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Abstract We propose an exact solution approach for the problem (P ) of min-
imizing an unconstrained binary polynomial optimization problem. We call PQCR
(Polynomial Quadratic Convex Reformulation) this three-phase method. The
first phase consists in reformulating (P ) into a quadratic program (QP ). To that
end, we recursively reduce the degree of (P ) to two, by use of the standard sub-
stitution of the product of two variables by a new one. We then obtain a linearly
constrained binary quadratic program. In the second phase, we rewrite the ob-
jective function of (QP ) into an equivalent and parameterized quadratic function
using the identity x2

i = xi and other valid quadratic equalities that we introduce
from the reformulation of phase 1. Then, we focus on finding the best parameters
to get a quadratic convex program which continuous relaxation’s optimal value
is maximized. For this, we build a new semi-definite relaxation (SDP ) of (QP ).
Then, we prove that the standard linearization inequalities, used for the quadra-
tization step, are redundant in presence of the new quadratic equalities. Next,
we deduce our optimal parameters from the dual optimal solution of (SDP ).
The third phase consists in solving (QP ∗), the optimally reformulated problem,
with a standard solver. In particular, at each node of the branch-and-bound, the
solver computes the optimal value of a continuous quadratic convex program.
We present computational results where we compare PQCR with other convex-
ification methods, and with the solver Baron [41]. We evaluate our method on
instances of the image restoration problem [17] and the low auto-correlation
binary sequence problem [7] from minlplib [35]. For this last problem, 33 in-
stances among the 45 were unsolved in minlplib. We solve to optimality 6 of
them, and for the 27 others we improve primal and/or dual bounds.

Key words: Unconstrained binary polynomial programming, Global optimiza-
tion, Semi-definite programming, Quadratic convex reformulation, Experiments

1 Introduction

In this paper, we are interested in solving the unconstrained binary polynomial
optimization problem that can be stated as follows:
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(P )


min f(x) =

m∑
p=1

cp
∏
i∈Mp

xi

s.t.
xi ∈ {0, 1}, i ∈ I

where I = {1, .., n}, f(x) is an n−variable polynomial of degree d and m is the
number of monomials. For a monomial p,Mp is the subset of I containing the
indexes of the variables involved in p. It follows that d = maxp |Mp|.

Unconstrained binary polynomial optimization is a general model that allows
to formulate many important problems in optimization. The special case where
the polynomial objective function of (P ) is a quadratic function (i.e. d = 2) has
been widely studied. In this case, (P ) has many applications, including those
from financial analysis [31], cluster analysis [39], computer aided design [27]
or machine scheduling [40]. Moreover, many graph combinatorial optimization
problems such as determining maximum cliques, maximum cuts, maximum ver-
tex packing or maximum independent sets can be formulated as quadratic opti-
mization problems [5,13,37]. In the cubic case (i.e. d = 3), the important class
of satisfiability problems known as 3-SAT, can be formulated as (P ) [26]. In the
case where d ≥ 3, there also exists many applications including, for example: the
construction of binary sequences with low aperiodic correlation [7] that is one of
the most challenging problems in signal design theory, or the image restoration
problem in computer vision [17].

Problem (P ) isNP-hard [20]. Practical difficulties come from the non-convexity
of f and the integrality of its variables. During the last decade, several algorithms
that can handle (P ) were introduced. In particular, methods were designed to
solve the more general class of mixed-integer nonlinear programs. These meth-
ods are branch-and-bound algorithms based on a convex relaxation of (P ). More
precisely, in a first step a convex relaxation is designed and then a branch-
and-bound is performed based on this relaxation. The most classical relaxation
consists in the complete linearization of (P ), but quadratic convex relaxations
can also be used. For instance, the well known α−branch-and-bound [2] com-
putes convex under-estimators of nonlinear functions by perturbing the diagonal
of the Hessian matrix of the objective function. Several implementations of these
algorithms are available, see for instance Baron [41], Antigone [36], SCIP [1] or
Couenne [6].

In the case where the objective function is a polynomial, but the variables
are continuous, Lasserre proposes in [29] an algorithm based on a hierarchy of
semi-definite relaxations of (P ). The idea is, at each rank of the hierarchy, to
successively tighten semi-definite relaxations of (P ) in order to reach its opti-
mal solution value. It is also proven in [29] that this hierarchy converges in a
finite number of iterations to the optimal solution of the considered problem.
Further, this work has been extended to hierarchies of second order conic pro-
grams [3,21,28], and of sparse doubly non-negative relaxation [25]. Although
these algorithms were not originally tailored for binary programming, they can
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handle (P ) by considering the quadratic constraint x2
i = xi. Methods devoted

to the binary polynomial case were also proposed. In [14,30], the authors use
separable or convex under-estimators to approximate a given polynomial. Other
methods based on linear reformulations can be found in [17,18,42], in which lin-
ear equivalent formulations to (P ) are proposed and then improved. In [15], the
authors focus on a polyhedral description of the linearization of a binary polyno-
mial program. Finally, the work in [4] considers quadratizations with a minimal
number of additional variables.

In this paper, we focus on finding equivalent quadratic convex formulations
of (P ). Quadratic convex reformulation methods [8,9] were introduced for the
specific case where d = 2. The idea of these approaches is to build tight equivalent
reformulations to (P ) that have a convex objective function. This equivalent
problem can be built using the dual solution of a semi-definite relaxation of (P ),
and further solved by a branch-and-bound algorithm based on quadratic convex
relaxation. Here, we consider the more general case where d ≥ 3, and we propose
to compute an equivalent convex formulation to (P ). Hence, we present an exact
solution method for problem (P ) that can be split in three phases. The first
phase consists in building an equivalent formulation to (P ) where both objective
function and constraints are at most quadratic. For this, we need to add some
auxiliary variables. We then obtain problem (QP ) that has a quadratic objective
function and linear inequalities.

Then in the second phase, we focus on the convexification of the obtained
problem. As illustrated in the experiments of Section 4, the original QCR and
MIQCR methods are not able to handle (QP ). Indeed, QCR leads to a reformula-
tion with a weak bound, and in method MIQCR the semi-definite program that
we need to solve is too large. This is why, in this paper we introduce a tailored
convexification phase. The idea is to apply convex quadratic reformulation to
any quadratization of (P ). For this, we need null quadratic functions on the
domain of (QP ) so as to perturb the Hessian matrix of the new quadratic objec-
tive function. One of these null functions comes from the classic binary identity,
x2
i = xi. One contribution of this paper is the introduction of new null quadratic

functions on the domain of (QP ). This set of functions varies according to the
quadratization used in phase 1. Adding these functions to the new objective
function, we get a family of convex equivalent formulations to (QP ) that de-
pend on some parameters. We then want to choose these parameters such that
the continuous relaxation bound of the convexified problem is maximized. We
show that they can be computed thanks to a semi-definite program. Finally,
the last phase consists in solving the convexified problem using general-purpose
optimization software.

