhood search as the
‘hybrid’ method in this and subsequent sections.

In particular, Subroutine 1 performs a pairwise type of exchange to obtain a neighborhood
solution from any given solution. It first randomly chooses two vehicles in the current solution
and randomly selects one patient from each vehicle. The patients are then swapped between
the two vehicles. Note that a randomly selected vehicle may not have any patient, thus there
are three possible outcomes for the exchange/swap: 1) swapping two patients between the
two chosen vehicles, each has at least one patient; 2) moving one patient from a vehicle with
at least one patient to the other that has no patient; 3) doing nothing when neither vehicle has
a patient. Subroutine 1 below excludes all swaps with outcome 3).
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Subroutine 1: The Pairwise Exchange Neighborhood Function
X̄ = N (X , i, j)

Step 0: (Initialize the neighbor solution)
X̄ = X ;
Step 1: (Select the patients to swap from vehicles i and j)
For k = i, j

if k ∈ K H , then choose the only patient in vehicle k as patient pk ;
if k ∈ K \ K H , then randomly choose any patient in vehicle k as patient pk ;

EndFor
Step 2: (Swap selected patients in vehicles i and j)

If both pi and p j are non-null, then then swap them between two vehicles i and j
ElseIf one of pi and p j is null, then simply move the non-null patient to the other vehicle

Step 3: (Optimize the routes in vehicles i and j)
For k = i, j

if k is idle or en-route to a patient find the best possible sequence from all possible
six sequences(see Subroutine 2);

if k is transporting a patient, find the best possible sequence from all possible three
sequences (see Subroutine 2);

EndFor
return(X̄ )

Subroutine 2 OptimizeSequence determines the best sequence of all nodes to be visited
by vehicle k when it serves two patients. In this case, at most six possible sequences exist
because there are, at most, two patients and two hospitals to be visited by a vehicle, and
each patient is visited before the associated hospital. In particular, let 1 ≤ ρ ≤ 6 be the
sequence index, p1 and p2 be the two patients and h1 and h2 be their respective hospitals.
Then sequences 1 through 6 are shown in the table below. For example, in sequence 3, vehicle
k visits patient p1 first, followed by that patient’s hospital h1, then patient p2, and finally the
hospital h2 of patient 2.

Sequence index ρ The actual sequence

1 (k, p1, p2, h1, h2)
2 (k, p1, p2, h2, h1)
3 (k, p1, h1, p2, h2)
4 (k, p2, p1, h1, h2)
5 (k, p2, p1, h2, h1)
6 (k, p2, h2, p1, h1)

Using this notation, Subroutine 2 examines all applicable sequences l through u (l ≤ u) for
vehicle k in serving patient j , with X being the associated solution. If improvement is found,
the subroutine updates X with the improved sequence. Note that for vehicle k ∈ K \ K H , all
six sequences are feasible, hence l = 1 and u = 6. However, for vehicle k ∈ K H , because
only sequences 1 through 3 are feasible, l = 1 and u = 3.
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Subroutine 2: OptimizeSequence(X̄ , k, j, l, u)
Loop ρ = l, · · · , u // l through u are the applicable sequence indices
Calculate times to reach the first and second patient g1(ρ) and g2(ρ);
Calculate times to transport the first and second patient to their respective hospitals g3(ρ) and
g4(ρ);

If gl (ρ), l = 1, 2, 3, 4 are all feasible, Then
Evaluate the new objective value associated with sequence ρ, i.e., Obj(ρ);
If Obj(ρ) < BestObj Then
Assign patient j to vehicle k using sequence ρ and update solution X̄ ;
BestX=X̄ ;
BestObj=Obj(ρ);

