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Abstract
Abasic closed semialgebraic subset ofR

n is defined by simultaneous polynomial inequalities
p1 ≥ 0, . . . , pm ≥ 0. We consider Lasserre’s relaxation hierarchy to solve the problem of
minimizing a polynomial over such a set. These relaxations give an increasing sequence of
lower bounds of the infimum. In this paper we provide a new certificate for the optimal value
of a Lasserre relaxation to be the optimal value of the polynomial optimization problem. This
certificate is to check if a certain matrix has a generalized Hankel form. This certificate is
more general than the already known certificate of an optimal solution being flat. In case we
have detected optimality we will extract the potential minimizers with a truncated version of
the Gelfand–Naimark–Segal construction on the optimal solution of the Lasserre relaxation.
We prove also that the operators of this truncated construction commute if and only if the
matrix of this modified optimal solution is a generalized Hankel matrix. This generalization
of flatness will enable us to prove, with the use of the GNS truncated construction, a result of
Curto and Fialkow on the existence of quadrature rule if the optimal solution is flat and a result
of Xu andMysovskikh on the existence of a Gaussian quadrature rule if the modified optimal
solution is a generalized Hankel matrix . At the end, we provide a numerical linear algebraic
algorithm for detecting optimality and extracting solutions of a polynomial optimization
problem.

Keywords Moment relaxation · Lassere relaxation · Polynomial optimization ·
Semidefinite programming · Quadrature · Truncated moment problem · GNS construction

Mathematics Subject Classification Primary: 90C22 · 90C26; Secondary: 44A60 · 65D32

1 Notation

Throughout this paper, we suppose n ∈ N = {1, 2, . . .} and abbreviate (X1, . . . , Xn) by X .
We letR[X ] denote the ring of real polynomials in n indeterminates.WedenoteN0 := N∪{0}.
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For α ∈ N
n
0, we use the standard notation :

|α| := α1 + · · · + αnand Xα := Xα1
1 · · · Xαn

n

For a polynomial p ∈ R[X ]we denote p =∑α pα Xα (aα ∈ R). For d ∈ N0, by the notation
R[X ]d := {∑|α|≤d aα Xα | aα ∈ R} we will refer to the vector space of polynomials with
degree less or equal to d . Polynomials all of whose monomials have exactly the same degree
d ∈ N0 are called d-forms. They form a finite dimensional vector space that we will denote
by:

R[X ]=d :=
⎧
⎨

⎩

∑

|α|=d

aα Xα | aα ∈ R

⎫
⎬

⎭

so that

R[x]d = R[X ]=0 ⊕ · · · ⊕ R[X ]=d .

Wewill denote by sk := dimR[X ]k and by rk := dimR[X ]=k . For d ∈ N0 we denoteR[X ]∗d
the dual space of R[X ]d i.e. the set of linear forms from R[X ]d to R and for � ∈ R[X ]∗2d
we denote by �′ := �|R[X ]2d−2 the restriction of the linear form � to the space R[X ]2d−2. For
d ∈ N0 and a ∈ R

n we denote eva ∈ R[X ]∗d the linear form such that for all p ∈ R[X ]d ,
eva(p) = p(a). We will denote by SymR

t×t , the space of symmetric matrices of dimension
t .

2 Introduction

Let polynomials f , p1, . . . , pm ∈ R[X ] with m ∈ N0 be given. A polynomial optimization
problem involves finding the infimum of f over the so called basic closed semialgebraic set
S, defined by:

S := {x ∈ R
n | p1(x) ≥ 0, . . . , pm(x) ≥ 0} (1)

and also, if it is possible, a polynomial optimization problem involves extracting optimal
points or minimizers i.e. elements in the set:

S∗ := {x∗ ∈ S|∀x ∈ S : f (x∗) ≤ f (x)}
So from now on we will denote by (P), the following polynomial optimization problem:

(P) minimize f (x) subject to x ∈ S (2)

The optimal value of (P), i.e. the infimum of f (x) where x ranges over all feasible solutions
S will be denoted by P∗, that is to say:

P∗ := inf{ f (x) | x ∈ S} ∈ {−∞} ∪ R ∪ {∞} (3)

Note that P∗ = +∞ if S = ∅ and P∗ = −∞ if and only if f is unbounded from below
on S, for example if S = R

n and f is of odd degree.
For d ∈ N0 let us define the matrix:

Vd := (1, X1, X2, . . . , Xn, X2
1, X1X2, . . . , X1Xn,

X2
2, X2X3, . . . , X2

n, . . . , . . . , Xd
n )T (4)
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consisting of all monomials up to degree d in n variables in the graded reverse lexicographical
order. Then

Vd V T
d =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 X1 X2 · · · Xd
n

X1 X2
1 X1X2 · · · X1Xd

n
X2 X1X2 X2

2 · · · X2Xd
n

...
...

...
. . .

...

Xd
n X1Xd

n X2Xd
n · · · X2d

n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ R[X ]sd×sd
2d

Let us substitute for every monomial Xα ∈ R[X ]2d a new variable Yα . This matrix has
the following form:

Md :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Y(0,...,0) Y(1,...,0) Y(0,1,...,0) · · · Y(0,...,1)
Y(1,...,0) Y(2,...,0) Y(1,1,...,0) · · · Y(1,...,d)

Y(0,1,...,0) Y(1,1,...,0) Y(0,2,...,0) · · · Y(0,1,...,d)

...
...

...
. . .

...

Y(0,...,d) Y(1,...,d) Y(0,1,...,d) · · · Y(0,...,2d)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ R[Y ]sd×sd
1 (5)

Remark 2.1 Note that changing the order of the entries of Vd would have resulted in a new
matrix Md which is unitary equivalent to the one defined here.

Definition 2.2 Every matrix M ∈ R
sd×sd with the same shape than the matrix in Eq. (5) is

called a generalized Hankel matrix of order d . We denote the linear space of generalized
Hankel matrix of order d by:

Hd := { Md(y) | y ∈ R
s2d }

For p ∈ R[X ]k − {0} denote dp := � k−deg p
2  and consider the following symmetric

matrix:

pVdp V T
dp
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p pX1 pX2 · · · pX
dp
n

pX1 pX2
1 pX1X2 · · · pX1X

dp
n

pX2 pX2X1 pX2
2 · · · pX2X

dp
n

...
...

...
. . .

...

pX
dp
n pX1X

dp
n pX

dp
n X2 · · · pX

2dp
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R[X ]sdp×sdp
k (6)

Definition 2.3 For p ∈ R[X ]k − {0} the localizing matrix of p of degree d is the matrix
resulting from substituting every monomial in n variables of degree at most k, for a new

variable Yα . We denote this matrix by Mk,p ∈ R[Y ]sdp×sdp
1 .

Definition 2.4 Let A ∈ R
t×t symmetric, the notation A � 0means that A is positive semidef-

inite, i.e. aT Aa ≥ 0 for all a ∈ R
t .

Reminder 2.5 Let A ∈ R
t×t symmetric. The following are equivalent:

(1) A � 0.
(2) All eigenvalues of A are nonnegative.
(3) There exists B ∈ R

t×t such that A = BT B.
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Definition 2.6 Let (P) be a polynomial optimization problem as in Eq. (2) and let k ∈
N0∪{∞} such that f , p1, . . . , pm ∈ R[X ]k . TheMoment relaxation (or Lasserre relaxation)
of (P) of degree k is the following semidefinite optimization problem:

(Pk) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize
∑
|α|≤k fα yα

subject to: y(0,...,0) = 1

Mk,1(y) � 0 and

Mk,pi (y) � 0 for all i ∈ {1, . . . , m}
the optimal value of (Pk) that is to say, the infimum over all

y = (y(0,...,0), . . . , y(0,...,k)) ∈ R
sk

that ranges over all feasible solutions of (Pk) is denoted by P∗k ∈ {−∞} ∪ R ∪ {∞}.
Given a polynomial optimization problem (P) as in Eq. (2) and M := Md(y) ∈ R

sd×sd

an optimal solution of (P2d), it is always possible to find a matrix WM ∈ R
sd×rd such that

M can be decomposed in a block matrix of the following form (see 4.7 below for a proof):

M =
(

AM AM WM

W T
M AM CM

)

This useful result can be also found in [28] and in [6, Lemma 2.3]. Define the following
matrix:

M̃ :=
(

AM AM WM

W T
M AM W T

M AM WM

)

In this paper we prove that M̃ is well-defined, that is to say it does not depend on the choice
of WM , and assuming that W T

M AM WM is a generalized Hankel matrix we will use a new
method to find a decomposition:

M̃ =
r∑

i=1
λi Vd(ai )Vd(ai )

T (7)

where r := rank AM ,a1, . . . , ar ∈ R
n and λ1 > 0, . . . , λr > 0. In this paper we will show

that for some polynomial optimization problems if we have that W T
M AM WM is generalized

Hankel and the nodes are contained in S, even if M is not flat i.e. W T
M AM WM �= CM

(see the definition in 5.18), we can still claim optimality, that is to say that a1, . . . , ar are
global minimizers. We will also see some examples to discard optimality or in other words to
discard that M has a factorization as in Eq. (7), see Example 6.6. Let us advance two results
concerning optimality.

Theorem 2.7 Let (P) be a polynomial optimization problem as in Eq. (2) and suppose that

Md(y) ∈ R
sd×sd is a feasible solution of (P2d) and M̃d(y) is a generalized Hankel matrix.

Then there are a1, . . . , ar ∈ R
n points and λ1 > 0, . . . , λr > 0 weights such that:

M̃d(y) =
r∑

i=1
λi Vd(ai )Vd(ai )

T (8)

where r = rank AM . Moreover if {a1, . . . , ar } ⊆ S and f ∈ R[X ]2d−1 then a1, . . . , ar are
global minimizers of (P) and P∗ = P∗2d = f (ai ) for all i ∈ {1, . . . , r}.
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Proof The correspondence given in Corollary 3.5 together with the Theorem 7.1 will give us
the proof. ��

Remark 2.8 Let (P) be a polynomial optimization problem without constraints. Suppose

Md(y) ∈ R
sd×sd is a feasible solution of (P2d) with M̃d(y) a generalized Hankel matrix

and that f ∈ R[X ]2d−1. Applying Theorem 2.7 we get the decomposition (8), and since
we can ensure that a1, . . . , ar ⊆ S = R

n then they are global minimizers of (P) and
P∗ = P∗2d = f (ai ) for all i ∈ {1, . . . , r}.

Example 2.9 Let us consider the following polynomial optimization problem taken from [14,
Problem 4.7]:

minimize f (x) = −12x1 − 7x2 + x22

subject to − 2x41 + 2− x2 = 0

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 3

We get the optimal value P∗4 = −16.7389 associated to the following optimal solution:

M2(y) =

1 X1 X2 X2
1 X1X2 X2

2⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 1.0000 0.7175 1.4698 0.5149 1.0547 2.1604
X1 0.7175 0.5149 1.0547 0.3694 0.7568 1.5502
X2 1.4698 1.0547 2.1604 0.7568 1.5502 3.1755
X2
1 0.5149 0.3694 0.7568 0.2651 0.5430 1.1123

X1X2 1.0547 0.7568 1.5502 0.5430 1.1123 2.2785
X2
2 2.1604 1.5502 3.1755 1.1123 2.2785 8.7737

(9)

and the modified moment matrix of M2(y) is the following:

M̃2(y) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.0000 0.7175 1.4698 0.5149 1.0547 2.1604
0.7175 0.5149 1.0547 0.3694 0.7568 1.5502
1.4698 1.0547 2.1604 0.7568 1.5502 3.1755
0.5149 0.3694 0.7568 0.2651 0.5430 1.1123
1.0547 0.7568 1.5502 0.5430 1.1123 2.2785
2.1604 1.5502 3.1755 1.1123 2.2785 4.6675

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10)

We get that M̃2(y) is a generalized Hankel matrix and f ∈ R[X1, X2]3 to conclude
optimality, according with Theorem 2.7, it remains to calculate the factorization as in Eq. (7)
and check if the points are in S. We will see in Sect. 5 in Example 5.21 how to compute this
factorization, in this case, it is easy to see that:

M̃2(y) = V2(α, β)V2(α, β)T

where α := 0.7175 and β := 1.4698. One can verify that (α, β) ∈ S and therefore we can
conclude that P∗4 = P∗ = −16.7389 is the optimal value and (α, β) is a minimizer.

