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Abstract

A highly influential ingredient of many techniques designed to exploit
sparsity in numerical optimization is the so-called chordal extension
of a graph representation of the optimization problem. The definitive
relation between chordal extension and the performance of the opti-
mization algorithm that uses the extension is not a mathematically
understood task.

For this reason, we follow the current research trend of looking
at Combinatorial Optimization tasks by using a Machine Learning
lens, and we devise a framework for learning elimination rules yielding
high-quality chordal extensions. As a first building block of the learning
framework, we propose an on-policy imitation learning scheme that
mimics the elimination ordering provided by the (classical) minimum
degree rule.

The results show that our on-policy imitation learning approach
is effective in learning the minimum degree policy and, consequently,
produces graphs with desirable fill-in characteristics.

1 Introduction

A simple undirected graph G = (V, E) is chordal if, for every cycle ¢ of length
at least four, there exists an edge e € E that connects two non-consecutive
vertices of c. A chordal extension of a graph G is a chordal graph H such
that G is a sub-graph of H, i.e., one can obtain H by adding edges to G.
A practical way of constructing chordal extensions is via graph elimination
[1], which consists in sequentially eliminating the nodes of the graph. At
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each step, a node v is selected, new edges are inserted so as to make the
neighbors of v into a clique, then v is removed (i.e., eliminated). This process
is repeated until all nodes have been eliminated, and one obtains a chordal
extension by adding to the original graph all edges that were inserted in
the process. The order in which nodes were eliminated is thereby called an
elimination ordering.

This work focuses on the role of chordal extensions and graph elimination
within optimization frameworks. Indeed, there is a direct connection between
chordal extensions, which are typically computed via graph elimination, and a
number of classical sparsity-exploiting techniques [2,[I]. In particular, we seek
to devise a framework for learning elimination rules that yield high-quality
chordal extensions, as we illustrate below.

Our first motivating example is the computation of a fill-reducing ordering
for sparse Cholesky factorization, a process that reduces to computing an
elimination ordering [3| [I]. Crucially, Cholesky factorization underlies most
implementations of interior-point algorithms for linear programming [2}, 4],
and the choice of ordering can have a major impact on the method’s perfor-
mance [5]. Similarly, chordal graphs form the basis of chordal decomposition
techniques to exploit sparsity in semi-definite programming (SDP) problems,
see, e.g., [0 [7]. Specifically, a single, dense, semi-definite constraint, can
be decomposed into several smaller, yet coupled, semi-definite constraints.
This reformulation also reduces to computing a chordal extension, and can
dramatically improve the performance of both interior-point and first-order
methods on large problems [8, [7]. More generally, a similar approach can be
leveraged in linear conic optimization and convex optimization, see, e.g., [1].

Historically, efforts have focused on computing minimum chordal exten-
sions, i.e., chordal extensions with a minimum number of additional edges
[5, @], which has been proven to be NP-complete [10]. This fostered the
development of fast and efficient heuristics such as minimum degree [11]
and nested dissection [12] orderings. State-of-the-art implementations of
these methods are routinely used in most optimization and sparse linear
algebra software, where they tackle problems with up to millions of vari-
ables. Nevertheless, which chordal extension is computed can significantly
impact the subsequent performance of the optimization algorithm. Therefore,
it is natural to seek a “best” chordal extension, i.e., one that maximizes
performance.

Recently, the use of Machine Learning (ML) in Combinatorial Opti-
mization (CO) became a popular research area with quite a number of
contributions investigating many angles of such a connection. On the one
hand, some research has been devoted to solve CO problems by ML, i.e.,



to devise new heuristic algorithms that perform the end-to-end learning of
the solution of a CO problem. On the other hand, ML has been used to
tackle some tasks within CO algorithms and software for which modern
statistical learning has chances to improve the current performances, either
because the known way of performing those tasks is computationally heavy
or because they are poorly understood from the mathematical standpoint.
The interested reader is referred to [I3] for a methodological survey on this
new research area.