EndLoop
Return BestX

In addition to the pairwise exchange neighborhood search in Subroutine 1, we propose a
nested vehicle search (NVS) algorithm to be used in later stages of the SA process when the
temperature is relatively low. In essence, the NVS in Subroutine 3 attempts to diversify the
solution space when the SA process begins to concentrate its search. In particular, beginning
with the current incumbent solution in the SA process, the NVS first randomly select a patient
( j) and cancels the assignment of patient p1 to its current hospital h1. Second, a local greedy
search of vehicle is performed for this patient j . This search checks all vehicles with three
possible scenarios. In the first scenario where vehicle i is assigned to only one patient, step
1.2.1 checks if patient j can be reached by vehicle i within the specified time window. In
addition, Subroutine 2 will be applied to optimize the sequence for this vehicle to visit two
patients considering six alternative sequences. In the second scenario where vehicle i is trans-
porting a patient to a hospital, step 1.2.2 checks all three possible sequences when performing
sequence optimization. This is because the current patient has to be the first patient, thusmak-
ingρ = 4, 5 and 6 infeasible in Subroutine 2. In the third scenariowhere a vehicle i is assigned
to serve two patients, let j1 be the immediate patient and j2 the second patient. Then step 1.2.3
checks if swapping current patient j with the second patient j2 can lead to a better solution.
In addition, step 1.2.3 examines if j2 can be served by either a vehicle which is assigned to
a patient (step 1.2.1) or a vehicle en route to a hospital (step 1.2.2). If so, the swap will be
accepted. After considering all three scenarios for patient j , the best assignment is obtained.
This process repeats for all patients other than j before a best local solution is identified.
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Subroutine 3: The Nested Vehicle Search Neighborhood Function
Best X = NV S(X̄)

Step 0: // Initialize
Bestx=X̄

Step 1: //Assign vehicles to patients selected by SA based on a greedy selection
Loop j = p1, p2 going through patients selected by SA

If ( j �= null) Then
Step 1.1: Un-assign patient j from its current vehicle
Step 1.2: Select a vehicle for patient j using the following procedures
Loop k = 1, · · · ,m //searching through all vehicles

Step 1.2.1: //first, examine vehicles en route to a patient and not yet being assigned to a second
patient

If k ∈ K \ K H and it is assigned to only one patient Then
Obtain X̄ resulted from assigning patient j to vehicle k using

OptimizeSequence(X̄ , k, j, 1, 6)
EndIf

Step 1.2.2: // second, examine vehicles en route to a hospital
If k ∈ K H and no patient is assigned to it Then

Obtain X̄ resulted from assigning patient j to vehicle k using
OptimizeSequence(X̄ , k, j, 1, 3)
EndIf

Step 1.2.3: // third, examine vehicles that are assigned to two patients with different requested
hospitals,
If k ∈ K \ K H and it is assigned to two patients with two different hospitals Then

Examine if the second patient of vehicle k can be served by a different vehicle k′ using
similar processes

as in Steps 1.2.1 and 1.2.2;
If a k′ is found Then

Obtain X̄ resulted from assigning patient j to vehicle k using
OptimizeSequence(X̄ , k, j, 4, 6)

EndIf
EndIf

EndLoop // going through vehicle k
Step 1.3:
If obj ≤BestObj Then

BestX=X̄ , BestObj=Obj ;
EndIf

EndIf
EndLoop // going through patient j

7 Numerical experiments

To evaluate the proposed simulated annealing heuristic, we used C# to implement the SA
heuristic, aswell as themixed-integermodel forEMSVPTPvia the ILOG/Concert technology
by CPLEX 12.10 [4]. The CPU times reported here are from an Acer Intel(R) Core(TM) i7-
6500 U CPU dual-core processor with 2.5 GHz and 2.6 GHz and 8 GB RAM on a 64-bit
Windows operating system.

Preliminary pilot studies are conducted to fine-tune the parameters in the proposed SA
heuristic. From the pilot runs (see Majzoubi [11]), the best parameter setting recommenda-
tions are as follows. The initial temperature Tinit = 20 which equates to approximately 80%
probability of accepting an uphill transition initially. The choice of the exponential cooling
function is Tk = T0αk with α = 0.9. The total epoch length and total length are set to
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L = 10,000 and Ltotal = 100,000, respectively. For the column generation method, we set
the maximum number of columns to add in one iteration to be M = 800.

In our numerical experiments, all test instances are randomly generated in a 50× 50 mile
grid. The location of patients and vehicles are chosen randomly using a uniform distribution
within the grid.