Theorem 2.10 Let (P) be a polynomial optimization problem given as in Eq. (2) and suppose
that the pi ’s from Eq. (1) are all of degree at most 1 (so that S is a polyhedron). Suppose
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that Md(y) ∈ R
sd×sd is a feasible solution of (P2d) and that M̃d(y) is a generalized Hankel

matrix. Then there are a1, . . . , ar ∈ S and λ1 > 0, . . . , λr > 0 weights such that:

M̃d(y) =
r∑

i=1
λi Vd(ai )Vd(ai )

T

Moreover if f ∈ R[X ]2d−1 then a1, . . . , ar are global minimizers of (P) and P∗ = P∗2d =
f (ai ) for all i = 1, . . . , r .

Proof The correspondence given in Corollary 3.5 together with the Theorem 7.3 will give us
the result. ��
Example 2.11 Let us consider the following polynomial optimization problem, taken from
[13, page 18], whose objective function is the Motzkin polynomial [19, Prop.1.2.2]:

minimize f (x) = x41 x22 + x21 x42 − 3x21 x22 + 1

subject to − 2 ≤ x1 ≤ 2

− 2 ≤ x2 ≤ 2

We get the optimal value P∗8 = 6.2244 · 10−9 from the following optimal solution of (P8):

M := M8,1(y) =
(

AM AM WM

W T
M AM CM

)

(11)

where:

AM =

1 X1 X2 X2
1 X1 X2 X2

2 X3
1 X2

1 X2 X1 X2
2 X3

1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1 1.0000 −0.0005 −0.0004 1.0000 −0.0000 1.0000 −0.0005 −0.0004 −0.0005 −0.0004
X1 −0.0005 1.0000 −0.0000 −0.0005 −0.0004 −0.0005 1.0000 −0.0000 1.0000 −0.0000
X2 −0.0004 −0.0000 1.0000 −0.0004 −0.0005 −0.0004 −0.0000 1.0000 −0.0000 1.0000

X2
1 1.0000 −0.0005 −0.0004 1.0000 −0.0000 1.0000 −0.0005 −0.0004 −0.0005 −0.0004

X1 X2 −0.0000 −0.0004 −0.0005 −0.0000 1.0000 −0.0000 −0.0004 −0.0005 −0.0004 −0.0005
X2
2 1.0000 −0.0005 −0.0004 1.0000 −0.0000 1.0000 −0.0005 −0.0004 −0.0005 −0.0004

X3
1 −0.0005 1.0000 −0.0000 −0.0005 −0.0004 −0.0005 1.0001 −0.0000 1.0001 −0.0000

X2
1 X2 −0.0004 −0.0000 1.0000 −0.0004 −0.0005 −0.0004 −0.0000 1.0001 −0.0000 1.0001

X1 X2
2 −0.0005 1.0000 −0.0000 −0.0005 −0.0004 −0.0005 1.0001 −0.0000 1.0001 −0.0000

X3
2 −0.0004 −0.0000 1.0000 −0.0004 −0.0005 −0.0004 −0.0000 1.0001 −0.0000 1.0001

(12)

WM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and CM =

X4
1 X3

1 X2 X2
1 X2

2 X1 X3
2 X4

2
⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

X4
1 6.4115 −0.0000 2.0768 −0.0000 1.7719

X3
1 X2 −0.0000 2.0768 −0.0000 1.7719 −0.0000

X2
1 X2

2 2.0768 −0.0000 1.7719 −0.0000 2.0768
X1 X3

2 −0.0000 1.7719 −0.0000 2.0768 −0.0000
X4
2 1.7719 −0.0000 2.0768 −0.0000 6.4115

(13)

In this case:

W ∗AM W =

X4
1 X3

1 X2 X2
1 X2

2 X1X3
2 X4

2⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

X4
1 1.0000 −0.0000 1.0000 −0.0000 1.0000

X3
1 X2 −0.0000 1.0000 −0.0000 1.0000 −0.0000

X2
1 X2

2 1.0000 −0.0000 1.0000 −0.0000 1.0000
X1X3

2 −0.0000 1.0000 −0.0000 1.0000 −0.0000
X4
2 1.0000 −0.0000 1.0000 −0.0000 1.0000

has a generalized Hankel matrix structure, what implies that M̃ is generalized Hankel and
since we are minimizing over a polyhedron defined by linear polynomials by Theorem 2.10
P∗8 = P∗.
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The aim of this paper is to make use of the truncated Gelfand–Naimark–Segal (GNS)
construction to prove classical results of the existing theory in polynomial optimization. The
use of the truncated GNS construction will allow us to prove again this results using basic
tools of linear algebra and generalize some of them. The paper is distributed as follows. In
Sect. 3 we outline Lasserre’s approach [16] to solve polynomial optimization problems with
the language of linear forms. The novelty in Sect. 3 is that we reformulate the problem of
finding a decomposition of the modified moment matrix as in Eq. (8) or in other words the
problem of finding a quadrature rule representation for a positive semidefinite linear form
(L ∈ R[X ]∗2d such that L(

∑
R[X ]2d) ⊆ R≥0) to the problem of finding a commutative

truncated version of the GNS construction. The truncated GNS construction for this positive
semidefinite linear form will be defined in Sect. 4 and at the end of this section we give a new
proof of a very useful result of Smul’jan [28] using the inner product defined in the truncated
GNS construction. In Sect. 5 we give a general new definition of Gaussian quadrature rule
for a positive semidefinite linear form and we get a result concerning commutativity of
the truncated GNS multiplication operators associated to this linear form and existence of
Gaussian quadrature rule. More precisely, providing these operators commute we are able to
get the factorization (7) or in other words we find a Gaussian quadrature rule representation
for this positive semidefinite linear form, that is to say a quadrature rule for L on R[X ]2d−1
which number of nodes is the rank of ML |R[X ]2d−2 , see the Notation 3.5. Actually we prove
that if the operators commute we can find a quadrature rule representation of the linear form
in the set GL ⊇ R[X ]2d−1, defined in Eq. (32), another fact that it seems not have been
notice so far. In this section we also relate the commutativity of the truncated GNS operators
with the concept of flat extension. More precisely we prove that the commutativity of the
truncated GNS operators is a more general fact than the very well know flatness condition,
equivalent to the following equality CM = W T

M AM WM . We also prove that the converse
does not always hold. This fact will have an impact in finding optimality in polynomial
optimization in lower degree of relaxation, since in many cases we do not need to have a
flat optimal solution but the general condition of W T

M AM WM being generalized Hankel to
ensure optimality. See Examples (9), (5.20), (44), (45), (48). To find optimality in lower
degree of relaxations is an useful fact in polynomial optimization to avoid increment the
degree of relaxation or the number of variables and in this way do not run into numerical
problems. At the end of this section we review, with the truncated GNS construction, a
classical result of Curto and Fialkow for the characterization of positive semidefinite linear
forms with quadrature rule on the whole space. In Sect. 6, in the Main Theorem 6.1, we
prove the equivalence of the commutativity of the GNS truncated operators with M̃L being
a generalized Hankel matrix and with the existence of a quadrature rule for L on the set
R[X ]2d+1. These are analogous conditions to the conditions given in [2, Theorem 4.5.3].
Note that the multiplication operators defined in [2] and in [3] are defined in a different
way than the GNS truncated multiplication operators (see page 24 for more information).
The multiplication operators in [3] despite they are not defined in the non commutative case
they are defined in a more general context, in particular the linear form in this article does
not need to be positive semidefinite. In contrast in our case, the condition of being positive
semidefinite allows us to define an inner product, the GNS truncated inner product, to get well
defined truncated GNS multiplication operators, even in the case they do not commute (see
Theorem 6.4 as an application of this fact). Moreover, due to the positive definiteness we can
prove that the nodes of the quadrature rule, in the commutative case, are pairwise different and
thereforewe get aGaussian quadrature rule. Themain theoremwill also allowus to generalize
to a positive semidefinite linear forms a classical theorem of Mysovskikh and Putinar [11,
Theorem 3.8.7] and [23, pages 189–190]. At the end of this section we also generalize to a
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positive semidefinite linear form a result of Möller on the number of nodes of the existence
of a quadrature rule on R[X ]2d−1. This generalization helps us in polynomial optimization
problems to discard optimality or to discard existence of quadrature rules in some cases.
Finally in Sect. 7, we group all the results about optimality and global minimizers for an
optimal solution of the moment relaxation, where we use the truncated GNS construction to
ensure optimality in a more general context than the flat case and we give examples. Another
slight novelty in this section is Corollary 7.3 where we prove providing M̃L is generalized
Hankel and the polynomial p1, . . . , pm describing the basic closed semialgebraic set S as
in Eq. (1) are linear than the nodes describing the Gaussian quadrature rule are contained
in S. Notice that if the polynomials are not linear there are cases where the nodes are not
contained in S, see Example 8.2. Finally we provide an algorithm for detecting optimality
and extracting minimizers with the truncated GNS construction and we include numerical
examples.

3 Formulation of the problem

To solve polynomial optimization problems we use the very well known moment relaxations
defined in the Definition 2.6. An introduction to moment relaxations can also be found for
instance in: [16,18], and [26]. Likewise we will give the equivalent definition using linear
forms instead of matrices in Definition 3.4. We will now outline Lasserre’s [16] approach
to solve this problem. This method constructs a hierarchy of semidefinite programming
relaxations, which are generalization of linear programs, and possible to solve efficiently,
see [27] and [18] for an introduction. In each relaxation of degree k we build convex sets,
obtained through the linearization of a equivalent polynomial optimization problem of (P)

defined in (2). This equivalent formulation of the relaxation consists in adding infinitely
many redundant inequalites of the form p ≥ 0 for all p ∈ ∑R[X ]2 pi ∩ R[X ]k (with the
notation

∑
R[X ]2 pi we mean the set of all finite sums of elements of the form p2 pi , for

p ∈ R[X ]). The set of these redundant inequalities builds a cone, which is a set containing
0, closed under addition and under multiplication by positive scalars. The cone generated for
this redundant inequalities is called truncated quadratic module generated by the polynomials
p1, . . . , pm , as we see in Definition 3.1. These relaxations give us an increasing sequence of
lower bounds of the infimum P∗, as you can see in Proposition 3.9. Lasserre proved that this
sequence converge asymptotically to the infimum if we assume some archimedean property
of the cone generetated by the redundant inequalities, see [26, Theorem 5] for a proof of this.