Our experiments show that PQCR is able to solve to global optimality 6 un-
solved instances of the low auto-correlation binary sequence problem and im-
proves lower and/or upper bounds of 27 of the 45 instances available at the
minlplib website, in comparison to the other available solvers.

The outline of the paper is the following. In Section 2, we define and present
our quadratizations of (P ). In Section 3, we introduce our family of convex
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reformulations and we prove how we compute the best parameters. Then, in
Section 4, we present our computational results on polynomial instances of degree
4 coming from the literature and we discuss different possible quadratizations of
(P ). Section 5 draws a conclusion.

2 Phase 1: Quadratization of (P )

In this section, we present how we build equivalent quadratic formulations to
(P ). The basic idea is to reduce the degree of f to 2. For this, in each monomial
of degree 3 or greater, we simply recursively replace each product of two variables
by an additional variable.

More formally, we define the set of indices of the additional variables J =
{n + 1, .., N}, where N is the total number of initial and additional variables.
We also define the subsets Ei for the initial or additional variable i as follows:

Definition 1. For all i ∈ I∪J , we define Ei as the set of indices of the variables
whose product is equal to xi:

– If i ∈ I, i.e. xi is an initial variable, then we set Ei = {i}
– If i ∈ J , i.e. xi is an additional variable, then there exist (i1, i2) ∈ (I ∪ J)2

such that xi replaces xi1xi2 and we set Ei = Ei1 ∪ Ei2
ut

Using these sets, we define a valid quadratization as a reformulation with N
variables where any monomial of degree at least 3 is replaced by the product of
two variables.

Definition 2. The sets J = {n + 1, .., N} and {Ei, i ∈ I ∪ J} define a valid
quadratization with N variables if, for any monomial p of degree greater than or
equal to 3 (i.e. |Mp| ≥ 3), there exist (j, k) ∈ (I ∪ J)2 such that Mp = Ej ∪ Ek
and

∏
i∈Mp

xi = xjxk. Then the monomial p is replaced by a quadratic term.

ut

With this definition of a quadratization, we reformulate (P ) as a non-convex
quadratically constrained quadratic program (QCQP ) with N variables.

(QCQP )



min g(x) =
∑
|Mp|≥3
Mp=Ej∪Ek

cpxjxk +
∑
|Mp|≤2

cp
∏
i∈Mp

xi

s.t.
xi = xi1xi2 ∀(i, i1, i2) ∈ J × (I ∪ J)2 : Ei = Ei1 ∪ Ei2 (1)
x ∈ {0, 1}N

As the variables are binary, Constraints (1) are equivalent to the classical set
of Fortet inequalities [18]:
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(Cii1,i2)


xi − xi1 ≤ 0,
xi − xi2 ≤ 0,
−xi + xi1 + xi2 ≤ 1,
−xi ≤ 0,

We now define set FE :

FE = {x ∈ {0, 1}N : Cii1,i2 is satisfied ∀(i, i1, i2) ∈ J × (I ∪ J)2 : Ei = Ei1 ∪ Ei2}.

We denote byM = 4(N−n) the number of constraints of FE . We thus obtain
the following linearly constrained quadratic formulation that is equivalent to (P )
and has N variables and M constraints:

(QP )


min g(x) ≡ xTQx+ ctx

s.t.
x ∈ FE

where Q ∈ SN (the set of N ×N real symmetric matrices), and c ∈ RN .

In the following, we will focus on the solution of problem (QP ) that is an
equivalent formulation to (P ). Let us observe that (QP ), as well as (QCQP ),
are parameterized by the quadratization defined by sets E . Indeed, several valid
quadratizations can be applied to (P ), each of them leading to different sets Ei.

Different valid quadratizations were introduced and compared from the size
point of view in [4]. In our case the comparison criterion is the continuous re-
laxation bound value from which we present our experimental comparison in
Section 4.

Example 1 [Different valid quadratizations]
Let us consider the following problem:

(Ex)
{

min
x∈{0,1}4

2x1 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4

For instance, we can build three different equivalent functions:

– g1(x) = 2x1 + 3x2x3 − 2x2x4︸︷︷︸
x5

x3 − 3x1x4︸︷︷︸
x6

x2x3︸︷︷︸
x7

– g2(x) = 2x1 + 3x2x3 − 2x3x4︸︷︷︸
x5

x2 − 3x1x2︸︷︷︸
x6

x3x4︸︷︷︸
x5

– g3(x) = 2x1 + 3x2x3 − 2x2x4︸︷︷︸
x5

x3 − 3x1x2︸︷︷︸
x6

x3x4︸︷︷︸
x7
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(QEx1)



min g1(x)
s.t.

(x2, x4, x5) ∈ C5
2,4

(x1, x4, x6) ∈ C6
1,4

(x2, x3, x7) ∈ C7
2,3

x ∈ {0, 1}7

(QEx2)


min g2(x)
s.t.

(x3, x4, x5) ∈ C5
3,4

(x1, x2, x6) ∈ C6
1,2

x ∈ {0, 1}6

(QEx3)



min g3(x)
s.t.

(x2, x4, x5) ∈ C5
2,4

(x1, x2, x6) ∈ C6
1,2

(x3, x4, x7) ∈ C7
3,4

x ∈ {0, 1}7

Here we obtain 3 different quadratizations of (Ex) with different sets E. They
have different sizes: (QEx1) and (QEx3) have 7 variables and 12 constraints,
while (QEx2) has 6 variables and 8 constraints.

�

We have reduced the degree of the polynomial program (P ) by building an
equivalent quadratic program to (P ). However, the solution of (QP ) still has
two difficulties, the non-convexity of the objective function g and the integrality
of the variables.

Some state-of-the-art solvers can solve (QP ) to global optimality (e.g. Cplex
12.7 [24]). Unfortunately, these solvers may not be enough efficient for solving
dense instances of (P ). Here, we propose to compute an equivalent quadratic con-
vex formulation to (QP ). There exist several convexification methods devoted to
quadratic programming (see, for example [9,11,16,22,34]). These approaches can
be directly applied to (QP ). For instance, one can use the QCR method, described
in [11], that consists in computing an equivalent convex formulation to (QP ) us-
ing semi-definite programming. The convexification is obtained thanks to a non
uniform perturbation of the diagonal of the Hessian matrix. The semi-definite re-
laxation used can be easily solved due to its reasonable size. However, the bound
obtained by continuous relaxation of the reformulation is very weak. As a con-
sequence, for the considered instances of Section 4, the branch-and-bound used
to solve the reformulation failed as soon as n ≥ 20. Another alternative is to
apply the MIQCR method [9]. In this method, the perturbation is generalized to
the whole Hessian matrix and hence is more refined than the previous one. This
leads to a reformulation with a significantly sharper bound. Unfortunately, the
semi-definite relaxation used in this approach is too large and its computation
failed even with instances of (P ) containing only 10 variables. In the next sec-
tion, we present a new convexification that leads to sharper bounds than QCR
but with a better tractability than MIQCR.