To evaluate the efficacy of allowing up to two patients in a vehicle, we run 20 instances
with the numbers of patients and vehicles varying from 15 to 25.We compare two dispatching
strategies: (a) a traditional dispatchingwhere the closest vehicle is dispatched to serve a single
patient, and (b) the proposed method allowing an EMS vehicle to serve up to two patients.
For the first strategy, the average time for a patient to arrive at their hospital is approximately
28.5 min whereas the same service time reduces to 19.6 min under the second strategy. This
demonstrates the effectiveness of the proposed model. A more thorough analysis regarding
the benefit of increasing EMS vehicle’s capacity to two is done in [11].

To measure the quality of our proposed algorithm, we first compare the performance of
the SA heuristic for EMSVPTP against that of the MIP model in Sect. 4 by CPLEX [4] on
20 test instances. These test instances are relatively small-sized, with the numbers of patients
and vehicles ranging between 15 and 25. Multiple instances are created for each combination
of patient and vehicle sizes. The results are compared and summarized in Table 1 which
displays the numbers of patients and EMS vehicles for each group of instances in column
2; the objective function values and the computer processing unit (CPU) times for SA in
columns 3 and 4; and the objective function value as well as CPU times for CPLEX in
columns 5 and 6. Column 7 represents the percentage gap between SA and CPLEX. Also
reported in Table 1 are the average objective function values and CPU times for SA and
CPLEX.

From Table 1, it can be seen that for the small-sized EMSVPTP instances, the average
CPU time for SA is 0.9 seconds compared to 118.38 seconds for CPLEX while the quality
of the SA solution is rather high with an average gap of 0.09%. More specifically, in four of
the 20 instances, the CPLEX solution is better than those provided by SA. On the other hand,
for 16 examples, CPLEX and SA found the same optimal solution. In all of these instances,
less CPU time is required for the SA than CPLEX. In particular, SA was 130 times faster
than CPLEX, on average. Thus, we conclude that the proposed SA algorithm is efficient and
robust, because for most instances it was able to provide the same solution as CPLEX in
much less CPU time.

Next, we generated medium-sized EMSVPTP instances where the numbers of vehicles
and patients range between 70 and 80, and between 55 and 95, respectively. These 50 instances
are too large to be solved by CPLEX, therefore we compare the heuristic solution obtained
using SA to the lower bound obtained using the column generation method described in
Sect. 5.

In addition to the proposed algorithms, we compare our results with a greedy heuristic
algorithm for bench-marking purposes. Subroutine 4 presents an outline of this algorithm.
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Table 1 Comparison between the SA and CPLEX solutions

Instance (Vehicles, patients) SA method CPLEX Gap (%)

Objective function CPU time (s) Objective function CPU time (s)

1 808.54 1.02 808.54 7.63 0

2 785.50 0.64 785.50 4.61 0

3 (15, 15) 777.32 0.65 777.32 9.65 0

4 733.41 0.65 733.41 4.06 0

5 734.76 0.65 713.87 6.94 0

6 801.76 0.44 831.93 1.10 0

7 (25, 5) 701.01 0.46 701.01 0.75 0

8 767.80 0.75 767.80 1.26 0

9 913.04 0.56 913.04 1.79 0

10 (25,10) 847.58 0.64 847.58 1.08 0

11 944.23 0.80 944.23 2.56 0

12 898.14 1.03 898.14 7.26 0

13 (25,15) 1030.70 0.71 1030.70 10.78 0

14 1000.25 0.66 1000.25 8.59 0

15 1114.78 1.28 1113.73 19.61 0

16 (25, 20) 1059.30 1.26 1055.47 199.30 0.36

17 1059.88 1.25 1059.88 85.76 0

18 1183.19 1.48 1178.52 437.16 0.4

19 (25,25) 1109.18 1.49 1109.18 762.11 0

20 1115.84 1.51 1105.48 795.66 0.94

Average 919.78 0.90 918.78 118.38 0.09

Subroutine 4: A greedy heuristic algorithm
//Initialization:
Randomly assign each patient to a vehicle while satisfying vehicle’s capacity;
BestObj=∞;

//Greedy search:
While better solution found
Loop j in set of patients
Loop i in set of vehicles
Repeat for any patient (maximal of two) in vehicle i
1. swap patient j with this patient in vehicle i
2. Let its objective value be NewObj
3. if the new solution is not feasible then penalize the NewObj with the time window constratints
violated