Definition 3.1 Let p1, . . . , pm ∈ R[X ]k and k ∈ N0 ∪ {∞}. We define the k-truncated
quadratic module M , generated by p1, . . . , pm as:

Mk(p1, . . . , pm) :=
(
R[X ]k ∩

∑
R[X ]2

)
+
(
R[X ]k ∩

∑
R[X ]2 p1

)

+ · · · +
(
R[X ]k ∩

∑
R[X ]2 pm

)
⊆ R[X ]k

(14)

where here R[X ]∞ := R[X ]. We use the notation M(p1, . . . , pm) := M∞(p1, . . . , pm), to
refer to the quadratic module generated by the polynomials p1, . . . , pm ∈ R[X ].
Remark 3.2 Note that:

R[X ]k ∩
∑

R[X ]2 p =
{

l∑

i=1
h2

i p | hi ∈ R[X ], 2 deg(hi ) ≤ k − deg(p)

}

123



Journal of Global Optimization (2021) 81:559–598 567

For a proof of this see [26, Page 5].

In the following we state several classical results: Lemma 3.3, Corollary 3.5 and Propo-
sition 3.7. We refer to [26] and [18] for a proof of these results and more details.

Lemma 3.3 Let k ∈ N, p ∈ R[X ]k \ {0}. Let L ∈ R[X ]∗k . Then it holds:

L(
∑

R[X ]k ∩ R[X ]2 p) ⊆ R≥0 ⇐⇒ Mk,p(y) � 0 (15)

where yα := L(Xα) for all α ∈ N
n with |α| ≤ k.

Due to Lemma 3.3 the following Definition 3.4 of a Moment relaxation using linear forms
is equivalent to the Definition given in 2.6

Definition 3.4 Let (P) be a polynomial optimization problem given as in Eq. (2) and let k ∈
N0∪{∞} such that f , p1, . . . , pm ∈ R[X ]k . TheMoment relaxation (or Lasserre relaxation)
of (P) of degree k is the semidefinite optimization problem:

(Pk) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize L( f )

subject to: L ∈ R[X ]∗k
L(1) = 1 and

L(Mk(p1, ..., pm)) ⊆ R≥0

the optimal value of (Pk) i.e., the infimum over all L( f ) where L ranges over all optimal
solutions of (Pk) is denoted by P∗k ∈ {−∞} ∪ R ∪ {∞}.

Corollary and Notation 3.5 Let d ∈ N0. The correspondence:

L �→(L(Xα+β))|α|,|β|≤d
(

R[X ]2d → R

Xα �→ yα

)

← �Md(y)

defines a bijection between the linear forms L ∈ R[X ]∗2d such that L(
∑

R[X ]2d) ⊆ R≥0 and
the set of positive semidefinite generalized Hankel matrices of order d i.e. Hd ∩R

sd×sd�0 . Let

L ∈ R[X ]∗2d such that L(
∑

R[X ]2d ]) ⊆ R≥0 we denote ML := (L(Xα+β))|α|,|β|≤d and let
Md(y) � 0 for y ∈ R

sd we denote:

L Md (y) : R[X ]2d −→ R, Xα �→ yα.

Notation 3.6 We denote the following isomorphism of vector spaces by:

poly : Rsd −→ R[X ]d , a �→ aT Vd

Proposition 3.7 Let d ∈ N0 and L ∈ R[X ]∗2d then:

L(pq) = PT ML Q for all p, q ∈ R[X ]d
where P := poly−1(p) and Q := poly−1(q).
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Definition 3.8 Let L ∈ R[X ]∗d . A quadrature rule for L on U ⊆ R[X ]d is a function
w : N → R>0 defined on a finite set N ⊆ R

n , such that:

L(p) =
∑

x∈N

w(x)p(x) (16)

for all p ∈ U . A quadrature rule for L is a quadrature for L on R[X ]d . We call the elements
of N the nodes of the quadrature rule.

Proposition 3.9 Let (P) be the polynomial optimization problem given in Eq. (2) with
f , p1, . . . , pm ∈ R[X ]k . Then the following holds:

(i) P∗ ≥ P∗∞ ≥ · · · ≥ P∗k+1 ≥ P∗k .
(ii) Let L ∈ R[X ]∗k with L(1) = 1. Suppose L has a quadrature rule with nodes in S, then

L is a feasible solution of (Pk) with L( f ) ≥ P∗.
(iii) Suppose (Pk) has an optimal solution L∗, which has a quadrature rule on R[X ]l for

some l ∈ {1, . . . , k} with f ∈ R[X ]l and the nodes are in S. Then L∗( f ) = P∗,
moreover we have P∗ = P∗k+m for m ≥ 0 and the nodes of the quadrature rule are
global minimizers of (P).

(iv) In the situation of (iii), suppose moreover that (P) has an unique global minimizer x∗,
then L∗( f ) = f (x∗) and x∗ = (L∗(X1), . . . , L∗(Xn)).

Proof (i) P∗ ≥ P∗∞ since if x is a feasible solution for (P) then evx ∈ R[X ]∗ is a feasible
solution for P∗∞ with the same value, that is f (x) = evx ( f ). It remains to prove P∗l ≥ P∗k
for l ∈ N≥k ∪ {∞}. For this let L be a feasible solution of (Pl), as Mk(p1, . . . , pm) ⊆
Ml(p1, . . . , pm) then L |R[X]k is a feasible solution of (Pk) with the same optimal value.

(ii) Suppose L has a quadrature rule with nodes a1, . . . , aN ∈ S and weights λ1 >

0, . . . , λN > 0. From L(1) = 1 we get
∑N

i=1 λi = 1 and since the nodes are in S
it holds L(Mk(p1, . . . , pm)) ⊆ R≥0. Hence L is a feasible solution of (Pk). Moreover
the following holds:

P∗ = L(1)P∗ =
N∑

i=1
λi P∗ ≤

N∑

i=1
λi f (ai ) = L( f )

where the inequality follows from the fact that P∗ ≤ f (x) for all x ∈ S.
(iii) Suppose L∗ is an optimal solution of (Pk) then L∗( f ) = P∗k ≤ P∗ using (i) and on the

other side since L∗(1) = 1 and L∗ has a quadrature rule on R[X ]l with nodes in S and
f ∈ R[X ]l , there exist a1, . . . , aN ∈ S nodes, and λ1 > 0, . . . , λN > 0 weights, such
that:

P∗k = L∗( f ) =
N∑

i=1
λi f (ai ) ≥

N∑

i=1
λi P∗ = P∗ (17)

Therefore L∗( f ) = P∗, and since P∗k = P∗ we get equality everywhere in (i) and we
can conclude that P∗ = P∗k+m for m ≥ 0. It remains to show that the nodes are global
minimimizers of (P), but this is true since in Eq. (17) we have equality everywhere,
and if we factor out we get

∑N
i=1 λi ( f (ai )− P∗) = 0, as λi > 0 and f (ai )− P∗ ≥ 0

for all i ∈ {1, . . . , N }, implying f (ai ) = P∗ for all i ∈ {1, . . . , N }.
(iv) Using (iii) we have that L∗( f ) = P∗ = f (x∗), and continuing with the same notation

as in the proof of (iii) we got by uniqueness of the minimizer x∗, that ai = x∗ for all
i ∈ {1, . . . , N }.
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This implies that L∗ = evx∗ on R[X ]∗l , and evaluating in thepolynomials X1, . . . , X N ∈
R[X ]1 we got that:

L∗(Xi ) = evx∗(Xi ) = x∗i f oralli ∈ {1, . . . , N }.
That is to say, x∗ = (L∗(X1), . . . , L∗(Xn)). ��

We can now reformulate our problem as:
Given d ∈ N0 and L ∈ R[X ]∗2d+2 such that L(

∑
R[X ]2d+1) ⊆ R≥0, we would like to

obtain for all p ∈ R[X ]2d+2:
• Nodes x1, . . . , xr ∈ R

n and and weights λ1, . . . , λr > 0 such that:

L(p) =
r∑

i=1
λi p(xi )

in other words:

• x1,1, . . . , x1,n, . . . , xr ,1, . . . , xr ,n ∈ R and a1, . . . , ar ∈ R such that:

L(p) =
r∑

i=1
a2

i p(xi,1, . . . , xi,n)

again with other words:

• x1,1, . . . , x1,n, . . . , xr ,1, . . . , xr ,n ∈ R and a1, . . . , ar ∈ R such that:

L(p) =
〈
⎛

⎜
⎝

p(x1,1, . . . , x1,n)

. . .

p(xr ,1, . . . , xr ,n)

⎞

⎟
⎠

⎛

⎜
⎝

a1
...

ar

⎞

⎟
⎠ ,

⎛

⎜
⎝

a1
...

ar

⎞

⎟
⎠

〉

again written differently:

• x1,1, . . . , x1,n, . . . , xr ,1, . . . , xr ,n ∈ R and a ∈ R
r such that:

L(p) =
〈

p

⎡

⎢
⎣

⎛

⎜
⎝

x1,1
. . .

xr ,1

⎞

⎟
⎠ , ...,

⎛

⎜
⎝

x1,n
. . .

xr ,n

⎞

⎟
⎠

⎤

⎥
⎦

⎛

⎜
⎝

a1
...

ar

⎞

⎟
⎠ ,

⎛

⎜
⎝

a1
...

ar

⎞

⎟
⎠

〉

again with less words:

• Diagonal matrices D1, . . . , Dn ∈ R
r×r and a ∈ R

r such that:

L(p) = 〈p(D1, . . . , Dn)a, a〉
Reminder 3.10 Let r , n ∈ N and M1, . . . , Mn ∈ R

r×r symmetric commutingmatrices. Then
there exist an orthogonal matrix P ∈ R

r×r such that PT Mi P is a diagonal matrix for all
i ∈ {1, . . . , n}.

Using this Reminder 3.10 we can continue with our reformulation of the problem: given
d ∈ N0 and L ∈ R[X ]∗2d+2 such that L(

∑
R[X ]2d+1) ⊆ R≥0, to find a quadrature rule for

L is the same as to find commuting symmetric matrices M1, . . . , Mn ∈ R
r×r and a vector

a ∈ R
r such that:

L(p) = 〈p(M1, . . . , Mn)a, a〉 (18)
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We end the reformulation of the problem once and for all with the languages of endo-
morphisms, instead of matrices. That is to say: given d ∈ N0 and L ∈ R[X ]∗2d+2 such that
L(
∑

R[X ]2d+1) ⊆ R≥0, we would like to obtain a finite dimensional Euclidean vector space
V , commuting self-adjoint endomorphisms M1, . . . , Mn of V and a ∈ V such that:

L(p) = 〈p(M1, . . . , Mn)a, a〉 (19)

Remark 3.11 Gelfand, Naimark and Segal gave a solution for the case we allow to the space
V to be infinite dimensional and the linear form to be stricly positive in the sums of squares,
that is to say, in the case we are given a linear form L ∈ R[X ]∗ such that L(p2) > 0 for all
p �= 0. The solution was given by defining the inner product:

〈p, q〉 := L(pq) (20)

and defining the self adjoint operators Mi , for all i ∈ {1, . . . , n}, on the infinite dimensional
vector space R[X ], in the following way:

Mi : R[X ] −→ R[X ], p �→ Xi p

Taking a := 1 ∈ R[X ] we have the searched equality (19). More information about this
construction can be found in the book [10].

From now on we will assume we are given a linear form L ∈ R[X ]∗2d+2 for
d ∈ N0 ∪ {∞} such that L(

∑
R[X ]2d+1) ⊆ R≥0 or what is the same due to

Corollary 3.5 and Lemma 3.3 ML is positive semidefinite, unless L is defined
explicitly in another way.