Our work does not follow the first direction outlined in the previous
paragraph. Indeed, the goal of this paper is not to compete with existing
state-of-the-art heuristics for graph elimination. First, these heuristics
leverage decades of development and clever engineering, and have been
optimized for fast runtime and good solution quality. Second, and more
importantly, the aim of our work is to eventually gain deeper understanding
of the relation between the characteristics of a chordal extension and the
behavior of optimization algorithms and software, a topic of interest in
its own right and whose mathematical knowledge is currently insufficient.
In order to achieve this ultimate goal, our present contributions are 1) to
propose a mathematical framework for the problem of learning elimination
orderings, and 2) to provide methodological and practical insights on the
learning process itself. As a byproduct, a better understanding of what
“good” chordal extensions look like (for a specific task) can lead to an easier
and more direct customization of elimination orderings to sets of similar
graphs.

The rest of the paper is organized as follows. In Section [2, we introduce
some relevant definitions and concepts. In Section [3] we present our method-
ology for learning chordal extensions. In Section |4, we report on numerical
experiments. Section [f gives further discussion and Section [6] concludes the

paper.

2 Basic notations and concepts

In this section, we review some notations and concepts used in the remainder
of the paper. Section [2.1]introduces basic notations and definitions of graphs
and Section [2.2] introduces a commonly used model for sequential decision
problems. In Sections and we briefly go through some Machine
Learning concepts, in order to help the reader be familiar with relevant ML
methods and properly locate the methodology we propose in Section

In all that follows, for an arbitrary set S, we use the notation P(S) to



denote the set of all probability distributions over S.

2.1 Graph-theoretic notations

In this paper, all considered graphs are simple, undirected graphs. A graph is
denoted by G = (V, E), where V (resp. FE) denotes the set of its nodes (resp.
its edges). For an edge e = (v, w), we say that e is incident to v and w, that
v,w are the extremities of e, and that v, w are adjacent. The neighborhood
of v, denoted by Ng(v), is defined as the set of nodes that are adjacent to v.

The degree of node v in G is denoted by dg(v). We say that node v is
of minimum degree if 6g(v) < dg(w) holds for all nodes w € V. Note that
several nodes of minimum degree may exist.

In what follows, we will drop the subscript G whenever context is suffi-
ciently clear, and write for example 0(v) rather than dg(v).

2.2 Markov Decision Processes

Markov Decision Processes (MDPs) [14] are wildly used to formulate sequen-
tial decision problems. An MDP is characterized by a set of possible states S,
a set of possible actions A, the dynamics of the system, and a cost function.

Formally, an MDP is defined by a tuple (S, A, P, ¢), where P encodes the
system’s dynamics, and ¢ encodes the cost function. For any state-action
pair (s,a) € S x A, P(s,a) is a probability distribution over the state space
S. That is, if one takes action a in state s, the next observed state s’ will be
sampled from the distribution P(s,a) € P(S). Finally, the cost of executing
action a in state s is denoted by c¢(s, a).

Given an MDP (S, A, P,c), a policy is a decision rule for selecting an
action a, given a current state s. Specifically, a policy 7 is a function

m:S+— P(A) (1)
s — 7(s), (2)

and the next action a is sampled from 7(s) € PB(A). If a policy 7 maps
each state to a single action, i.e., if 7(s) is a degenerate distribution for
every s € §, then 7 is called a deterministic policy; otherwise it is called
a stochastic policy. For the remainder of this paper, we will only consider
stochastic policies, and we define the expected immediate cost for policy m
in state s € S as

CW(S) = Ea~7r(s) [C(Sv a)] . (3)



A trajectory is a sequence of state-action pairs ((so, ao), (s1,a1), ...) where
St+1 1s sampled from P(sy, a;). In this paper, all trajectories will always be
finite, although they may be of arbitrary length. We say that a trajectory is
sampled from a policy 7 if each action a; is sampled from 7(s;). The total
cost along a trajectory is then given by

Z c(se, at), (4)

t>0

which is always finite since we only consider finite trajectories.
Finally, for a distribution of initial states Dy € B(S), we define the
expected total cost of a policy 7 as

Clot = Egpupy | Ex | Y _cls,a)] |, (5)
t>0

where E, denotes that trajectories are sampled from 7. Furthermore, Dq
and 7 induce a stationary distribution over states, which we denote by D;..
Thus, we define the expected average cost of policy 7 as

Cgvg = ESND7T [EaNﬂ'(S) (0(37 a))] (6)
= Esp, [Cr(s)] - (7)

In this work, we assume that the above two expectations are always finite;
we make this mild technical assumption to ensure that the learning problems
defined in Section are well-defined. For ease of reading, we also drop the
explicit dependency of C° and Cz" on Dy, since the latter will always be
evident from the context.