4. if NewObj<BestObj, then update the best solution as BestX
EndRepeat

EndLoop
EndLoop

EndWhile
Return BestX

The results of these algorithms are provided in Table 2. All associated master and pricing
problems for the set covering problem and all routes for the column generation algorithm
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Table 2 Comparison between the SA and the lower bound from column generation

Instance LB column generation SA Greedy

ObjFun CPU time (s) ObjFun CPU time (s) Gap (%) ObjFun CPU time (s) Gap (%)

1 2225.43 45.76 2284.49 0.7 2.65 2381.82 0.09 7.03

2 2204.68 70.69 2267.76 0.73 2.86 2426.89 0.03 10.08

3 2554.43 38.23 2582.49 0.71 1.10 2710.54 0.04 6.11

4 2568.34 12.71 2620.11 0.73 2.02 2664.86 0.07 3.76

5 2185.01 21.77 2312.26 0.78 5.82 2331.68 0.06 6.71

6 2851.62 15.15 2919.64 0.75 2.39 2986.26 0.05 4.72

7 2628.69 57.93 2701.64 0.79 2.78 2802.65 0.11 6.62

8 2792.14 20.37 2835.5 0.74 1.55 2890.29 0.08 3.52

9 2603.75 47.91 2665.71 0.77 2.38 2738.57 0.08 5.18

10 2701.36 26.78 2773.2 0.77 2.66 2861.3 0.17 5.92

11 3143.8 53.26 3154.99 0.8 0.36 3317.94 0.1 5.54

12 2987.25 26.47 3044.46 0.83 1.92 3109.44 0.16 4.09

13 2576.01 77.75 2640.2 0.8 2.49 2742.82 0.06 6.48

14 3068.42 34.61 3140.16 0.82 2.34 3244.96 0.09 5.75

15 2647.58 118.77 2725.54 0.83 2.94 2828.99 0.1 6.85

16 3186.92 60.23 3235.2 0.85 1.51 3359.06 0.1 5.40

17 2906.36 148.87 2963.38 0.88 1.96 3172.17 0.11 9.15

18 3379.72 86.92 3440 0.86 1.78 3647.1 0.1 7.91

19 2929.12 176.38 3070.7 0.88 4.83 3187.79 0.07 8.83

20 2960.34 139.35 3049.97 0.89 3.03 3119.43 0.07 5.37

21 3119.3 360.95 3201.16 0.95 2.62 3332.83 0.12 6.85

22 3048.19 689.85 3138.13 0.96 2.95 3375.76 0.13 10.75

23 3666.84 437.49 3684.11 0.91 0.47 3956.2 0.18 7.89

24 3374.45 292.76 3436.85 0.95 1.85 3692.37 0.13 9.42

25 3268.15 276.42 3373.73 0.98 3.23 3592.97 0.13 9.94

26 2417.99 28.79 2546.59 0.75 5.32 2511.59 0.05 3.87

27 2627.1 17.2 2671.19 0.73 1.68 2727.56 0.05 3.82

28 2365.88 20.08 2470.36 0.76 4.42 2556.42 0.05 8.05

29 2536.33 13.12 2629.17 0.75 3.66 2682.83 0.08 5.78

30 2740.9 7.67 2752.73 0.74 0.43 2795.88 0.08 2.01

31 2619.2 35.35 2721.4 0.82 3.90 2761.56 0.1 5.44

32 2784.25 27.1 2840.17 0.83 2.01 2869.84 0.09 3.07

33 2709.97 44.15 2771.54 0.83 2.27 2853.3 0.06 5.29

34 2873.35 20.5 2917.83 0.77 1.55 2966.19 0.1 3.23

35 2820.52 25.24 2891.54 0.8 2.52 2955.05 0.07 4.77

36 3054.78 88.25 3098.47 0.84 1.43 3209.24 0.07 5.06

37 2842.25 171.97 2931.74 0.85 3.15 3044.62 0.08 7.12

38 2928.83 52.64 2975.92 0.84 1.61 3117.45 0.08 6.44

39 3207.93 113.1 3267.08 0.87 1.84 3381 0.12 5.40

40 3098.45 68.51 3172.37 0.87 2.39 3224.98 0.09 4.08
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Table 2 continued

Instance LB column generation SA Greedy

ObjFun CPU time (s) ObjFun CPU time (s) Gap (%) ObjFun CPU time (s) Gap (%)