4 Truncated GNS-construction

In this section we will explain how we can define the Euclidean vector space and multiplica-
tions operators required in Eq. (19) from this positive semidefinite linear form L , in a similar
way as in the Gelfand–Neimark–Segal construction 3.11. This construction was already done
in [23] for the particular case UL = {0}.
Definition and Notation 4.1 Let L ∈ R[X ]∗2d+2 such that L(

∑
R[X ]2d+1) ⊆ R≥0. We define

and denote the truncated GNS kernel of L:

UL := {p ∈ R[X ]d+1 | L(pq) = 0 for all q ∈ R[X ]d+1}
We get the following useful result as a consequence of the assumption that the linear form

is positive semidefinite since then it satisfies the Cauchy-Schwarz inequality. We leave the
proof to the reader.

Proposition 4.2 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. The truncated GNS
kernel of L is a vector subspace in R[X ]d+1. Moreover:

UL = {p ∈ R[X ]d+1 | L(p2) = 0} (21)

Definition, Notation and Proposition 4.3 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆
R≥0. We define and denote the GNS representation space of L , as the following quotient of
vector spaces:

VL := R[X ]d+1
UL

(22)
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For every p ∈ R[X ]d+1 we will write pL to refer to the class of p in VL . We define and
denote the GNS inner product of L , in the following way:

〈pL , q L 〉L := L(pq) (23)

for every p, q ∈ R[X ]d+1. (VL , 〈 . , . 〉L), is a symmetric bilinear form.

Proof Let us prove first that 〈 . , . 〉L is well defined. To do this take p1, q1, p2, q2 ∈ R[X ]d+1
with p1L = p2L and q1L = q2L then:

〈p1L , q1
L 〉L = 〈p2L , q2

L 〉L ⇐⇒ L(p1q1) = L(p2q2) ⇐⇒ L(p1q1)− L(p2q2) = 0

⇐⇒ L(p1q1)+ L(−p2q1)− L(−p2q1)− L(p2q2) = 0

⇐⇒ L((p1 − p2)q1)− L(p2(q2 − q1)) = 0

The last equality holds since p1 − p2, q2 − q1 ∈ UL . The bilinearity and symmetry is
trivial. 〈 . , . 〉L is positive semidefinite since L(

∑
R[X ]2d+1) ⊆ R≥0. It remains to prove

that 〈 . , . 〉L is even positive definite. Indeed, for all p ∈ R[X ]d+1 with 〈pL , pL 〉L = 0 then
L(p2) = 0 and then p ∈ UL . ��
Definition and Notation 4.4 Let L ∈ R[X ]∗2d+2 such that L(

∑
R[X ]2d+1) ⊆ R≥0. For i ∈

{1, . . . , n}, we define the i-th truncated GNS multiplication operator of L as the following
map between Euclidean vector subspaces of VL , and denote by ML,i :

ML,i : �L(VL) −→ �L(VL), pL �→ �L(pXi
L
) for p ∈ R[X ]d (24)

where�L is the orthogonal projectionmap of VL onto the vector subspace { pL | p ∈ R[X ]d}
with respect to the inner product 〈 . , . 〉L .Wewill call and denote the subvector vector space:

TL := �L(VL) = { pL | p ∈ R[X ]d} (25)

of VL , the GNS-truncation of L .

Proposition 4.5 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. The i-th truncated
GNS multiplication operator of L is a self-adjoint endomorphism for <,>L .

Proof Let us demonstrate first that the i-th truncated GNS multiplication operator of L is

well defined. ML,i is well defined if and only if ML,i (pL) = 0
L
for all p ∈ UL ∩ R[X ]d

implies �L(Xi p
L
) = 0

L
for all p ∈ UL ∩ R[X ]d . Since �L(Xi p

L
) ∈ TL we can choose

q ∈ R[X ]d such that q L = �L(Xi p
L
) and then:

L(q2) = 〈q, q〉L = 〈�L(Xi p
L
),�L (Xi p

L
)〉L �L◦�L=�L= 〈�L(Xi p

L
), Xi p

L 〉L
= 〈q L , Xi p

L 〉L = L(q(Xi p)) = L((q Xi )p)
p∈UL= 0

Therefore �L(Xi p
L
) = 0

L
for all p ∈ UL . Let us see now that ML,i are self-adjoint

endomorphisms, for this let p, q ∈ R[X ]d then:

〈ML,i (pL ), q L 〉L = 〈�L (Xi p
L
), q L 〉L = 〈Xi p

L
,�L (q L )〉L = 〈Xi p

L
, q L 〉L = L((Xi p)q)

= L(p(Xi q)) = 〈pL , Xi q
L 〉L = 〈�L (pL ), Xi q

L 〉L = 〈pL ,�L (Xi q
L
)〉L = 〈pL , ML,i (q

L )〉L
��
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Remark 4.6 The GNS construction for L ∈ R[X ]∗ with L(
∑

R[X ]2) ⊆ R≥0 is the same as
the original , see Remark (3.11), modulo UL , where:

UL = {p ∈ R[X ] | L(p2) = 0} (26)

The truncated GNS multiplication operators of L commute, since R[X ]
UL

is a commutative
ring. One can easily prove that UL is an ideal. Indeed it is clear that if p, q ∈ UL then

L((p+ q)2) = 0, and if p ∈ UL and q ∈ R[X ] then L(p2q2) = L(p(pq2))
p∈UL= 0 implies

pq ∈ UL .

Let us remember a very useful result which is a particular case of a result of Smul’jan
[28]. In the recent textbook of Schmüdgen on the moment problem, one can find a proof of
the more general matrix version of Smul’jan’s result in [29, Appendix A.4].

Lemma and Notation 4.7 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. Remember
that L ′ := LR[X ]2d . Let us denote by BL the transformation matrix of the following bilinear
form with respect to the standard monomial basis:

R[X ]d+1 × R[X ]d −→ R, (p, q) �−→ L(pq)

Then it holds rank ML ′ = rank BL and for every such L linear form we can define its
respective modified moment matrix as:

M̃L :=
(

ML ′ ML ′WL

W T
L ML ′ W T

L ML ′WL

)

where WL is a matrix such that ML ′WL = DL , where DL is the submatrix of BL remaining
from eliminating the columns corresponding to the matrix ML ′ . M̃L is well defined since it
does not depend from the choice of a matrix WL such that ML ′WL = DL and it is positive
semidefinite. Moreover, for every S ∈ SymR

rd+1×rd+1 such that:
(

ML ′ ML ′WL

W T
L ML ′ S

)

� 0

There exists X ∈ R
rd+1×rd+1 such that:

S = W T
L ML ′WL + X X T

5 Gaussian quadrature rule

In this chapter we generalize the notion of Gaussian quadrature given by Dunkl and Xu
in [12, Page 108, Definition 3.8.2]. This generalization comes from the fact that the linear
form L is now assumed to be positive semidefinite instead of being positive definite, fact
that turns out to be useful, if L is a feasible solution of a SDP relaxation, as we will see
in Chapter 7. For more information about the notion of Gaussian quadrature rule we refer
to the reader to 5.11 and references therein. In this section we will prove the existence of
a quadrature rule representation for the positive semidefinite linear form L on a set that
cointains R[X ]2d+1 by providing that the truncated GNS multiplication operators commute.
We will also demonstrate that this condition is strictly more general than the very well known
condition of being flat (see definition in 5.18), condition that for its part ensure the existence
of a quadrature rule representation for L on the whole space in contrast with the quadrature
rule in a space that contains R[X ]2d+1 that we get in case the truncated GNS multiplication
operators commute.
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Proposition 5.1 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. The vector spaces TL

and R[X ]d
UL∩R[X ]d are canonically isomorphic.

Proof Let us consider the following linear map between Euclidean vector spaces:

σL : TL −→ VL ′ : pL �−→ pL ′ for every p ∈ R[X ]d (27)

where remember we denoted L ′ := L |R[X ]2d . It is well defined since for every pL , q L ∈ TL

such that pL = q L we can assume without loss of generality that p, q ∈ R[X ]d , and
therefore:

pL = q L ⇔ L((p − q)2) = 0⇔ L ′((p − q)2) = 0⇔ pL ′ = q L ′ ⇔ σL(pL) = σL(q L)

σL is also a linear isometry, since for every p, q ∈ R[X ]d we have:

〈pL , q L 〉L = L(pq) = L
′
(pq) = 〈pL ′ , q L ′ 〉L ′ = 〈σL(pL), σL(q L)〉L ′

Then σL is immediately injective. On the other side, σL is surjective since for every pL ′ ∈ VL ′
with p ∈ R[X ]d , it holds that σL(pL) = pL ′ . Thence σL is an isomorphism between vector
spaces. ��
Notation 5.2 For a linear form � ∈ R[X ]∗2d+2 such that �(

∑
R[X ]2d+1) ⊆ R≥0 wewill denote

by σ� the following isomorphism of Euclidean vector spaces already defined in Eq. (27):

σ� : T� �−→ V�′ , p� �→ p�′ , for p ∈ R[X ]d (28)

Remark 5.3 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. For v1, . . . , vr ∈ R[X ]d ,
we have v1

L , . . . , vr
L is an orthonormal basis of TL if and only if v1

L ′ , . . . , vr
L ′ is an

orthonormal basis of VL ′ .

The following Theorem 5.5 and Lemma 5.6, are very well known and we will use them to
prove Proposition 5.8. The proofs can be found respectively in [18, Page 15, Theorem 2.6]
and in [18, Page 13, Lemma 2.2].

Definition 5.4 Let I ⊆ R[X ] be an ideal. I is said to be radical when I = I(VC(I )).

Theorem 5.5 An ideal I ⊆ R[X ] is zero dimensional (i.e. |VC(I )| < ∞) if and only if the
vector space R[X ]/I is finite dimensional. Moreover |VC(I )| ≤ dim(R[X ]/I ), with equality
if and only if the ideal I is radical.

Lemma 5.6 Let I ⊆ R[X ] be an ideal. I is radical if and only if

For all g ∈ R[X ] such that g2 ∈ I �⇒ g ∈ I (29)

Proposition 5.7 Let � ∈ R[X ]∗ such that �(
∑

R[X ]2) ⊆ R≥0. Then U� is a radical ideal.

Proof In Remark 4.6 we saw that U� is an ideal, let us prove that it is radical ideal. Let
g ∈ R[X ] such that g2 ∈ U�. In particular �(g21) = 0 and this implies g ∈ U�. ��
Proposition 5.8 Let � = ∑N

i=1 λi evai ∈ R[X ]∗, with N ∈ N, λ1 > 0, . . . , λN > 0, and
a1, . . . , aN ∈ R

n then:

dim

(
R[X ]
U�

)

= |{a1, . . . , aN }|
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Proof We have the following equalities:

U� = {p ∈ R[X ] |
N∑

i=1
λi p2(ai ) = 0} = {p ∈ R[X ] | p2(ai ) = 0 for all i ∈ {1, . . . , n}}

= {p ∈ R[X ] | p(ai ) = 0 for all i ∈ {1, . . . , n}} = I({a1, . . . , aN })
and since {a1, . . . , aN } ⊆ R

n is an algebraic set, by the ideal-variety correspondence (see
[5]), it holds:

VC(I({a1, . . . , aN })) = {a1, . . . , aN }
which is the same as VC(U�) = {a1, . . . , aN }. Notice that by Theorem 5.5, it is enough
to prove that U� is radical to conclude the proof. In fact by Proposition 5.7 U� is radical.
Applying Theorem 5.5 we have the result. ��

Let us review some known bounds on the number of nodes of quadrature rules for L on
R[X ]2d+2 and on R[X ]2d+1 (see [7] and [23]).