2.3 Standard statistical learning

In statistical learning, the goal is to detect patterns from a set of observed
data and make predictions about future data. We can formalize the standard
statistical learning problem as follows. Given a variable space Z and a set
of examples Dz = {z1,29,...,2n} from the unknown distribution P(Z),
the task is to find a function f over a family of functions F, such that
f “performs well” on P(Z). It is assumed that all the observed examples
are drawn independent and identically distributed (i.i.d.) from the same
distribution P(Z2).



If a loss function £ : F x Z — R is specified to measure the performance
of f, then the goal can be described as finding f € F that minimizes the
expected loss with respect to P(Z2), i.e.,

A~

J = argmin EZNP(Z) [ﬁ(fv Z)] (8)
feF

The learned function f is then used to predict future data.

However, the expected loss cannot be computed exactly due to the fact
that P(Z) is unknown. In practice, if a subset of examples Dz sampled
from P(Z) is available, a number of learning methods turn to minimize the
empirical loss on Dz. Then, f is obtained by solving

f= argmin%ZL’(f, Zi). 9)
i=1

feF

The differences in forms and contents of Z, F, L result in different
learning tasks. Here, we only introduce supervised learning that is the
relevant task for the current state of our work.

Supervised learning. In supervised learning, the variable space Z consists
of X x ), where X is the space of input variables and ) is the space of
output variables. The family of functions F is a set of mappings f: X — ).
For any sample (z,y) € X x ), the loss function £ measures the discrepancy
between f(z) and y. Ideally, the output ) can be in any form or intent.
However, most tasks assume that ) is categorical or nominal. The former
characterizes the task as classification, whereas the latter induces regression.

2.4 Imitation learning for sequential decision problems

Imitation learning (IL) [15] 16, [I7, 18] is an extension of supervised learning
from problems satisfying i.i.d. assumption to sequential decision problems,
see, e.g., [19, 20} 21].

In IL, the target policy learns its decision rule from an expert policy.
More precisely, given the class of candidate policies II, we seek to find a
target policy m € II that matches the expert policy 7*. The target and
expert policy are often referred as the learner and the expert. The cost is
defined by a loss function £(7,7*), a measure of discrepancy between 7 and
m*. If a behavior policy 7' is set to generate trajectories of states, the goal
is to find a policy 7 that minimizes the expected loss with respect to the



distribution of states induced by 7/, namely

= arger%in Esup_, [£ (7(s),7*(s))]. (10)

In the literature, depending on the choice of behavior policy, IL algorithms
can be divided into two classes: off-policy and on-policy methods. The off-
policy methods are the ones with behavior policy 7’ independent of the
learner w. For instance, the supervised approach for imitation learning falls
into this class. On the other hand, if the behavior policy depends on the
learner, the algorithm becomes an on-policy method. Data Aggregation
(DAGGER)[I7] and its variants are examples of on-policy methods.

Supervised imitation learning. The supervised approach for IL fixes
the behavior policy as the expert, i.e., 7’ = 7*. Then the learner is trained
under the distribution induced by the expert, given by

T = aagglqinIESNpﬁ* (L (m(s), 7" (s))]. (11)

Data Aggregation. DAGGER is an iterative algorithm that improves the
learner by executing a mixed behavior policy combined with the learner and
the expert. At each iteration, the collected data will be aggregated into an
accumulated dataset and the learner will be trained by all the data collected
from previous iterations.

3 Methodology

In this section, we present our methodology for learning chordal extensions.
In this work, we focus on how to learn elimination rules for graph elimination
via imitation learning. More precisely, we propose an on-policy imitation
learning scheme that mimics the elimination ordering provided by the ordering
heuristic we choose.

3.1 MDP formulation

We begin by formulating graph elimination as a Markov decision process.
First, the state space S is the set of simple undirected graphs. Then, for a
given graph G = (V, E)), the corresponding set of possible actions is identified
by the nodes of the graph. Transitions are deterministic: if an action a = v
is performed in state G, i.e., if node v is eliminated from graph G, then the



new state is uniquely defined as the graph obtained from the elimination
of node v. Note that the number of nodes decreases by one at each step.
Hence, even though the initial graph may be of arbitrary size, trajectories
are always finite.