3 Phase 2: A quadratic convex reformulation of (QP )

In this section, we consider the problem of reformulating (QP ) by an equivalent
quadratic 0-1 program with a convex objective function. To do this, we define
a new convex function which value is equal to the value of g(x), but which
Hessian matrix is positive semi-definite. More precisely, we first add to g(x) a
combination of four sets of functions that vanish on the feasible set FE . For each



Solving unconstrained 0-1 polynomial programs 7

function we introduce a scalar parameter. Then we focus on computing the best
parameters that lead to a convex function and that maximize the optimal value
of the continuous relaxation of the obtained problem.

3.1 Valid quadratic equalities for (QP )

For a quadratization characterized by E , we introduce null quadratic functions
over the set FE .

Lemma 1 The following quadratic equalities characterize null functions over
FE :

(SE)


x2

i − xi = 0 i ∈ I ∪ J (2)
xi − xixj = 0 (i, j) ∈ J × (I ∪ J) : Ej ⊂ Ei (3)
xi − xjxk = 0 (i, j, k) ∈ J × (I ∪ J)2 : Ei = Ej ∪ Ek (4)
xixj − xkxl = 0 (i, j, k, l) ∈ (I ∪ J)4 : Ei ∪ Ej = Ek ∪ El (5)

Proof. Constraints (2) trivially hold since xi ∈ {0, 1}. Constraints (4) come
from Definition 1. We then prove the validity of the Constraints (3) and (5).

– Constraints (3): we have xi =
∏
i′∈Ei

xi′ and xj =
∏
j′∈Ej

xj′ , then:

xixj =
∏
i′∈Ei

xi′
∏
j′∈Ej

xj′

=
∏
j′∈Ej

x2
j′

∏
i′∈Ei\Ej

xi′ since Ej ⊂ Ei

=
∏
i′∈Ei

xi′ since x2
j′ = xj′ and Ej ∪ (Ei\Ej) = Ei

= xi

– Constraints (5): by definition we have:

xixj =
∏
i′∈Ei

x′i
∏
j′∈Ej

xj′

=
∏

i′∈Ei∪Ej

xi′
∏

j′∈Ei∩Ej

xj′

=
∏

i′∈(Ei∪Ej)\(Ei∩Ej)

xi′
∏

j′∈Ei∩Ej

x2
j′

=
∏

i′∈Ei∪Ej

xi′ since x2
j′ = xj′ and (Ei ∪ Ej)\(Ei ∩ Ej) ∪ (Ei ∩ Ej) = (Ei ∪ Ej)

=
∏

k′∈Ek∪El

xk′ since Ei ∪ Ej = Ek ∪ El

= xkxl

�
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3.2 An equivalent quadratic convex reformulation to (QP )

We now compute a quadratic convex reformulation of (QP ) and thus of (P ). For
this, we add to the objective function g the null quadratic forms in (2)–(5). For
each of them, we associate a real scalar parameter: αi for Constraints (2), βij
for Constraints (3), δijk for Constraints (4), and λijkl for Constraints (5). We
get the following parameterized function:

gα,β,δ,λ(x) = g(x) +
∑
i∈I∪J

αi(x2
i − xi) +

∑
(i,j)∈J×(I∪J)
Ej⊂Ei

βij(xi − xixj)

+
∑

(i,j,k)∈J×(I∪J)2

Ei=Ej∪Ek

δijk(xi − xjxk) +
∑

(i,j,k,l)∈(I∪J)4

Ei∪Ej=Ek∪El

λijkl(xixj − xkxl)

Obviously gα,β,δ,λ(x) has the same value as g(x) for any x ∈ FE . Moreover, there
exist vector parameters α, β, δ and λ such that gα,β,δ,λ is a convex function.
Take for instance, α equals to the opposite of the smallest eigenvalue of Q, and
β = δ = λ = 0.

By replacing g by the new function, we obtain the following family of quadratic
convex equivalent formulation to (QP ):

(QPα,β,δ,λ)


min gα,β,δ,λ(x) ≡ xTQα,β,δ,λx+ cTα,β,δ,λx

s.t.
x ∈ FE

where Qα,β,δ,λ ∈ SN is the Hessian matrix of gα,β,δ,λ(x), and cα,β,δ,λ ∈ RN is
the vector of linear coefficients of gα,β,δ,λ(x).

In order to use (QPα,β,δ,λ) within a branch-and-bound procedure, we are
interested by parameters (α, β, δ, λ) such that gα,β,δ,λ is a convex function.
Moreover, in order to have a good behavior of the branch-and-bound algorithm,
we want to find parameters that give the tightest continuous relaxation bound.
More formally, we want to solve the following optimization problem:

(CP ) : max
α∈RN ,β∈RT1 ,δ∈RT2 ,λ∈RT3

Qα,β,δ,λ�0

{
min
x∈FE

gα,β,δ,λ(x)
}

where T1, T2 and T3 are the number of Constraints (3), (4), and (5), respectively,
and FE is the set FE where the integrality constraints are relaxed, i.e. x ∈ [0, 1]N .

In the rest of the paper we will focus on solving (CP ). For this, we build
a compact semi-definite relaxation that uses our new valid equalities and prove
that its optimal dual variables provide an optimal solution to (CP ).
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3.3 Computing an optimal solution to (CP )

The following theorem shows that problem (CP ) is equivalent to the dual of a
semi-definite relaxation of (QP ).

Theorem 1. The optimal value of (CP ) is equal to the optimal value of the
following semi-definite program (SDP ):

(SDP )



min < Q,X > +cTx
s.t.
Xii − xi = 0 i ∈ I ∪ J (6)
−Xij + xi = 0 (i, j) ∈ J × (I ∪ J) : Ej ⊂ Ei (7)
−Xjk + xi = 0 (i, j, k) ∈ J × (I ∪ J)2 : Ei = Ej ∪ Ek (8)
Xij −Xkl = 0 (i, j, k, l) ∈ (I ∪ J)4 : Ei ∪ Ej = Ek ∪ El (9)(

1 xT
x X

)
� 0 (10)

x ∈ RN , X ∈ SN (11)

The optimal values (α∗, β∗, δ∗, λ∗) of problem (CP ) are given by the optimal
values of the dual variables associated with constraints (6)–(9) respectively.

Proof. For simplicity, we rewrite FE as follows: FE = {x ∈ {0, 1}N : Ax ≤ b}
where A is a M ×N -matrix, b ∈ RM , and we introduce T = N + T1 + T2 + T3
the number of Constraints (2)–(5) respectively.