Proposition 5.9 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. The number of nodes
N, of a quadrature rule for L satisfies:

rank ML ≤ N ≤ |VR(UL)|
Proof Let L = ∑N

i=1 λi evai ∈ R[X ]∗2d+2 for a1, . . . , aN ∈ R
n pairwise different points

and λ1, . . . , λN > 0 weights and define � := ∑N
i=1 λi evai ∈ R[X ]∗. Let us consider the

following canonical map:

R[X ]d+1
UL

↪→ R[X ]
U�

By Proposition 5.8 we have that:

rank ML = dim

(
R[X ]d+1

UL

)

≤ dim

(
R[X ]
U�

)

= N

On the other side, it holds that {a1, . . . , aN } ⊆ VC(UL)∩R
n = VR(UL), since for all p ∈ UL

we have L(p2) = 0 and then p(ai ) = 0 for all i ∈ {1, . . . , N }. this implies N ≤ |VR(UL)|.
��

Proposition 5.10 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. The number of nodes
N, of a quadrature rule for L on R[X ]2d+1 satisfies:

N ≥ dim(TL)

Proof Assume that L has a quadrature rule on R[X ]2d+1 such that:

L(p) =
N∑

i=1
λi p(ai )

for every p ∈ R[X ]2d+1, where we can assume without loss of generality that the points
a1, . . . , aN ∈ R

n are pairwise different and λ1, . . . , λN > 0 for N ∈ N. Let us set � :=∑N
i=1 λi evai ∈ R[X ]∗. Then, the following linear map between Euclidean vector spaces is

an isometry:

σ1 : TL −→ R[X ]
U�

, pL �→ p� for every p ∈ R[X ]d (30)
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It is easy to see that it is well defined since UL ⊆ U�. It holds also that σ1 is a linear
isometry since, for all p, q ∈ R[X ]d :

〈
pL , q L

〉

L
= L(pq) = �(pq) = 〈p�, q�

〉
�
= 〈σ1(pL), σ1(q

L)〉�
Since, σ1 is a linear isometry is inmmediately injective, and then:

dim(TL) ≤ dim

(
R[X ]
U�

)

And now we can apply the Proposition 5.8, to conclude the proof. ��
Definition 5.11 Let L ∈ R[X ]∗2d+2 such that L(

∑
R[X ]2d+1) ⊆ R≥0. A quadrature rule for

L on R[X ]2d+1 with dim(TL) nodes is called a Gaussian quadrature rule.

Remark 5.12 Note that in the above Definition 5.11, a Gaussian quadrature rule for L is not
a quadrature rule for L but only for the restriction of L on polynomials of one degree less.

Lemma 5.13 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. Assume that the truncated
multiplication operators commute. Then for all p ∈ R[X ]d+1 we have the following equality:

p(ML,1, . . . , ML,n)(1
L
) = �L(pL) (31)

Proof Let p = Xα for α ∈ N
n with |α| ≤ d + 1. We continue the proof by induction on |α|:

• For |α| = 0, we have that Xα = 1 then:

1(ML,1, . . . , ML,n)(1
L
) = IdVL (1

L
) = 1

L = �L(1
L
)

• Let assume the statement is true for |α| = d . Let us show it is also true for |α| = d + 1.
Let p = Xi q for some i ∈ {1, . . . , n} and q = Xβ with |β| = d , then �L(q L) = q L

since q L ∈ TL , and we have:

p(ML,1, . . . , ML,n)(1
L
) = (ML,i ◦ q(ML,1, . . . , ML,n))(1

L
)

= ML,i (q(ML,1, . . . , ML,n)(1
L
)) = ML,i (q

L) = �L(Xi q
L
) = �L(pL)

since we have proved the equality (31) for monomials then by the linearity of the orthogonal
projection, the Eq. (31) is also true for polynomials. ��
Theorem 5.14 Let L ∈ R[X ]∗2d+2 such that L(

∑
R[X ]2d+1) ⊆ R≥0 and d ∈ N0. Assume

the truncated GNS multiplication operators of L commute, and consider the set:

GL := {
s∑

i=1
pi qi | s ∈ N, pi ∈ R[X ]d+1 and qi ∈ R[X ]d +UL } (32)

then there exists a quadrature rule for L on GL with dim(TL) many nodes.

Proof Since the truncated GNS multiplication operators of L commute by Reminder 3.10
there exists an orthonormal basis v := {v1, . . . , vN } of TL consisting of common eigenvectors
of the truncatedGNSmultiplication operators of L . That is to say, there exist a1, . . . , aN ∈ R

n

such that:

ML,iv j = a j,iv j f oralli ∈ {1, . . . , n}and j ∈ {1, . . . , N }
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where N := dim(TL). Since it always holds 1
L ∈ TL , we can write:

1
L = b1v1 + · · · + bN vN (33)

for some b1, . . . , bN ∈ R. Let us define λi := b2i for all i ∈ {1, . . . , N }.
Let g = pq such that p ∈ R[X ]d+1 and q ∈ R[X ]d + UL , then using Lemma 5.13 we

have the two equalities:

�L(pL) = p(ML,1, . . . , ML,n)(1
L
) and q L = q(ML,1, . . . , ML,n)(1

L
) (34)

Using this equalities (34), using that the orthogonal projection �L is selfadjoint, using that
{v1, . . . , vN } is an orthonormal basis of TL consisting of common eigenvectors of the trun-
cated GNS multiplication operators of L and also using the Eq. (33), with the same idea as
we got the reformulation of the problem in Eq. (19) we have:

L(g) = L(pq) = 〈pL , q L 〉L q L∈TL= 〈pL ,�L(q L)〉L =

〈�L(pL), q L 〉L =
N∑

j=1
b2j p(a j )q(a j ) =

N∑

j=1
λ j p(a j )q(a j )

Then by linearity L(p) =∑N
i=1 λi p(ai ) for all p ∈ GL . It remains to prove that the nodes

of the quadrature rule for L that we got, a1, . . . , aN ∈ R
n are pairwise different, but this is

true since N = dim TL is the minimal possible number of nodes for a quadrature rule on
R[X ]2d+1 as we proved in Proposition 5.10.

��

Remark 5.15 Since R[X ]2d+1 ⊆ GL , in the conditions of Theorem 5.14 we got in particular
a Gaussian quadrature rule for the linear form L .

Corollary 5.16 Let n = 1, i.e. L ∈ R[X ]∗2d+2 with L(
∑

R[X ]2d+1) ≥ 0. Then L has a
quadrature rule on GL , defined in the Eq. (32).

Proof L has one truncated GNSmultiplication operator, therefore the hypothesis of Theorem
5.14 holds and there is a quadrature rule on GL for L . ��

Proposition 5.17 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. The following asser-
tions are equivalent:

(i) R[X ]d+1 = R[X ]d +UL

(ii) TL = VL

(iii) For all α ∈ N
n
0 with |α| = d + 1, there exists p ∈ R[X ]d such that Xα − p ∈ UL

(iv) The canonical map:

VL ′ = R[X ]d/UL ′ ↪→ R[X ]d+1/UL = VL (35)

is an isomorphism.
(v) dim(VL ′ ) = dim(VL)

(vi) The moment matrices (L(Xα+β))|α|,|β|≤d and (L(Xα+β))|α|,|β|≤d+1 have the same
rank.

(vii) ML = M̃L .
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Proof Note that the map (35) is well defined since R[X ]d ∩ UL = UL ′ . And one can see
inmediately that:

(i) ⇐⇒ (i i) ⇐⇒ (i i i) ⇐⇒ (iv) ⇐⇒ (v).

Let us show (v) ⇐⇒ (vi): (L(Xα+β))|α|,|β|≤d+1 is the transformation matrix (or the
associated matrix) of the bilinear form:

R[X ]d+1 × R[X ]d+1 −→ R, (p, q) �→ L(pq)

with respect to the standard monomial basis, and therefore it is also the transformation matrix
(or the associated matrix) of the linear map:

R[X ]d+1 −→ R[X ]∗d+1, p �→ (q �→ L(pq)) (36)

with respect to the corresponding dual basis of the standard monomial basis. The kernel of
this linear map (36) is UL , in consequence:

rank((L(Xα+β))|α|,|β|≤d+1) = dimR[X ]d+1 −UL = dim VL

reasoning in the same way:

rank((L(Xα+β))|α|,|β|≤d) = dim VL ′

Finally (vi) ⇐⇒ (vi i):

rank((L(Xα+β))|α|,|β|≤d) = rank((L(Xα+β))|α|,|β|≤d+1) ⇐⇒
rank(ML ′) = rank(ML) ⇐⇒

rank

(
ML ′ ML ′W

W T ML ′ W T ML ′W

)

= rank(ML), for all W ∈ R
sd×sd+1 ⇐⇒

M̃L = ML

��
Definition 5.18 Let L ∈ R[X ]∗2d+2 such that L(

∑
R[X ]2d+1) ⊆ R≥0. We say the linear form

L is flat if the conditions (i), (i i), (i i i), (iv), (v), (vi) and (vi i) in Proposition 5.17 are
satisfied.

Proposition 5.19 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. Suppose L is flat
then the truncated GNS operators of L commute.

Proof Assume that L is flat, and let i, j ∈ {1, . . . , n} and p ∈ R[X ]d . We want to prove:

ML,i ◦ ML, j (pL) = ML, j ◦ ML,i (pL)

Since L is flat, by the characterization (i i i) of Proposition 5.17, we can write: Xi p = p1+q1
and X j p = p2 + q2 with p1, p2 ∈ R[X ]d and q1, q2 ∈ UL . Then, the following holds:

ML, j (pL) = �L(X j p
L
) = �L(p2 + q2

L
) = �L(p2

L)+�L(q2
L) = �L(p2

L) = p2
L .

In the same way we get ML,i (pL) = p1L . Therefore:

ML,i ◦ ML, j (pL) = ML, j ◦ ML,i (pL) ⇐⇒
ML,i (p2

L) = ML, j (p1
L) ⇐⇒
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�L(Xi p2
L
) = �L(X j p1

L
)

Let f ∈ R[X ]d+1 and write �L( f ) := g for some g ∈ R[X ]d . Then it holds:
〈
�L(Xi p2 − X j p1

L
), f

L
〉

L
=
〈
Xi p2

L
,�L( f

L
)
〉

L
−
〈
X j p1

L
,�L( f

L
)
〉

L
=

〈
Xi p2

L
, gL

〉

L
−
〈
X j p1

L
, gL

〉

L
= L(Xi p2g)− L(X j p1g) =

L(Xi p2g)− L(X j p1g) = L(Xi g(X j p − q2))− L(X j g(Xi p − q1)) =
L(Xi gX j p)− L(Xi gq2)− L(X j q Xi p)− L(X j gq1) = 0

��
Here we show some examples which show that the converse of Proposition 5.19 does not
always hold.