Thus, a policy m maps a graph to a probability distribution over its
set of nodes V. Therefore, if V = {1,...,n}, then 7(G) is a n-dimensional
non-negative vector, whose i-th coordinate denotes the probability that node
¢ be eliminated.

Finally, one may select a cost function according to the problem at hand,
for example, the number of additional edges, i.e., fill-in. In that case, finding
a policy that minimizes the expected total cost reduces to finding a policy
that yields minimum chordal extensions. Rather than trying to minimize
fill-in, which is an NP-hard problem for which efficient heuristics already
exists, we adopt a more generic imitation learning scheme as discussed below.

3.2 On-policy imitation learning

Although the goal of imitation learning is to find a learner that best matches
the expert, any parameterized stochastic policy will inevitably have chances
to make occasional mistakes by choosing an action different from the expert.
In the supervised imitation learning approach, where the learner is only
trained under the distribution of states induced by the expert, the learner
may not be able to correct its behavior from deviations induced by its bad
choice of action.

Moreover, any possible state is observable in our problem setting and
the expert is always accessible for querying any state. Therefore, we choose
on-policy approach in order to be more robust to alleviate the deviation
problem. Specifically, we set the learner as the behavior policy, i.e., 7’ = 7.
As a result, the goal is to find a policy 7 such that

T = zau";:;elr?[irl]ESNuT (L (m(s), 7(s))] (12)

Since, in general, the expected loss cannot be computed analytically,
we estimate it by sampling trajectories of states from finite dataset using

w. Given a dataset G of M graphs, we train the learner with our practical
algorithm, namely one-step on-policy imitation learning, as described in



Algorithm

Algorithm 1: One-step on-policy imitation learning

Input: Instance Dataset G = {g;},
Initialize my to any policy in II;
for i =1to N do
for each g € G do
Initialize s;
for j=1to T do
0« 0 —aVoLl (mp(s), 7 (s));
a < mo(s);
Take action a, observe next state s;
end

end
end
return my

The training proceeds as follows. At every epoch i (from 1 to N), each
instance G = (V, E) € G is used to generate one complete trajectory (with
length T' = |V), and each state (i.e., graph) in this trajectory represents a
training data point. The one-step updating is as follows. At every transition,
i.e., at every elimination step, the leaner 7y is updated by taking a gradient
step with respect to the loss £ (m(s), 7*(s)), where s is the current state.
An action a is then sampled from the updated learner 7y, which yields the
next state s’. Note that, in this setting, the loss is computed by comparing
the two distributions my(s) and 7*(s) directly. We do so because 1) we
know analytically both the learner and the expert, and 2) it allows to exploit
information from the entire distributions rather than sampling and comparing
individual actions.

Expert. We consider the minimum degree heuristic [22, [I1] as the expert.
At each step, the minimum degree selects a node of minimum degree to be
eliminated. Ties are broken arbitrarily, i.e., if several nodes have minimum
degree, then one is selected uniformly at random among them. Let us note
that today’s implementations include several additional features, such as
smarter tie breaking or the simultaneous elimination of multiple nodes.

In all that follows, we denote wpsp the minimum-degree policy, i.e., for a
given graph G = (V, E), we have

mup(G)v] =

{ x if v is of minimum degree
Y

0 otherwise



where k is the number of nodes that have minimum degree.

Learner parameterization. Given that states are represented as graphs,
with arbitrary size and topology, we propose to use graph neural networks
(GNNs) [23| 24] to parameterize the learner. Indeed, GNNs is an expressive
type of model to process graph-structured data and have been applied to
a variety of representation learning tasks on graphs [25] 26, 27, 28, 29]. In
GNN models, a graph is embedded according to the features of vertices and
its topological structure. The encoding of a node is generated by propagating
information from its neighborhood. One of the most appealing properties of
GNNs is that it is size-and-order invariant to input data, i.e., it can process
graphs of arbitrary size, and the ordering of the input elements is irrelevant.