We start by observing that x ∈ [0, 1]N is equivalent to x2 ≤ x, thus, (CP ) is
equivalent to (Q1):

(Q1) : max
α∈RN ,β∈RT1 ,δ∈RT2 ,λ∈RT3

Qα,β,δ,λ�0

{
min

x∈RN , x2≤x, Ax≤b
gα,β,δ,λ(x)

}

(Q1) is a convex optimization problem over a convex set. If we consider
the solution x̃i = 0.5 ∀i ∈ I and x̃i = x̃j x̃k ∀(i, j, k) ∈ J × (I ∪ J)2, Ei =
Ej∪Ek, the obtained x̃ is an interior point and the Slater’s conditions are satisfied
for the minimization sub-problem. Then, by Lagrangian duality, we have (Q1)
equivalent to (Q2):

(Q2) : max
α∈RN ,β∈RT1 ,δ∈RT2 ,λ∈RT3 ,ω∈RN+ ,γ∈R

M
+

Qα,β,δ,λ�0

{
min
x∈RN

gα,β,δ,λ(x)+ωT (x2−x)+γT (Ax−b)
}

Due to Constraints (2), it holds that (Q2) is equivalent to (Q3):

(Q3) : max
α∈RN ,β∈RT1 ,δ∈RT2 ,λ∈RT3 ,γ∈RM+

Qα,β,δ,λ�0

{
min
x∈RN

gα,β,δ,λ(x) + γT (Ax− b)
}
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It is well known that a necessary condition for the quadratic function gα,β,δ,λ,γ(x)+
γT (Ax−b) to have a minimum not equal to −∞ is that matrix Qα,β,δ,λ is positive
semi-definite. Therefore (Q3) is equivalent to (Q4):

(Q4) : max
α∈RN ,β∈RT1 ,δ∈RT2 ,λ∈RT3 ,γ∈RM+

{
min
x∈RN

gα,β,δ,λ,γ(x) + γT (Ax− b)
}

We know from [32] that (Q4) is equivalent to problem (D):

(D)



max t
s.t.(

−γT b− t 1
2 (cTα,β,δ,λ + γTA)

1
2 (cα,β,δ,λ +AT γ) Qα,β,δ,λ

)
� 0

t ∈ R, α ∈ RN , β ∈ RT1 , δ ∈ RT2 , λ ∈ RT3 , γ ∈ RM+

By semi-definite duality of program (D), and with α, β, δ, λ the dual variables
associated with Constraints (6)–(9) respectively, we get (SDP ′):

(SDP ′)


min < Q,X > +cTx
s.t.

(6)− (11)
Ax ≤ b

We now prove that there is no duality gap between (D) and (SDP ′), which
holds since:

(i) The feasible domain of (SDP ′) is nonempty, as (QPα,β,δ,λ) contains 0 as a
feasible solution and (D) is bounded

(ii) (D) satisfies Slater’s condition. It is sufficient to take β, δ and λ equal to
0, α large enough so that Qα,β,δ,λ � 0 holds, and t a large negative number
that ensures the diagonal dominance of the first row and the first column

of matrix
(

−γT b− t 1
2 (cTα,β,δ,λ + γTA)

1
2 (cα,β,δ,λ +AT γ) Qα,β,δ,λ

)
.

From these equivalences, we know that we can build an optimal solution of
(CP ) from the optimal dual variables of (SDP ′). However, constraints Ax ≤ b
are redundant in (SDP ′) and we thus prove in Lemma 2 that (SDP ′) and (SDP )
are equivalent. As a consequence, an optimal solution to (CP ) can be deduced
from the optimal dual variables of (SDP ).

Lemma 2 Due to Constraints (6)–(8) and (10), inequalities Ax ≤ b are redun-
dant in (SDP ′).



Solving unconstrained 0-1 polynomial programs 11

Proof. Recall that Ax ≤ b are the inequalities of (Cij,k), ∀(i, j, k) ∈ J × (I ∪
J)2 : Ei = Ej ∪ Ek, i.e xi ≥ 0 (a), xi ≤ xj (b), xi ≤ xk (c), and xi ≥ xj + xk − 1
(d).

The basic idea used here is that, since matrix
(

1 xT
x X

)
is positive semi-

definite, all its symmetric minors are non-negative.

– Constraint (a): xi ≥ 0. We consider the determinant
∣∣∣∣ 1 xi
xi Xii

∣∣∣∣, which implies

Xii − x2
i ≥ 0. By (6) we obtain xi − x2

i ≥ 0 and thus xi ≥ 0.
– Constraint (b): xi ≤ xj . Considering the determinant of the symmetric minor∣∣∣∣Xjj Xji

Xij Xii

∣∣∣∣ implies XiiXjj −X2
ij ≥ 0. By (6) we have xjxi −X2

ij ≥ 0 and by

(7) we obtain xixj − x2
i ≥ 0. Either xi > 0 and then we have xj − xi ≥ 0, or

xi = 0 and the inequality comes from xj ≥ 0.
– Constraint (c): xi ≤ xk. By symmetry, i.e. considering the determinant∣∣∣∣Xkk Xki

Xik Xii

∣∣∣∣ , the inequality holds.

– Constraint (d): xi ≥ xj+xk−1. By definition (10) implies zT
(

1 xT
x X

)
z ≥ 0,

∀z ∈ RN+1. By taking z̄ = (1, 0, .., 0, −1︸︷︷︸
j

, 0, .., 0, −1︸︷︷︸
k

, 0, .., 0, 1︸︷︷︸
i

, 0, .., 0), we

have:

0 ≤ z̄T
(

1 xT
x X

)
z̄ = (xi + 1− xj − xk)− (xj −Xjj −Xkj +Xij)

−(xk −Xkk −Xjk +Xik) + (xi −Xji −Xki +Xii)
= (xi + 1− xj − xk) by (6), (7) and (8).

�

Let us state Corollary 1 that shows that from an optimal dual solution to
(SDP ) we can build an optimal solution to (CP ).

Corollary 1. We have v(CP ) = v(SDP ) where v(.) is the optimal value of
problem (.). Consequently, an optimal solution (α∗, β∗, δ∗, λ∗) of (CP ) corre-
sponds to the optimal values of the dual variables associated with constraints (6)–
(9) of (SDP ) respectively.

Proof. We have:

(i) v(CP ) = v(D)
(ii) since there is no duality gap between (D) and (SDP ′), we have v(D) =

v(SDP ′)
(iii) by Lemma 2, we get v(CP ) = v(D) = v(SDP ′) = v(SDP )
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�

�

To sum up, we obtain (QP ∗), the best equivalent convex formulation to (QP ):

(QP ∗)


min gα∗,β∗,δ∗,λ∗(x)
s.t.
x ∈ FE

From Theorem 1, we deduce the Algorithm 1 to solve (P ).