Example 5.20 The truncated GNS multiplication operators of the following linear form:

L : R[X1, X2]4 → R, p �→ 1

4
(p(0, 0)+ p(1, 0)+ p(−1, 0)+ p(0, 1))

commute but L is not flat. Indeed, if we do the truncated GNS-construction we have:

ML =

1 X1 X2 X2
1 X1X2 X2

2
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 1 0 1
4

1
2 0 1

4
X1 0 1

2 0 0 0 0
X2

1
4 0 1

4 0 0 1
4

X2
1

1
2 0 0 1

2 0 0
X1X2 0 0 0 0 0 0

X2
2

1
4 0 1

4 0 0 1
4

=
(

AL BL

BT
L CL

)

is the associated moment matrix of the linear form L and a basis of the truncated GNS-kernel
of L is

〈
X1X2, X2

2 − X2
〉
. That is, the rank of ML is 4. Moreover since in the kernel there is

no polynomials of degree less or equal to 1, we get that the unique element in the kernel of L ′
is 0, then the truncated GNS space is R[X1,X2]1

UL′
∼= R[X1, X2]1, which implies the dimension

of the GNS-truncated space is 3 and therefore L is not flat by (vi) in Proposition 5.17. We
can also verify that L is not flat by computing M̃L . Indeed, in this case AM is invertible and
WM is uniquely defined by WM = A−1M BM , then M̃L reads:

M̃L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1
4

1
2 0 1

4
0 1

2 0 0 0 0
1
4 0 1

4 0 0 1
4

1
2 0 0 1

3 0 0
0 0 0 0 0 0
1
4 0 1

4 0 0 1
4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Since M̃L �= ML then L is not flat by (vi i) in Proposition 5.17. Let us compute the
truncated GNS multiplication operators of L . First note that:

TL ∼= R[X1, X2]1
UL ′

=
〈
1

L ′
, X1

L ′
, X2

L ′ 〉

Therefore by Remark 5.3 the truncated GNS space of L is:

TL =
〈
1

L
, X1

L
, X2

L
〉
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With the Gram-Schmidt orthonormalization process we get the following orthonormal basis
with respect to the GNS product of L:

v :=
⎧
⎨

⎩
1

L
,
√
2X1

L
,−
√
3

3
+ 4
√
3

3
X2

L
⎫
⎬

⎭

The matrices of the GNS-multiplication operators with respect to this orthonormal basis are:

A1 := M(ML,X1 , v) =
⎛

⎜
⎝

0
√
2
2 0√

2
2 0 −

√
6
6

0 −
√
6
6 0

⎞

⎟
⎠

A2 := M(ML,X2 , v) =
⎛

⎜
⎝

1
4 0

√
3
4

0 0 0√
3
4 0 3

4

⎞

⎟
⎠

It is easy to check that the truncated GNS multiplication operators of L commute, that is
ML,X1 ◦ ML,X2 − ML,X2 ◦ ML,X1 = 0. Now since ML,X1 and ML,X2 commute we can do
the simultaneous diagonalization on both of them, in order to find an orthonormal basis of
the truncation GNS of L consisting of common eigenvectors of ML,X1 and ML,X2 . To do
this we follow the same idea as in [20, Algorithm 4.1, Step 1] and compute for a matrix:

A = r1A1 + r2A2 where r21 + r22 = 1

a matrix P orthogonal such that PT AP is a diagonal matrix. In this case, we get for:

P =
⎛

⎜
⎝

1
2 −

√
6
4 −

√
6
4

0
√
2
2 −

√
2
2√

3
2

√
2
4

√
2
4

⎞

⎟
⎠

PT A1P =
⎛

⎜
⎝

0 0 0

0 −
√
6
3 0

0 0
√
6
3

⎞

⎟
⎠ and PT A2P =

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠

Looking over the proof of Theorem 5.14 we can obtain the weights λ1, λ2, λ3 ∈ R>0 through
the following operations:

PT

⎛

⎝
1
0
0

⎞

⎠ =
⎛

⎜
⎝

1
2

−
√
6
4

−
√
6
4

⎞

⎟
⎠

then λ1 = ( 12 )
2 and λ2 = λ3 = (−

√
6
4 )2. Therefore we get the following decomposition:

M̃L = 1

4
V2 (0, 1) V2 (0, 1)T + 3

8
V2

(

−
√
6

3
, 0

)

V2

(

−
√
6

3
, 0

)T

+ 3

8
V2

(√
6

3
, 0

)

V2

(√
6

3
, 0

)T

.
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Example 5.21 Let us do the truncated GNS construction for the optimal solution that we got
on the polynomial optimization problem described in Example 2.9, that is:

M := M2(y) =

1 X1 X2 X2
1 X1X2 X2

2
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 1.0000 0.7175 1.4698 0.5149 1.0547 2.1604
X1 0.7175 0.5149 1.0547 0.3694 0.7568 1.5502
X2 1.4698 1.0547 2.1604 0.7568 1.5502 3.1755
X2
1 0.5149 0.3694 0.7568 0.2651 0.5430 1.1123

X1X2 1.0547 0.7568 1.5502 0.5430 1.1123 2.2785
X2
2 2.1604 1.5502 3.1755 1.1123 2.2785 8.7737

(37)

Setting α :=M(1, 2) and β :=M(1, 3), the truncated GNS kernel of M is:

UM =
〈−α + X1,−β + X2,−α2 + X2

1,−αβ + X1X2
〉

the truncated GNS representation space is:

VM =
〈
1, X2

2

〉

we have that:

UM ∩ R[X1, X2]1 = 〈−α + X1,−β + X2〉
We need to add the polynomial 1 to UM ∩ R[X1, X2]1 to get basis of R[X1, X2]1 therefore
we have that:

R[X1, X2]1
UM ∩ R[X1, X2]1 =

〈
1
M′ 〉

Hence By Remark 5.3 we get that:

TM =
〈
1

L
〉

Since v :=
〈
1
M
〉
is also an orthonormal basis with respect to the GNS product of L we

can directly compute the matrices of truncated GNS multiplication operators ofM:

M(MM,X1 , v) = poly−1(X11)M poly−1(1) = ( 0 1 0 0 0 0
)
M

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (α)

M(MM,X2 , v) = poly−1(X21)M poly−1(1) = ( 0 0 1 0 0 0
)
M

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (β)

Therefore:

M̃ = V2(α, β)V2(α, β)T
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Then M admits a Gaussian quadrature rule. However it does not admit a quadrature rule.
Indeed, suppose M admits a quadrature rule with N nodes, then according to Proposition
5.9:

2 = rankM ≤ N ≤ |VC(UM)|
But we can easily see that VC(UM) = {(α, β)} and

rankM = 2 > |VC(UM)| = 1

prevents to M to have a quadrature rule.

Example 5.22 Let us consider the following generalized Hankel matrix in two variables of
order 2 taken from [9, Example 1.13]:

M =

1 X1 X2 X2
1 X1X2 X2

2⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 1 1 1 2 0 3
X1 1 2 0 4 0 0
X2 1 0 3 0 0 9
X2
1 2 4 0 9 0 0

X1X2 0 0 0 0 0 0
X2
2 3 0 9 0 0 28

This matrix does not have a quadrature rule representation with 3 nodes, as it has been proved
in [9, Example 1.13], however it admits a Gaussian quadrature rule. Indeed, we can compute
with the truncated GNS construction that:

M̃ = 1

6
V2(0, 0)V2(0, 0)

T + 1

3
V2(0, 3)V2(0, 3)

T + 1

2
V2(2, 0)V2(2, 0)

T .

The following corollary is a very well known result of Curto and Fialkow (see [7, corollary
5.14] ) in terms of quadrature rules instead of nonnegative measures. In [1] there is a proof
about the correspondence between quadrature rules and nonnegative measures. This result
of Curto and Fialkow uses tools of functional analysis like the the Spectral theorem and
the Riesz representation theorem. Monique Laurent gave also a more elementary proof (see
[17, corollary 1.4] ) that uses a corollary of the Hilbert Nullstellensatz and elementary linear
algebra. The main contribution of this proof is that it does not need to find a flat extension
of the linear form since the truncated GNS multiplication operators commute and we can
apply directly the Theorem 3.10, and despite it uses the Hilbert Nullstellensatz in the proof
of Theorem 5.5, we do not need to apply the Hilbert Nullstellensatz to show that the nodes
are in R

n , since the nodes are real because their coordinates are the eigenvalues of a real
symmetric matrix.

Corollary 5.23 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. Suppose L is flat then
L has a quadrature rule with rank(ML) many nodes.

Proof If L is flat by Proposition 5.19 the truncated GNS multiplication operators of L com-
mute and applying Theorem 5.14 then L has a quadrature rule on GL , see Eq. (32), with

dim(TL)
L is flat= dim(VL) = rank(ML)many nodes. Since L is flat R[X ]d+1 = R[X ]d +UL

and therefore one can easily see that GL = R[X ]2d+2. As a conclusion we get a quadrature
rule for L with rank(ML) many nodes. ��
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6 Main theorem

Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. In this section we will demonstrate
that the commutativity of the truncated GNS multiplication operators of L is equivalent to
the matrix W T

L ML ′WL being a generalized Hankel and existence of a unique flat extension
for the linear form L ′ ∈ R[X ]∗2d . The novelty of this result is the relation of the truncated
GNS construction with existing results in polynomial optimization. In [3] and [3, Theorem
4.5.4, Theorem 4.5.5] the Theorem 6.1 is proved for a linear form � ∈ R[X ]∗ not neces-
sarily positive semidefinite where instead of working with the truncated GNS multiplication
operators they defined the multiplication operators in a different way where it is necessarily

to assume dim
(
R[X ]
U�

)
<∞.

Main Theorem 6.1 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. The following
assertions are equivalent:

(i) The truncated GNS multiplication operators ML,1, . . . , ML,n pairwise commute.
(ii) There exists an (unique) L̂ ∈ R[X ]∗2d+2 such that:

⎧
⎪⎨

⎪⎩

L̂ = L on R[X ]2d+1
L̂(
∑

R[X ]2d+1) ⊆ R≥0 and
L̂ is flat.