In our GNN architecture, the embedding of the graph in the (I+1)-th layer
is computed by aggregating, for each node, the features of its neighborhood
from the [-th layer, i.e.,

Ht = f (AHlWl + IMBI) , (13)

where A€R™ " is the adjacency matrix of the graph, I« is the matrix of
ones with size of n x 1, d' and d'T! are the dimension of the features in layer [
and (I+1), HH1eR™d"" and H'eR"™? are the embeddings of layer (I + 1)
and [, W!eR? A" and BleR*4™ are the parameters in layer [, and f(-)
specifies the activation function. For f(-), we apply Softmaz in the output
layer and Relu in the rest.

Loss function. Since the expert is the minimum degree heuristic, we can
compute the exact my/p(s) given a state s of a graph as shown before. To
measure the distance between two distributions given by the learner and the
expert respectively, we compute the Kullback-Liebler (KL) divergence [30]
between myp(s) and 7(s) as the loss.

4 Numerical experiments

In this section, we report the details of our computational investigation.
More precisely, Section [£.1] specifies the data generation and collection. In
Section we discuss the experimental setting and, finally, Section
reports the computational results.
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4.1 Data collection

We evaluate our approach on four different datasets, which comprise graphs
that vary in size and structural characteristics.

4.1.1 Erdos-Renyi graphs

We first build two datasets of Erdos-Renyi graphs, a simple and well-known
class of random graphs. We use the notation G(n,p) to denote a (random)
Erdos-Renyi graph with n nodes, and such that edges are selected with
probability p € [0,1] independently of each other. Note that, for given n
and p, G(n,p) is a random variable whose realizations are graphs of size n.
While n controls the size of the graph, p controls its sparsity.

We form two datasets of Erdos-Renyi graphs: one of smaller graphs,
denoted FRg, and the other one of larger graphs, denoted FRy,.

Each graph in FRg, is sampled from G(n,p), where n is drawn uniformly
between 100 and 300, and p is sampled between 0.1 and 0.3 with uniform
probability. This is done to introduce some variability in size and density
in the dataset. Overall, ERg contains 600 graphs. We follow the same
methodology for F R, except that n is drawn uniformly between 300 and
500. Overall, ER}, contains 200 graphs.

4.1.2 SuiteSparse matrix collection

The SuiteSparse matrix collection!] [31] is a dataset of (sparse) matrices
collected from a number of real-life applications, and is routinely used as
benchmark for numerical linear algebra software. Given a matrix M, we
construct a non-oriented graph whose adjacency matrix corresponds exactly
to the sparsity structure of M. We only consider square matrices, and any
non-symmetric matrix is transferred into symmetric by adding its transpose
to it.

First, we select square matrices of size between 50 and 500. This yields a
dataset of 278 graphs, which we denote by SSg. Similarly, we select square
matrices of size between 1000 and 2000, and obtain a second dataset, denoted
by SSt, which contains 295 graphs.

1SuiteSparse matrix collection was formerly known as the University of Florida sparse
matrix collection.
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4.2 Experimental settings

Our experiments were conducted on a dual Intel Xeon Gold 6126@2.60GHz,
768BG RAM machine running Linux and equipped with Nvidia Tesla V100
GPUs. Our Coddﬂ is written in Python 3.6, and we use Pytorch 0.4 for
modeling and training GNNs.

Datasets. We split the ERg dataset into {training, validation, test},
each containing 200 graphs. Our GNN policy is trained and validated only
with the training and validation set of ERg, respectively. Then, we test the
generalization performance of the trained model with the test set of ERg,

ER;, SSg and S5S}.

GNN setting. We apply the GNN architecture described in Section
with 2 layers. As initially the vertices of the graphs have no attribute, we
initialize the feature of each vertex with the same value. Specifically, we take
hY =1, Vv € V. As a result, the encoding of each vertex only depends on
the topological structure of its neighborhoods. The dimension of features in
all layers is the same. For each layer, the weights are initialized from Xavier
normal distribution [32] and we initialize the bias with zero.

Performance metrics. For a finite dataset G, the first metric computes
the average KL loss, given by

Lrr = 21 Z Zg Lrr (mo(s:), mmp(si)) (14)

n
9€9 "9 4G i=1

where n4 is the size of each graph g € G and Lk (-) specifies the KL
divergence between my(s;) and masp(s;) in state s; of g.