Algorithm 1 PQCR an exact solution method for (P )
Step 1: Apply a quadratization E to (P ) and thus generate sets FE and SE .
Step 2: Solve (SDP ), deduce optimal values α∗, β∗, δ∗, λ∗, and build (QP ∗).
Step 3: Solve (QP ∗) by a standard quadratic convex programming solver.

4 Numerical results

In this section, we evaluate PQCR on two applications. The first one is the image
restoration (vision) problem [17], which results are presented in Section 4.1. The
instances of this application are quite sparse with an average ratio m

n of about
7. We choose to use these instances in order to compare PQCR with existing
convexifications and in particular with methods QCR and MIQCR that are not
able to handle larger and/or denser instances. Then, in Section 4.2, we present
the results of the second application, the low auto-correlation binary sequence
(LABS) problem [7] which instances are much denser (average ratio m

n of about
212). These instances are available on the minlplib website [35], and are very
hard to solve. For most of them, the optimal solution value is not known. For
these experiments, we have chosen the quadratization described in Algorithm 2
for Step 1 of PQCR. This choice impacts the number of constraints within the
sets FE and SE , and the associated continuous relaxation bound value can thus
vary. We further illustrate this variation on toy instances in Section 4.3.

The quadratization used in our experiments is presented in Algorithm 2.
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Algorithm 2 Quadratization(f)
Require: A polynomial f of degree d > 2
Ensure: A quadratic function f ′ verifying ∀x ∈ {0, 1}n, f ′(x) = f(x)

for each monomial p from 1 to m do
Sort p by lexicographical order
deg ← deg(p)
while deg > 2 do
s← bdeg2 c
for l from 1 to s do
Consider the lth consecutive pair of variables xjxk
Find xi that represents the product xjxk
if xi does not exist then
Create an additional variable xi and Ei ← Ej ∪ Ek

end if
Replace xjxk by xi

end for
deg ← ddeg2 e

end while
end for

Example 1. Applying the quadratization of Algorithm 2 to the monomial x1x2x3x4x5
we obtain the following monomial of degree 3 at the first iteration:

x1x2︸︷︷︸
x6

x3x4︸︷︷︸
x7

x5

we then obtain a quadratic reformulation of the monomial at the second iteration
using 3 additional variables:

x6x7︸︷︷︸
x8

x5

ut

Our experiments were carried out on a server with 2 CPU Intel Xeon each of
them having 12 cores and 2 threads of 2.5 GHz and 4 ∗ 16 GB of RAM using a
Linux operating system. For all algorithms, we used the multi-threading version
of Cplex 12.7 with up to 48 threads.

In our experiments, we use three classes of solution algorithms:

i) The first class includes 3-phase algorithms that consist in a quadratiza-
tion and a convexification followed by the solution of the equivalent convex
problem with the solver Cplex 12.7: these methods are PQCR and Q+QCR.
For both methods, the quadratization is implemented in C, and we used
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the solver csdp to solve the semi-definite programs. For denser instances
(Section 4.2), we used the solver csdp [12] together with the Conic Bundle
algorithm [23] to solve the semi-definite program of PQCR, as described
in [10]. Then, we used the ampl [19] interface of the solver Cplex 12.7 [24]
to solve the obtained quadratic convex problem with binary variables.

ii) The second class includes a 2-phase algorithm, called Q+Cplex, that con-
sists in a quadratization followed by the direct submission to Cplex 12.7.
Here again, the quadratization is implemented in C, and we used the ampl
interface of the solver Cplex 12.7.

iii) The third class includes the direct submission to the general mixed-integer
non-linear solver Baron 17.4.1 [41]. Here, we used the gams interface of
the solver Baron 17.4.1.

Parameters of the solvers

– Cplex : we let the default parameters, except the parameter qptolin that
is set to 0 for methods PQCR and Q+QCR.

– csdp : Parameters axtol, aytol of Csdp are set to 10−3.
– Conic Bundle : the precision is set to 10−3. Parameter p (see [10]) is set to

0.2 ∗ |FE |.

Legends of Tables 1-3

– Name: Name of the considered instance.
– n: number of variables in the polynomial formulation.
– m: number of monomials.
– BKN : is the optimal solution value or the best known solution value of the

instance.
– N : number of variables after quadratization.
– gap: is the initial gap, i.e. the gap at the root node of the branch-and-bound,

gap =
∣∣∣∣BKN − LBiBKN

∣∣∣∣ ∗ 100, where LBi is the initial lower bound.

– Solution: best solution value found within the time limit.
– tSdp: CPU time in seconds for solving semi-definite programs in PQCR and

Q+QCR. The time limit is set to 2400 seconds for the vision problem and 3
hours for the LABS problem. If the solver reaches the time limit, tSdp is
labeled as "-".

– tTotal: total CPU time in seconds of the associated method. The time limit
is set to 1 hour for the vision problem and 5 hours for the LABS problem.
If an instance remains unsolved within the time limit, we put the final gap=∣∣∣∣BKN − LBfBKN

∣∣∣∣ ∗ 100, where LBf is the final lower bound.

– Nodes: number of nodes visited by the branch-and-bound algorithm.
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4.1 The image restoration problem

The vision instances are inspired from the image restoration problem, which
arises in computer vision. The goal is to reconstruct an original sharp base
image from a blurred image. An image is a rectangle containing n = l × h
pixels. This rectangle is modeled as a binary matrix of the same dimension. A
complete description of these instances can be found in [17]. The problem is
modeled by the minimization of a degree 4 polynomial of binary variables where
each variable represents a pixel. The coefficients of the monomials are indicative
of how likely a configuration is to appear on the sharp base image. The size
of the considered instances are l × h = 10 × 10, 10 × 15, and 15 × 15, or in
the polynomial formulation n = 100, 150 and 225, with a number of monomials
of m = 668, 1033, and 1598 respectively. In our experiments, 15 instances of
each size are considered obtaining a total of 45 instances. Observe that the 15
instances of the same size have identical monomials with different coefficients,
because they represent different images with the same number of pixels.