(iii) M̃L is a generalized Hankel matrix

Proof (i) �⇒ (ii). By the Theorem 5.14 there exist a1, . . . , aN ∈ R
n pairwise different

nodes and λ1 > 0, . . . , λN > 0 weights, where N := dim(TL) such that:

L(p) =
N∑

i=1
λi p(ai ) for all p ∈ GL

where GL was defined in Eq. (32). Let us define, L̂ :=∑N
i=1 λi evai ∈ R[X ]∗2d+2. We have

shown in Theorem 5.14 that:
{

L̂ = L on R[X ]2d+1
L̂(
∑

R[X ]2d+1) ⊆ R≥0 and

So it remains to show that L̃ is flat and according to the characterization (v) of Proposition
5.17 and Proposition 5.1, this is equivalent to prove:

dim VL̂ = dim TL̂

or equivalently using Proposition 5.1, it remains to show:

dim

(
R[X ]d+1

UL̂

)

= dim

(
R[X ]d

UL̂ ∩ R[X ]d
)

Now, since UL̂ ∩ R[X ]d = UL ∩ R[X ]d and using again Proposition 5.1, we have the
following:

dim

(
R[X ]d

UL̂ ∩ R[X ]d
)

= dim

(
R[X ]d

UL ∩ R[X ]d
)
5.1= dim(TL) = N
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On the other side, we will prove dim(
R[X ]d+1

UL̂
) = N . For this purpose, let us consider the

following linear map, between Euclidean vector spaces:

R[X ]d+1
UL̂

↪→ R[X ]
U�

, pL̂ �→ p�, for p ∈ R[X ]d+1 (38)

where � :=∑N
i=1 λi evai ∈ R[X ]∗. Notice that the canonical map (38) is well defined since

UL̂ = U� ∩ R[X ]d+1 and therefore it is injective. Then

dim

(
R[X ]d+1

UL̂

)

≤ dim

(
R[X ]
U�

)
5.8= N

It remains to show N ≤ dim(
R[X ]d+1

UL̂
). But this is true, since:

N = dim(TL)
5.1= dim

(
R[X ]d

UL ∩ R[X ]d
)

= dim

(
R[X ]d

UL̂ ∩ R[X ]d
)

≤ dim

(
R[X ]d+1

UL̂

)

(ii) �⇒ (i). Since L̂ is flat, then by Proposition 5.19 we know that the truncated GNS
multiplication operators of L̂ pairwise commute. Then by applying again Theorem 5.14 there
exists a1, . . . , aN ∈ R

n , pairwise different nodes, and λ1 > 0, . . . , λN > 0 weights, with
N = dim(TL̂) such that if we set� :=∑N

i=1 λi evai ∈ R[X ]∗, we get�(p) = L̂(p) = L(p)

for all p ∈ R[X ]2d+1, and UL ⊆ UL̂ ⊆ U�. Indeed notice that UL ⊆ UL̂ since for p ∈ UL ,

L(pq) = L̂(pq) = 0 for all q ∈ R[X ]d , and since L̂ is flat this implies p ∈ UL̂ . Obviously
M�,i pairwise commute for all i ∈ {1, . . . , n}, since they are the original GNS operators
moduloU� defined in 4.6. In order to prove that ML,i pairwise commute for all i ∈ {1, . . . , n},
let us first consider the linear isometry σ1 (30) of the Proposition 5.10. We proved already
that σ1 is a linear isometry then:

dim(TL) ≤ dim(
R[X ]
U�

)

Therefore we have the following inequalities:

N = dim(TL̂) = dim

(
R[X ]d

UL̂ ∩ R[X ]d
)

= dim

(
R[X ]d

UL ∩ R[X ]d
)

=

dim(TL) ≤ dim

(
R[X ]
U�

)
5.8= N

then we have equality everywhere and dim(TL) = dim(
R[X ]
U�

). Then σ1 in this particular case
is surjective and in conclusion is an isomorphism of vector spaces. This last fact will allow
us to prove that the following diagram is commutative for all i ∈ {1, . . . , n}:

TL

σ1

ML,i
TL

R[X ]
U�

M�,i R[X ]
U�

σ−11

(39)

That is to say ML,i = σ−11 ◦ M�,i ◦ σ1. To show this let p, q ∈ R[X ]d , then we have:
〈
ML,i (pL), q L

〉

L
=
〈
�L(Xi p

L
), q L

〉

L

�L◦�L=�L=
〈
Xi p

L
, q L

〉

L
= L(Xi pq) =

123



584 Journal of Global Optimization (2021) 81:559–598

�(Xi pq) =
〈
Xi p

�
, q�

〉

�
=
〈
σ1 ◦ σ−11 (Xi p

�
), q�

〉

�
=
〈
σ−11 (Xi p

�
), σ−11 (q�)

〉

L
=

〈
σ−11 ◦ M�,i (p�), q L

〉

L
=
〈
σ−11 ◦ M�,i ◦ σ1(pL), q L

〉

L

Finally we can conclude that the truncated GNS multiplication operators of L pairwise
commute, using the commutativity of the GNS multiplication operators of �. Indeed:

ML,i ◦ ML, j = σ−11 ◦ M�,i ◦ σ1 ◦ σ−11 ◦ M�, j ◦ σ1 = σ−11 ◦ M�,i ◦ M�, j ◦ σ1 =
σ−11 ◦ M�, j ◦ M�,i ◦ σ1 = σ−11 ◦ M�, j ◦ σ1 ◦ σ−11 ◦ M�,i ◦ σ1 = ML, j ◦ ML,i (40)

(ii) �⇒ (iii). Due to L̂ = L on R[X ]2d+1 the moment matrix ML̂ is of the form:

ML̂ =
(

ML ′ ML ′WL

W T
L ML ′ S

)

� 0 (41)

for some S ∈ R
rd+1×rd+1
�0 . Since L̂ is flat it must be S = W T

L ML ′WL , uniquely determined
due to the welldefinedness of the modified moment matrix M̃L as we proved in Lemma 4.7.
Hence ML̂ = M̃L , and since ML̂ is obviously generalized Hankel, M̃L is generalized Hankel
as well.

(iii) �⇒ (ii). Define the following linear form L̂ ∈ R[X ]∗2d+2 such that for all p, q ∈
R[X ]d+1:

L̂(pq) := poly−1(p)T M̃L poly−1(q)

It is obviouly well defined since M̃L is generalized Hankel, and it is positive semidefinite
since M̃ is always positive semidefinite, see Lemma 4.7 for a proof. L̂ is flat since its moment
matrix is ML̂ = M̃L which is flat.

Note that the uniqueness of the linear form L̂ in the second statement is determined because
L̂ is flat and L̂ = L on R[X ]2d+1. Indeed, the modified moment matrix of L , by the Lemma
4.7 is of the form:

M̃L =
(

ML ′ WL ′
W T ML ′W T W T ML ′W + X T X

)

for some matrices W ∈ R
sd×rd+1 and X ∈ R

rd+1×rd+1 . Since L̂ = L on R[X ]2d+1 and L̂ is
flat its moment matrix it is uniquely determined, that is to say has the form:

ML̂ =
(

ML ′ ML ′W
W T ML ′ W T ML ′W

)

and therefore L̂ is unique. ��

Comparison between Theorem 6.1 and [3, Theorem 4.2] 6.2 6.2 It is important to point out
that the results in [3, Theorem 4.2] are more general than the main Theorem 6.1 in this
paper. Due to here we work with a linear form which is non-negative on the sum of squares
of polynomials and in [3, Theorem 4.2], is not necessary this condition. Moreover in the
flat case, the results are the same. In the other cases the multiplication operators are only
well defined with the GNS truncated construction. We refer also the reader to the paper [4,
Theorem 3.3], so far the theorem with the most general setting of this Theorem 6.1.
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The following result is a corollary of Theorem 6.1 and gives us a generalization of a
classical Theorem from Putinar [23, pages 189–190]. They proved the equivalence between
the existence of a Gaussian quadrature rule with the commutativity of the truncated GNS
multiplication operators for a positive definite linear form on R[X ]. The generalization here
comes from the fact that the result holds also if the linear form is defined on R[X ]2d+2 for
d ∈ N0 and it is positive semidefinite i.e. we do not assume UL = {0}. We also provide a
third equivalent condition in the result which is W T

L ML ′WL is a generalized Hankel matrix,
a fact which seems no to have been noticed so far.

Corollary 6.3 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. The following assertions
are equivalent:

(i) The linear form L admits a Gaussian quadrature rule.
(ii) The truncated GNS multiplication operators of L commute.

(iii) M̃L is a generalized Hankel matrix.

Proof (i) �⇒ (ii). Assume that L admits a Gaussian quadrature rule, that is to say:

L(p) =
N∑

i=1
λi p(ai ) for all p ∈ R[X ]2d+1

where N := dim(TL), λ1 > 0, . . . , λN > 0 and the points a1, . . . , aN ∈ R
n are pair-

wise different. Let us set � := ∑N
i=1 λi evai ∈ R[X ]∗. Using Proposition 5.8 we have the

following:

dim

(
R[X ]
U�

)

= N = dim TL

Let us consider the following canonical map σ2:

σ2 : R[X ]d
UL ∩ R[X ]d ↪→ R[X ]

U�

By Proposition 5.1:

dim

(
R[X ]d

UL ∩ R[X ]d
)

= dim(TL)

Therefore the canonical map σ2, is an isomorphism of Euclidean vector spaces. Now,
define the following isomorphism of Euclidean vector spaces:

β := σ2 ◦ σL

where σL was defined in (28). The proof continues in the same way we proved (ii) �⇒ (i)
of Theorem 6.1 by proving the following diagram is commutative:

TL

β

ML,i
TL

R[X ]
U�

M�,i R[X ]
U�

β−1

Notice that here β does the job of σ1 in (ii) �⇒ (i) in Theorem 6.1.
(i i) �⇒ (i).
It is a particular case of (i) �⇒ (ii) in Theorem 6.1. (i i) ⇐⇒ (i i i). It is (i)⇐⇒ (iii) in

Theorem 6.1. ��
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The following Theorem 6.4 is a slight generalization of a result of Möller and it will give
us a better lower bound in the number of nodes of a quadrature rule on R[X ]2d+1 than the
very well-known bound given in Proposition 5.10. This bound, was already found for positive
linear forms byMöller in 1975 and by Putinar in 1997 ([22,23]). This result will show that the
bound is also true for positive semidefinite linear forms and it uses the same ideas as in [23].
This generalization will help us in polynomial optimization problems in which we know the
number of global minimizers in advance, to discard optimality if this bound is bigger than
the number of global minimizers, see Example 6.6 below.

Theorem 6.4 Let L ∈ R[X ]∗2d+2 such that L(
∑

R[X ]2d+1) ⊆ R≥0. The number of nodes N
of a Gaussian quadrature rule for L satisfies:

N ≥ dim(TL)+ 1

2
max

1≤ j,k≤n
(rank[ML, j , ML,k]) (42)

Proof Assume L has a quadrature rule with N nodes, that is to say, there exist λ1 >

0, . . . , λN > 0 weights and a1, . . . , aN in R
n pairwise different nodes, such that L(p) =∑N

i=1 λi p(ai ) for all p ∈ R[X ]2d+1. Let us set � := ∑N
i=1 λi evai ∈ R[X ]∗. By using

Proposition 5.8 we have that:

dim

(
R[X ]
U�

)

= N <∞.

Then we can choose an orthonormal basis of R[X ]
U�

. Let us denote such a basis by β� :=
{β1

�
, . . . , βN

�} for β1, . . . , βN ∈ R[X ] pairwise different. Then we have that the transfor-
mation matrix of the multiplication operators M�,i with respect to this orthonormal basis
is:

(�(Xiβkβ j ))1≤k, j≤N

The set A := { p� | p ∈ R[X ]d} is a subspace of R[X ]
U�

so we can assume without loss of
generality that β1, . . . , βr ∈ R[X ]d where r := dim A is a basis of A. Then since L = � on
R[X ]2d+1, we obtain:

(M(M�,i , β�)) := (�(Xiβkβ j ))1≤k, j≤N =
(

(L(Xiβkβ j ))1≤k, j≤r Bi

Bt
i Ci

)

(43)

(M(M�,i , β�)) is the transformationmatrix of the i-th truncatedGNSmultiplication operator
of�with respect to the basisβ� andwhere Bi ∈ R

r×N−r andCi ∈ R
N−r×N−r are symmetric

matrices. We will show that βL := {β1
L
, . . . , βr

L } is an orthonormal basis of TL .
To this end, note that by Proposition 5.10, dim TL ≥ N , and then by Proposition 5.1 it

also holds that:

dim

(
R[X ]d

UL ∩ R[X ]d
)

≥ N

This last inequality together with Proposition 5.8 implies that the following canonical map:

σ2 : R[X ]d
UL ∩ R[X ]d ↪→ R[X ]

U�

is an isomorphism of Euclidean vector spaces. Then we have that:

σ := σ2 ◦ σL
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is also an isomorphism of Euclidean vector spaces, where σL was defined in (28). And then:

σ(TL) = {σ(pL) | pL ∈ TL} = {σ(pL) | p ∈ R[X ]d} = { p� | p ∈ R[X ]d} = A

Hence, we get:

σ(TL) = 〈β1
�
, . . . , βr

�〉
And since we have chosen βi ∈ R[X ]d for all i ∈ {1, . . . , r}, then we have σ(βi

L
) = βi

�
.