To measure the fill-in of a policy, the second metric computes the average
number of fill-in per graph. For each graph g € G, we denote the total
number of fill-in by C?‘illm' Then, the average fill-in per graph is given by

A 1
Ctiltin = gl Z Sittin- (15)

geg

2The code repository as well as the instances are in the process of being made publicly
available.
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Training and validation. We train our GNN policy with Algorithm [T}
At each epoch, we randomly shift the training set and sample single-graph
mini batches. For learning rate tuning, we experiment different learning rates
from 1075 to 1073, The validation result is shown by plotting the average
KL loss and the average fill-in per graph in Figure [l Observing that 10~
yields fast and smooth convergence, we train the model with the learning
rate of 10~4 for 20 epochs. Moreover, we also observe a plateau effect for
larger step size in Figure [1) notably, sudden decrease with larger step size.
This effect will be discussed in Section [l
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0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Number of 10% steps Number of 10 steps
Figure 1: Validation results of imitation learning. We plot the average
KL loss in log scale (left) and the average fill-in per graph (right) on the

validation set of ERg. For fill-in, we compare GNN with minimum degree
and random policy.

Test. We test the generalization performance of trained GNN with four
test sets as specified before. Addtionally, to evaluate the performance of
GNN models at different stages of training, we first save the trained model
at the end of each epoch. Then, we test the performance of each saved model
on four test sets.

4.3 Results

In this section, we compare the predictive performance of GNN with the two
metrics introduced in the previous section. The results on the training set
and four test sets are shown in Figure [2] Specifically, we plot the curves of
two metrics over the entire training period (20 epochs), in order to compare
the performance of GNN models at different stages of training.
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Figure 2: Test results of imitation learning. We plot the average KL loss in
log scale (left) and the average fill-in per graph (right) on the training set
and four test sets. For fill-in, we compare our GNN with minimum degree
and random policy.
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From the results of the training set (shown in the first row of Figure |2)),
we observe that the loss significantly decreases and stabilizes after about 15
epochs of training. Moreover, for fill-in, the GNN also matches the minimum
degree heuristic.

Comparing the results of different test sets, we observe that our GNN
generalizes well, both to larger size graphs and to different distributions.
First of all, loss curves of all datasets show same decreasing tendency over
the entire training period, although the magnitude of values can be different
across datasets. In terms of fill-in, we have similar and consistent results.
Moreover, by comparing the curves in each row, we also observe a strong
correlation between KL loss (i.e., how good we replicate the minimum degree
expert), and the actual fill-in (which is only observed, we never learn anything
from it).

It is worth noting that, although the initial graphs can be i.i.d., the other
states in the trajectory always depend on previous states and actions, which
indicates the induced distribution of states depends on the behavior policy
itself.

Since we use the on-policy imitation learning approach, the loss is mea-
sured under the distribution of states induced by our GNN policy. As GNN
model changes during training, this metric is actually measured under differ-
ent distributions. As a result, the decrease of loss over the training period
(shown on the left side of Figure [2)) only shows a tendency that the GNN
replicates the minimum degree expert better on an evolutionary distribution
induced by itself. The predictive performance of the GNN still needs to be
validated by the actual fill-in, which is precisely done on the right side of

Figure [2]
5 Further discussion

We now seek to further explain the sharp drops in loss that were observed
during training, e.g., in Figure|[l| and the stark correlation between imitation
loss and fill-in.
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To do so, we consider the following GNN with two layers:

) =1 VieV, (16)

hi= > wal VieV, (17)
JEN(D)

x} = Relu(1+ h}) VieV, (18)

hi= Y waj VieV, (19)
JEN ()

2% = Softmaz(h?), (20)

where wi,wy € R are the only two scalar parameters of the GNN, and
20, bt 2! h2, 2% are vectors of size |V|. The input vector is 2° with all
coordinates equal to one and, by definition of Softmax, the coordinates of
the output vector =2 are all non-negative and sum to one. Also note that, for
every node i, since 29 = 1, we have h} = w;6(i). It follows that, by setting
wy = 0, we get 1 = Relu(1+0) = 1, and then h? = ws x §(i). Therefore,
as wy approaches —oo, 2 becomes arbitrarily close to a minimum degree
distribution.