We now focus on the comparison of several convexification methods after
quadratization. Indeed, several ways are possible to solve the quadratic non-
convex program (QP ). For instance, the standard solver Cplex can directly
handle it, or one can apply the QCR [11] or MIQCR [9] methods. We compare
PQCR with these three approaches. We do not report the results for method
Q+MIQCR since it was not able to start the computation due to the size of the
considered instances. We also give the computational results coming from the
direct submission of (P ) to the solver Baron 17.4.1. Our observations for these
instances are summed up in Table 1, where each line corresponds to one instance,
where the ith instance of l × h pixels is labeled v.l.h i.
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Instance PQCR Q+QCR Q+Cplex Baron
Name n m N Gap tSdp tTotal Gap tSdp tTotal Gap tTotal Gap tTotal
v.10.10 1 100 668 352 0,59 66 68 396 7 (250 %) 1113 2 1098 15
v.10.10 2 100 668 352 0,28 64 66 536 8 (343 %) 1549 2 1529 10
v.10.10 3 100 668 352 0,05 65 67 973 8 (573 %) 3375 1 3332 6
v.10.10 4 100 668 352 0,12 63 65 957 8 (561 %) 3377 1 3334 6
v.10.10 5 100 668 352 0,13 65 66 1006 8 (585 %) 3568 1 3523 5
v.10.10 6 100 668 352 0,11 73 74 359 9 (229 %) 984 2 972 11
v.10.10 7 100 668 352 0,02 64 65 305 8 (194 %) 829 2 817 14
v.10.10 8 100 668 352 1,37 64 66 1376 8 (804 %) 4765 1 4705 7
v.10.10 9 100 668 352 3,02 65 67 1749 8 (1026 %) 6187 1 6110 4
v.10.10 10 100 668 352 3,64 66 68 1879 8 (1075 %) 6843 1 6757 4
v.10.10 11 100 668 352 0,36 70 72 489 8 (316 %) 1388 2 1370 35
v.10.10 12 100 668 352 0,20 70 72 361 9 (232 %) 997 2 984 23
v.10.10 13 100 668 352 0,00 60 61 709 8 (392 %) 2654 1 2620 2
v.10.10 14 100 668 352 0,00 60 61 546 8 (297 %) 2027 1 2001 2
v.10.10 15 100 668 352 0,00 118 119 541 8 (285 %) 2048 1 2022 1
v.10.15 1 150 1033 542 0,31 290 294 447 24 (351 %) 1245 5 1234 80
v.10.15 2 150 1033 542 0,00 285 287 367 24 (287 %) 999 5 990 36
v.10.15 3 150 1033 542 0,05 280 283 1027 27 (772 %) 3549 3 3520 6
v.10.15 4 150 1033 542 0,33 276 280 845 27 (640 %) 2840 3 2817 7
v.10.15 5 150 1033 542 0,07 269 271 799 27 (595 %) 2808 3 2785 4
v.10.15 6 150 1033 542 0,55 297 302 462 25 (366 %) 1277 5 1266 47
v.10.15 7 150 1033 542 0,08 288 291 360 26 (283 %) 981 5 972 38
v.10.15 8 150 1033 542 0,79 281 284 1792 26 (1356 %) 6202 3 6152 19
v.10.15 9 150 1033 542 1,80 283 286 1525 26 (1160 %) 5209 3 5167 10
v.10.15 10 150 1033 542 1,38 275 279 1510 25 (1124 %) 5500 3 5456 7
v.10.15 11 150 1033 542 0,10 283 286 391 25 (305 %) 1102 5 1092 41
v.10.15 12 150 1033 542 0,60 275 279 453 25 (355 %) 1269 5 1258 125
v.10.15 13 150 1033 542 0,00 254 256 634 27 (469 %) 2254 3 2236 4
v.10.15 14 150 1033 542 0,04 269 273 731 27 (547 %) 2590 3 2569 2
v.10.15 15 150 1033 542 0,00 258 259 576 28 (423 %) 2183 2 2165 2
v.15.15 1 225 1598 827 0,12 1234 1244 365 70 (320 %) 998 9 993 (95 %)
v.15.15 2 225 1598 827 0,43 1251 1265 482 83 (421 %) 1350 9 1343 (138 %)
v.15.15 3 225 1598 827 0,10 1167 1175 678 65 (582 %) 2326 5 2313 (83 %)
v.15.15 4 225 1598 827 0,04 1251 1256 877 65 (753 %) 2996 5 2980 (127 %)
v.15.15 5 225 1598 827 0,03 1167 1174 641 67 (546 %) 2252 5 2240 (76 %)
v.15.15 6 225 1598 827 0,28 1238 1249 403 64 (353 %) 1104 10 1098 (107 %)
v.15.15 7 225 1598 827 0,36 1237 1246 525 67 (463 %) 1455 10 1447 (144 %)
v.15.15 8 225 1598 827 0,29 1197 1205 1148 73 (979 %) 4104 5 4082 (137 %)
v.15.15 9 225 1598 827 0,27 1170 1176 1542 66 (1315 %) 5570 5 5541 (171 %)
v.15.15 10 225 1598 827 0,31 1173 1179 1194 67 (1020 %) 4380 5 4357 1154
v.15.15 11 225 1598 827 0,27 1224 1230 529 69 (462 %) 1528 8 1520 (144 %)
v.15.15 12 225 1598 827 0,25 1225 1235 461 68 (414 %) 1273 12 1266 (133 %)
v.15.15 13 225 1598 827 0,00 1124 1128 651 63 (551 %) 2398 4 2385 1239
v.15.15 14 225 1598 827 0,02 1171 1177 651 63 (553 %) 2359 5 2346 (79 %)
v.15.15 15 225 1598 827 0,00 1100 1103 609 65 (513 %) 2320 4 2308 263

Table 1: Comparison of the maximum time on 4 solution methods for the vision
instances - time limit one hour

We start by comparing the convexification phase of our new algorithm with
the original QCR and MIQCR methods. We observe that none of these convexifica-
tions are able to handle any considered instances: QCR because of the weakness
of its initial gap, and MIQCR because of the size of the semidefinite problem con-
sidered for computing the best reformulation. These experiments confirm the
interest of designing PQCR, an algorithm devoted to polynomial optimisation.
Then, we can see that Q+Cplex dominates PQCR. However, one have to note that
these instances are very sparse (average ratio m

n of about 7). It is well known
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that the standard linearization performs very well on sparse instances. Clearly,
for these instances, the time spent on solving a large semidefinite program, even
once, is not profitable in comparison to the efficiency of LP heuristic or cut
methods implemented in cplex 12.7. Indeed, Q+Cplex solves all the considered
instances at the root node of its branch-and-bound. Moreover, it is interesting
to remark that 99% of the CPU time of PQCR is spent for solving (SDP ), while
the CPU time for solving (QP ∗) is always smaller than 14 seconds. Finally, we
compare PQCR with the direct submission to the solver Baron. We observe that
Baron is faster than PQCR on the medium size instances (n = 100 or 150), but
is not able to solve all the larger instances within the time limit. Indeed, for
n = 225, it solves only 3 instances out of 15. On the contrary, PQCR seems quite
stable to the increase of the size of the instances. Indeed, the initial gap remains
stable (0.42% on average) while the total CPU time increases reasonably.