41 3059.52 158.3 3143.05 0.9 2.73 3242.26 0.13 5.97

42 3017.16 244.35 3152.88 0.92 4.50 3289.02 0.14 9.01

43 3000.85 208.37 3109.38 0.94 3.62 3286.24 0.08 9.51

44 3399.81 108.24 3448.66 0.89 1.44 3627.41 0.13 6.69

45 3270.9 121.82 3305.53 0.89 1.06 3478.31 0.17 6.34

46 3551.11 222.79 3643.72 0.93 2.61 3750.56 0.36 5.62

47 3586.77 175.49 3626.74 0.95 1.11 3859.89 0.15 7.61

48 3475.31 113.96 3582.6 0.96 3.09 3832.74 0.1 10.28

49 3566.04 306.76 3640.45 0.98 2.09 3807.77 0.1 6.78

50 3563.45 235.11 3620.6 0.96 1.60 3840.89 0.15 7.79

Average 2933.93 119.32 3003.86 0.84 2.45 3122.95 0.10 6.28

were solved by CPLEX via Concert technology and C#. In Table 2, the size of the instances
are (70, 55) for instances 1–5, (70, 65) for instances 6–10, (70, 75) for instances 11–15, (70,
85) for instances 16–20, (70, 95) for instances 21–25, (80, 55) for instances 26–30, (80,65)
for instances 31–35, (80, 75) for instances 36–40, (80, 85) for instances 41–45 and (80, 95)
for instances 46–50 wherein the first argument is the number of vehicles and the second
argument is the number of patients i.e., (# of Patients, # of Vehicles). Columns 2 and 3 show
the objective function values and CPU times for the column generation algorithm. Columns 4
and 5 show the objective values and CPU times for the proposed hybrid simulated annealing
algorithm. The gap between the SA and the lower bound solutions are provided in Column 6.
Finally, Columns 7, 8, and 9 show the same information for the greedy algorithm introduced
earlier in this section.

As shown inTable 2, the average gap of the solutions to the lower bound is 2.45% indicating
that the SA algorithmwas able to provide a solution very close to the lower bound. In contrast,
the greedy algorithm is on average 6.28% worse than the lower bound. Thus, Table 2 shows
that the proposed SA algorithm provides good quality solutions for large scale EMSVPTP
instances.

In another experiment,we tested our algorithm for larger sized problems, specifically,more
than 200 patients and 150 vehicles. Because none of the algorithms besides our proposed SA
algorithm was able to find useful solutions, we do not show those results.

Finally, we compare the results obtained using the pure and hybrid SA methods. The pure
SA method refers to the SA method using purely pairwise exchange neighborhood function
in Subroutine 1, and the hybrid SA method refers to the one using Subroutine 1 and the
nested vehicle search neighborhood function in Subroutine 3. As mentioned in Sect. 6, the
tests on the hybrid method in Majzoubi et al. [11] suggest that the benefit of including the
nested vehicle search is only significant after the temperature in SA is relatively low. Thus
the hybrid SA method activates the nested vehicle search when the algorithm is in the last
5% of its iterations.

Table 3 shows the results of this hybrid method on the same 50 instances as in Table 2.
Overall, this table suggests that the hybrid method can provide better solutions for 33 out of
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50 instances with an average improvement on the objective value of 0.5%. For instance 23,
the improvement is greater than 10%, showing the value of the nested local search algorithm.

8 Conclusions

In this paper, we consider the EMSVPTP problem during a demand surge. It minimizes the
total time traveled by all vehicles while ensuring all patient requests are served within pre-
specified time window constraints. To better utilize the EMS vehicles’ capacity, each EMS
vehicle can serve up to two patients. We present a mixed-integer programming formulation
for the EMSVPTP problem, similar to the vehicle routing problem with pickup and delivery,
based on the three-index formulation in [15]. We show the problem is NP-hard, and thus
propose a simulated, we propose a simulated annealing heuristic method for its solution
for real-world applications. Our numerical results show that the SA method is efficient in
solving large-scale instances for EMSVPTP,when compared to exact solvers such asCPLEX.
Future research could involve developing a customized exact algorithm for EMSVPTP using
branch-and-price techniques.
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