5.1 Landscape of the loss function

We begin by plotting the landscape of the expected average KL loss, evaluated
on the training set. This landscape is represented in Figure Although
this corresponds to a simpler model than the one that yielded the results in
Section [4.3] it gives several insights into the behavior during training.

First, as expected, the average loss is minimized when w; = 0 and w»
goes to —oo.

Second, we observe that in the w; < —1 region, the average loss is flat.
This region actually corresponds to the Relu of the first layer being inactive.
Indeed, we have h} = w1 4(i), therefore, when w; < —1, we automatically get
1+ hl <0, which yields z} = 0. Consequently, the output of the GNN is a
uniform distribution on the nodes of the graph, i.e., we obtain xf = % for
each node i € {1,...,n}.

Third, observe that the landscape of the loss function displays fairly flat
regions, which tend to be separated by sharp drops in the objective, e.g.,
around the w; = 0 region. This landscape most likely explains the shapes of
the training curves in Figure [1| which displayed flat progression followed by
sharp drops in the loss. Whether such behavior would carry out in larger
dimensions remains an open question.
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Figure 3: Landscape of the expected average KL loss (in log scale). For each
(w1, wq), we plot the expected average KL loss, estimated over the training
set.

5.2 Landscape of the fill-in

We then plot the landscape of the expected total fill-in in Figure [4 also
evaluated on the training set. While this gives us an insight into how fill-in
correlates with the KL loss, let us formally restate that fill-in is never used
during the training process. In particular, no gradient information is ever
inferred from fill-in.

Fist, unsurprisingly, similar to Figure [3] here we observe a flat landscape
in the w; < —1 region. Recall indeed that setting w; < —1 means the GNN’s
output reduces to a uniform policy. Second, the region w; > 0,wy > 0
displays high fill-in. This is not surprising either since this region essen-
tially yields policies that select nodes with high degree, which is naturally
detrimental to fill-in.

A third and more remarkable observation is the flat valley in the region
wy > 0,we < 0. While we know that the GNN policy converges to minimum
degree when w; = 0 and ws takes large negative values, the plots in Figure
show that, when it comes to fill-in, the magnitude of ws does not matter as
much.

Fourth and last, the minimum degree policy appears to be a minimizer
of the expected total fill-in, among the set of policies that are representable
by the class of GNN at hand. Although we cannot extrapolate to larger
classes of models, nor to other datasets of graphs, this last observation has
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Figure 4: Landscape of the normalized total fill-in. For each (wq,ws), we
plot the average total fill-in of the corresponding GNN policy, divided by the
expected total fill-in of the minimum degree heuristic. Both expectations
are estimated over the training set.

consequences if one were to train a GNN to minimize fill-in. Specifically, one
would need models with higher representation power to achieve better fill-in
than the minimum degree algorithm.

6 Conclusion

In this work, we have considered chordal extensions and graph elimination
as major factors for devising sparsity-exploiting techniques for optimization
algorithms. We have argued that, although effective heuristics to perform
graph elimination (an NP-complete task) exist, there is no definitive under-
standing of the effect of the obtained chordal extension on the optimization
algorithm using the final graph representation.

For this reason, we have followed the current research trend of looking at
Combinatorial Optimization tasks by using a Machine Learning lens and we
have devised a framework for learning elimination rules yielding high-quality
chordal extensions. As a first building block of the learning framework,
we have proposed an on-policy imitation learning scheme that mimics the
elimination ordering provided by the (classical) minimum degree rule.

The results have shown that our on-policy imitation learning approach is
effective in learning the minimum degree policy and, consequently, produces
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graphs with desirable fill-in characteristics. In addition, the learned policy
displays remarkable generalization performance, a desirable behavior since it
allows to speed-up the learning process by training on smaller problems.
Finally, we identify two main research avenues for subsequent develop-
ments. On one hand, while GNNs are a good model prior for combinatorial
problems over graphs, enlarging their representation power, for instance
to represent hypernodes or to model multiple eliminations, will likely be
key to handling practical tasks. On the other hand, the next logical step
will be to learn elimination rules that explicitly address the performance of
practical optimization algorithms, in conjunction with reinforcement learning-
based approaches. In that regard, our future work will investigate chordal
decomposition specially tailored to SDP optimization problems.
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