4.2 The Low Auto-correlation Binary Sequence problem

We consider the problem of binary sequences with low off-peak auto-correlations.
More formally, let S be a sequence S = (s1, . . . , sn) with s ∈ {−1, 1}n, and for
a given k = 0, . . . , n− 1, we define the auto-correlations Ck(S) of S:

Ck(S) =
n−k∑
i=1

sisi+k

The problem is to find a sequence S of length n that minimizes E(S), a degree
4 polynomial:

E(S) =
n−1∑
k=1

C2
k(S)

This problem has numerous practical applications in communication en-
gineering, or theoretical physics [7]. For our experiments, we consider trun-
cated instances, i.e. sequences of length n where we compute low off-peak auto-
correlation up to a certain distance n0 ≤ n, i.e. we consider the following function
to minimize:

En0(S) =
n0−1∑
k=1

C2
k(S)

In order to apply PQCR, which is initially tailored for {0, 1} polynomial programs,
we convert the variables from {−1, 1} to {0, 1} using the standard transformation
x = s+1

2 .
This problem admits a lot of symmetries. In particular the correlations Ck are

identical for a sequence S and its complement. We exploited this symmetry by
fixing to 0 the variable that appears the most. Each instance is labeled b.n.n0.
These instances were introduced by [33] and can be found on the minlplib [35]
or the polip [38] websites. We do not report the results for methods Q+QCR
and Q+MIQCR since they have failed to solve all the considered instances. Two
instances that are already quadratic (b.20.03 and b.25.03) are solved by the
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method Q+Cplex in 7 and 75 seconds respectively. However, this method was not
able to solve the other instances within the time limit.



Solving unconstrained 0-1 polynomial programs 19

Instance PQCR Baron 17.4.1
Name n m N Gap tSdp tTotal Nodes Gap tTotal Nodes
b.20.03 20 38 20 0 1 2 0 100 1 1
b.20.05 20 207 65 23 22 23 5886 1838 2 1
b.20.10 20 833 124 8 837 846 24183 2918 125 7
b.20.15 20 1494 164 5 1228 1242 9130 3202 728 9
b.25.03 25 48 25 0 1 2 0 100 0 1
b.25.06 25 407 105 17 461 469 163903 2307 65 27
b.25.13 25 1782 206 4 1552 1603 76828 3109 3750 75
b.25.19 25 3040 265 4 - 13433 224550 3356 14399 129
b.25.25 25 3677 289 5 - 13395 167423 3405 (12 %) 100
b.30.04 30 223 82 23 58 78 134635 1347 7 7
b.30.08 30 926 174 10 1940 2040 752765 2696 2778 237
b.30.15 30 2944 296 5 - 13525 438278 3221 (21 %) 103
b.30.23 30 5376 390 11 5953 6865 9337391 3450 (135 %) 8
b.30.30 30 6412 422 4 8500 15352 452460 3470 (161 %) 5
b.35.04 35 263 97 19 135 167 156085 1350 32 13
b.35.09 35 1381 234 10 2245 4630 8163651 2826 (29 %) 354
b.35.18 35 5002 419 644 - (12 %) 4899872 3356 (133 %) 10
b.35.26 35 8347 530 30 - (5 %) 5006407 3508 (229 %) 3
b.35.35 35 10252 579 12 - (11 %) 134426 3499 (214 %) 3
b.40.05 40 447 145 25 430 1630 23459121 1856 3674 1021
b.40.10 40 2053 304 9 - (4 %) 25480163 2953 (54 %) 147
b.40.20 40 7243 544 9 - (4 %) 9783350 3405 (203 %) 3
b.40.30 40 12690 702 360 - (25 %) 281134 3561 (274 %) 1
b.40.40 40 15384 762 62 - (44 %) 57534 3536 (464 %) 1
b.45.05 45 507 165 24 1384 (4 %) 84159279 1854 16609 4727
b.45.11 45 2813 382 9 - (2 %) 25114985 3018 (132 %) 33
b.45.23 45 10776 706 21 - (16 %) 1225234 3470 (242 %) 2
b.45.34 45 18348 898 137 - (105 %) 38513 3604 (375 %) 1
b.45.45 45 21993 969 187 - (153 %) 25964 3559 (624 %) 1
b.50.06 50 882 230 19 1230 (9 %) 49490829 2321 (35 %) 1225
b.50.13 50 4457 506 8 - (5 %) 12039566 3131 (192 %) 7
b.50.25 50 14412 866 676 - (247 %) 684010 3511 (280 %) 1
b.50.38 50 25446 1118 242 - (163 %) 309289 3646 (505 %) 1
b.50.50 50 30271 1202 360 - (305 %) 49507 3541 (729 %) 1
b.55.06 55 977 255 21 - (11 %) 23603952 2323 (54 %) 6
b.55.14 55 5790 607 11 - (7 %) 7829649 3186 (373 %) 6
b.55.28 55 19897 1069 174 - (106 %) 580827 3553 (646 %) 2
b.55.41 55 33318 1347 330 - (244 %) 117912 3654 (639 %) 1
b.55.55 55 40402 1459 547 - (493 %) 117027 3575 (705 %) 1
b.60.08 60 2036 384 12 - (9 %) 24800852 2712 (175 %) 1
b.60.15 60 7294 716 16 - (14 %) 4044387 3236 (404 %) 1
b.60.30 60 25230 1264 256 - (165 %) 295197 3578 (471 %) 1
b.60.45 60 43689 1614 547 - (439 %) 26955 704 (671 %) 1
b.60.60 60 52575 1742 784 - (704 %) 23716 3604 (762 %) 1

Table 2: Results of PQCR and Baron for the 45 instances of the LABS problem.
Time limit 5 hours. - means that the time limit of 3h on the SDP phase is
reached.
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We present in Table 2 a detailed comparison of PQCR with the direct sub-
mission to baron 17.1.4. For these experiences the total time limit was set to
5 hours, and we limit the CPU time for solving (SDP ) to 3 hours. Indeed, any
feasible solution to the dual of (SDP ) can be used to get a convex objective
function in the equivalent formulation. Thus, if the CPU time in column tSdp is
smaller than three hours it means that (SDP ) was solved to optimality. In the
other case, we get a feasible dual solution and we can suppose that the initial gap
of PQCR could be improved. For these instances PQCR is faster than baron since
it solves 17 instances out of 45 within the time limit while baron solves only 13
instances. Here, baron 17.1.4 solves 2 instances that were stated as unsolved
on minlplib. As expected, PQCR has an initial gap much smaller that baron
(reduced by a factor 22 on average). We also observe that the number of nodes
visited by PQCR during the branch-and-bound is significantly larger than the the
number of nodes of baron (increased by a factor of about 40000 on average).

We present in Table 3 the values of the best solutions and of the final lower
bounds obtained by PQCR within 5 hours of CPU time, and those available on
the minlplib website. More precisely, we report in the column minlplib the
best solution/final lower bound value obtained among the results of the solvers
Antigone, Baron, Couenne, Lindo, and Scip. PQCR solves to optimality 6 un-
solved instances (labeled as ∗∗). It also improves the best known solution values
of 9 instances (labeled as #), and improves the final lower bound of all the
unsolved instances (labeled as ∗). In this table, each line corresponds to one
instance, and we only present results for instances that were stated as unsolved
on minlplib. To illustrate these results, we plot in Figure 1, for each instance
reported in Table 3, the final gap of PQCR and minlplib. Clearly, the final gap
of PQCR is much smaller than the final gap of minlplib (reduced by a factor 3
on average).

A last remark concerns the CPU time necessary to solve (SDP ). Indeed, this
time represents on average 75% of the total CPU time. A natural improvement
is to identify the set of "important equalities" in a preprocessing step in order to
improve the behavior of the solution of (SDP ). Obviously, this step should be
dependent on the quadratization.

4.3 A short discussion on the impact of the chosen quadratization

In this section, we shortly explore the impact of the chosen quadratization on the
tightness of the associated continuous relaxation bound. In Table 4, we report the
continuous relaxation bound values obtained by convexification after applying
the quadratization of Algorithm 2, and three quadratizations from [17], namely
Pairwise Cover 1, 2 and 3 (PC1, PC2 and PC3). In Pairwise Cover 1, for each
monomial of degree d ≥ 3, the first two variables are linearized to obtain a
monomial of degree d − 1. The process is recursively reproduced until d = 2.
Pairwise Covers 2 and 3 try to minimize the number of additional variables.
In PC2, the authors compute the sub-monomials of any degree that appear
the most among all the intersection of pairs of monomials. Then they linearize
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Fig. 1: Comparison between the final gap of PQCR and the final gap computed
with the best known solution and the best bound from minlplib for the unsolved
auto-correlation instances
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these sub-monomials using the set FE and they repeat the process until the
objective function is quadratic. PC3 linearizes in priority the pair of variables
that occurs the most frequently in all the monomials. For instance, if we consider
the quadratization of the following monomial of degree 4, x1x2x3x4, we will
compute the most frequent pair of variables among the six possible products.
If x1x2 is the most frequent, then the monomial will be quadratized using two
variables, one for the reformulation of x1x2 and the other for x3x4.

We observe that the chosen quadratization impacts N , the number of vari-
ables of (QP ). It also impacts the quality of the associated semidefinite bound,
LBi. Indeed, the more variables are added, the more the size of sets FE and SE
increases. Clearly, some equalities of SE may be stronger than others. Interesting
future research directions would be to identify, for a given quadratization, a set
of "important" equalities in SE , and to determine which quadratization used in
PQCR leads to faster solution time and/or sharper initial lower bound.

5 Conclusion

We consider the general problem (P ) of minimizing a polynomial function where
the variables are binary. In this paper, we present PQCR a solution approach for
(P ). PQCR can be split in 3 phases. We called the first phase quadratization, where
we rewrite (P ) as an equivalent quadratic program (QP ). For this we have to
add new variables and linear constraints. We get a linearly constrained quadratic
program that still has a non-convex objective function and binary variables.
Moreover, even for small instances of (P ), the existing convexification methods
failed to solve the associate (QP ). This is why, we present a family of tailored
quadratic convex reformulations of (QP ) that exploits its specific structure. For
this, we introduce new valid quadratic equalities that vanish on the feasible
domain of (QP ). We use these equalities to build a family of equivalent quadratic
convex formulations to (QP ). Then, we focus on finding, within this family, the
equivalent convex formulation that maximizes the continuous relaxation bound
value. We show that we can compute this "best" convex reformulation using a
new semidefinite relaxation of (QP ). Finally, we solve our optimal reformulation
with a standard solver.

We present computational results on two applications and compare our al-
gorithm with other convexification methods and the general solver Baron. In
particular, we show that for the low auto-correlation binary sequence problem,
PQCR is able to improve the best known solution of 10 instances out of 45. A
future research direction would be to characterize which quadratization best fit
with our convexification phase from the continuous relaxation value point of
view.
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Instance PQCR (5h) minlplib [35]
Name Solution LBf Solution LBf
b.25.19∗∗ -14644 -14644 -14644 -16108
b.25.25∗∗ -10664 -10664 -10664 -12494
b.30.15∗∗ -15744 -15744 -15744 -19780
b.30.23∗∗ -30460 -30460 -30420 -72030
b.30.30∗∗ -22888 -22888 -22888 -54014
b.35.09∗∗ -5108 -5108 -5108 -6312
b.35.18∗ -31144 -34964 -31160 -74586
b.35.26#∗ -55288 -57789 -55184 -191466
b.35.35∗ -41052 -45787 -41068 -290424
b.40.10#∗ -8248 -8551 -8240 -14618
b.40.20#∗ -50576 -52465 -50516 -162365
b.40.30#∗ -94872 -118324 -94768 -398617
b.40.40∗ -67528 -98031 -67964 -302028
b.45.05∗ -1068 -1112 -1068 -1145
b.45.11#∗ -12748 -13035 -12740 -30771
b.45.23#∗ -85423 -98984 -85248 -320397
b.45.34∗ -151352 -311627 -152368 -752427
b.45.45∗ -111292 -285811 -112764 -685911
b.50.06∗ -2160 -2363 -2160 -2921
b.50.13#∗ -23791 -24975 -23772 -74768
b.50.25∗ -124572 -433247 -124748 -562446
b.50.38∗ -232344 -611906 -232496 -1318325
b.50.50∗ -162640 -681105 -168216 -1173058
b.55.06∗ -2400 -2659 -2400 -3439
b.55.14#∗ -33272 -35698 -33168 -116748
b.55.28∗ -189896 -392929 -190472 -989145
b.55.41∗ -335388 -1160180 -337388 -2494477
b.55.55∗ -233648 -1434663 -241912 -1947633
b.60.08∗ -6792 -7388 -6792 -13915
b.60.15#∗ -45232 -51467 -44896 -169767
b.60.30∗ -259271 -692721 -261048 -1491016
b.60.45∗ -475504 -2579935 -478528 -3687344
b.60.60∗ -343400 -2816441 -350312 -3021077

Table 3: Comparison of the best known solution and best lower bound values
of PQCR and of the minlplib for the unsolved LABS instances. ∗∗: solved for
the first time, #: best known solution improved, and ∗: best known lower bound
improved
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PC1 PC2 PC3 Quad
Opt N LBi N LBi N LBi N LBi

b.20.05 -416 64 -435 56 -439 40 -436 65 -435
b.20.10 -2936 123 -3052 135 -3115 93 -3068 124 -3051
b.40.10 -8248 303 -8590 315 -8659 262 -8745 304 -8589

Table 4: Comparison of bounds and number of variables of PQCR after different
quadratizations
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