Therefore βL := {β1
L
, . . . , βr

L} generate a basis of TL . It remains to show that βL is
orthonormal. To see that βL is orthonormal we use the fact that σ is an isometry and that
σ(TL) = A. Indeed for 1 ≤ i, j ≤ r :

δi j = �(βiβ j ) = 〈β j
�
, βi

�〉� = 〈σ−1(β j
�
), σ−1(βi

�
)〉L = 〈β j

L
, βi

L 〉L
Therefore we have shown that:

M(M�,i , β�) =
(

M(ML,i , βL) Bi

BT
i Ci

)

where :

(M(ML,i , βL)) := (L(Xiβkβ j ))1≤k, j≤N

Using the fact that the matrices M(M�,i , β�) commute, we have the following equality:

M(ML, j , βL)M(ML,i , βL )− M(ML,i , βL)M(ML, j , βL) = Bi BT
j − B j BT

i

Therefore the following holds:

rank(Bi BT
j − B j BT

i ) ≤ 2 rank(Bi BT
j ) ≤ 2 rank(Bi ) ≤ 2min{r , N − r} ≤ 2(N − r)

and then:

rank[M(AL, j , βL), M(AL,i , βL)] ≤ 2(N − r)

Since we have already proved r = dim TL we can conclude the proof.
��

Remark 6.5 Note that we can use the previous Theorem 6.4 to show in a different way (1)⇒
(2) in the Corollary 6.3. Indeed, let us suppose that L has a Gaussian quadrature rule that is
to say with N = dim TL nodes. Using the inequality (42) we get that rank[ML, j , ML,k] = 0
for j, k ∈ {1, . . . , n} therefore the truncated GNS multiplication operators of L commute.

Example 6.6 Let us consider the following polynomial optimization problem taken from
[16]:

minimize f (x) = x21 x22 (x21 + x22 − 1)

subject to x1, x2 ∈ R

We know that the minimizers of f occur in the real points common to the partial derivatives
of f (the real gradient variety) and we can easily check that these derivatives intersect in

4 real points:
(
± 1√

3
,± 1√

3

)
∈ R

2. Therefore we know in advance that (P) has at most 4

minimizers. On the other side, an optimal solution of the Moment relaxation of order 8 (P8),
that is M := M8,1(y) read as:
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.00 0.00 0.00 62.12 −0.00 62.12 0.00 0.00 0.00 0.00
0.00 62.12 −0.00 0.00 0.00 0.00 9666.23 −0.00 8.33 −0.00
0.00 −0.00 62.12 0.00 0.00 0.00 −0.00 8.33 −0.00 9666.23
62.12 0.00 0.00 9666.23 −0.00 8.33 0.00 −0.00 0.00 0.00
−0.00 0.00 0.00 −0.00 8.33 −0.00 −0.00 0.00 0.00 −0.00
62.12 0.00 0.00 8.33 −0.00 9666.23 0.00 0.00 −0.00 0.00
0.00 9666.23 −0.00 0.00 −0.00 0.00 3150633.17 −0.00 2.27 0.00
0.00 −0.00 8.33 −0.00 0.00 0.00 −0.00 2.27 0.00 2.27
0.00 8.33 −0.00 0.00 0.00 −0.00 2.27 0.00 2.27 −0.00
0.00 −0.00 9666.23 0.00 −0.00 0.00 0.00 2.27 −0.00 3150630.69

9666.23 0.00 −0.00 3150633.17 −0.00 2.27 0.42 −0.00 −0.00 0.00
−0.00 −0.00 0.00 −0.00 2.27 0.00 −0.00 −0.00 0.00 0.00
8.33 0.00 0.00 2.27 0.00 2.27 −0.00 0.00 0.00 −0.00
−0.00 0.00 −0.00 0.00 2.27 −0.00 0.00 0.00 −0.00 −0.00

9666.23 −0.00 0.00 2.27 −0.00 3150630.69 0.00 −0.00 −0.00 0.33

9666.23 −0.00 8.33 −0.00 9666.23
0.00 −0.00 0.00 0.00 −0.00
−0.00 0.00 0.00 −0.00 0.00

3150633.17 −0.00 2.27 0.00 2.27
−0.00 2.27 0.00 2.27 −0.00
2.27 0.00 2.27 −0.00 3150630.69
0.42 −0.00 −0.00 0.00 0.00
−0.00 −0.00 0.00 0.00 −0.00
−0.00 0.00 0.00 −0.00 −0.00
0.00 0.00 −0.00 −0.00 0.33

2466755083.36 −43.48 169698627.89 −6.08 134568970.57
−43.48 169698627.89 −6.08 134568970.57 15.08

169698627.89 −6.08 134568970.57 15.08 169698562.66
−6.08 134568970.57 15.08 169698562.66 25.61

134568970.57 15.08 169698562.66 25.61 2466752654.76

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and the rank of the commutator of the truncated GNS multiplication operators is:

rank[MM,X1 , MM,X1 ] =

rank

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0.00 0.00 −0.00 −0.00 0.00 0.00 −0.00 0.00 −0.00
−0.00 0 −0.00 0.00 0.00 0.00 −0.00 0.00 0.00 −0.00
−0.00 0.00 0 0.00 0.00 0.00 0.00 −0.00 0.00 0.00
0.00 −0.00 −0.00 0 −0.00 −0.00 −0.00 −0.00 0.00 −0.00
0.00 −0.00 −0.00 0.00 0 0.00 0.00 0.00 0.00 0.00
−0.00 −0.00 −0.00 0.00 −0.00 0 −0.00 −0.00 0.00 −0.00
−0.00 0.00 −0.00 0.00 −0.00 0.00 0 −313.91 −0.00 115.50
0.00 −0.00 0.00 0.00 −0.00 0.00 313.91 0 0.18 0.00
−0.00 −0.00 −0.00 −0.00 −0.00 −0.00 0.00 −0.18 0 0.05
0.00 0.00 −0.00 0.00 −0.00 0.00 −115.50 −0.00 −0.05 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 4

If M had a quadrature rule on R[X1, X2]7 with N nodes, since f ∈ R[X1, X2]7 by Propo-
sition 3.9 (i i i) the N nodes of the quadrature rule would be global minimizers of f and
P∗ = P∗8 , and according to Theorem 6.4:

N ≥ dim(TL)+ 1

2
max

1≤ j,k≤n
(rank[ML, j , ML,k]) = 10+ 1

2
4 = 12

Therefore the polynomial f would have at least 12 global minimizers and this is a contradic-
tion with the fact that f has at most 4 global minimizers. Notice that then M does not have
a quadrature rule on R[X ]7, and in particular it does not have a quadrature rule.

7 Algorithm for extractingminimizers in polynomial optimization
problems

As an application of all the previous results in this section we find a stopping criterion for the
Moment relaxation hierarchy, in other words, we find a condition on the optimal solution of
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(Pd) L , such that L( f ) = P∗d = P∗. In this case we also find potential global minimizers.
In the article [15] Henrion and Lasserre the stopping criterion was L to be flat and in this
algorithm the stopping criterium is W T

L ML ′WL being Hankel, and as we have already seen in
Proposition 5.19 and in Example 5.21 this condition is more general. It is important to point
out that despite this condition is more general than being flat we can not ensure optimality
until we check that the candidate to minimizers are inside to the basic closed semialgebraic
set S, condition that it is always possible to ensure if the set S is a set described by linear
polynomials (in particular if the set S is R

n) or we have flat extension of some degree on
the optimal solution, that is to say rank Md(y) = rank Ms(y) for sufficient small s, see [18,
Theorem 6.18] or [8, Theorem 1.6] for a proof. At the end of this paper we summarize all
these results in an algorithm with examples and also we illustrate polynomial optimization
problems where this new stopping criterion allow us to conclude optimality even in case
where the optimal solution is not flat as we already advance in Example 2.9 and in Example
2.11.

Theorem 7.1 Let f , p1, . . . , pm ∈ R[X ]2d and L be a feasible solution of (P2d). Suppose
that W T

L AL WL is a generalized Hankel matrix. Then L has a quadrature rule on GL . More-
over, suppose the nodes of the quadrature rule lie on the basic closed semialgebraic set S,
see Eq. (1), and f ∈ R[X ]2d−1, then L( f ) = P∗ and the nodes are global minimizers.

Proof Since W T
L AL WL is generalized Hankel by Corollary 6.3 and Theorem 5.14 there exist

nodes a1, . . . , aN ∈ R
n and weights λ1 > 0, . . . , λN > 0, where N := dim TL such that:

L(p) =
N∑

i=1
λi p(ai ) for all p ∈ GL

Moreover if the nodes of this quadrature rule are contained in S by Proposition 3.9 (iii)
P∗ = P∗d = f (ai ) for i ∈ {1, . . . , N }. ��

The following Lemma was already proved in [17, lemma 2.7]. We will use it to prove the
Corollary 7.3.

Lemma 7.2 Let L =∑N
i=1 λi evai ∈ R[X ]∗2d for a1, . . . , aN ∈ R

n pairwise different points
and λ1 > 0, . . . , λN > 0 such that N = dim TL . Then there exist interpolation polynomials
q1, . . . , qN ∈ R[X ]d−1 at the points a1, . . . , aN .

Proof Let us consider the isometry map (30) already defined in Proposition 5.10:

σ1 : TL −→ R[X ]
U�

, pL �→ p�, for p ∈ R[X ]d−1

It is moreover an isomorphism of Euclidean vector spaces since dim(
R[X ]
U�

) = N by
Proposition 5.8. It is verywell known that there exist interpolation polynomials h1, . . . , hN ∈
R[X ] at the points a1, . . . , aN , such that hi (a j ) = δi, j for i, j ∈ {1, . . . , n}. Define q j

L :=
σ−1(h j

�
) for q j ∈ R[X ]d−1. Then for j ∈ {1, . . . , N }:

0 ≤
N∑

i=1
λi q

2
j (ai ) = L(q2

j ) =
〈
q j

L , q j
L
〉

L
=
〈
h j

�
, h j

�
〉

�
= �(h2

j ) = λ j

and therefore q j (ai ) = δi, j for i, j ∈ {1, . . . , N }. ��
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Corollary 7.3 Let p1, . . . , pm ∈ R[X ]1 and L be a feasible solution of (P2d) with f ∈
R[X ]2d−1. Suppose that W T

L AL WL is a generalized Hankel matrix. Then L has a quadrature
rule representation on GL , L( f ) = P∗ and the nodes are minimizers of (P).

Proof From Theorem 7.1 there exist nodes a1, . . . , aN ∈ R
n and weights λ1 > 0, . . . , λN >

0, where N := dim TL such that:

L(p) =
N∑

i=1
λi p(ai ) for all p ∈ GL

To conclude the proof of Corollary 7.3 by Theorem 7.1 it is enough to show that the nodes
a1, . . . , aN are contained in S. In Theorem 6.1 we proved that L̂ :=∑N

i=1 λi evai ∈ R[X ]∗2d
is flat. Then by Lemma 7.2 there are interpolation polynomials q1, . . . , qN at the points
a1, . . . , aN having at most degree d − 1. Since deg(q2

i p j ) ≤ 2d − 1 then q2
i p j ∈

T2d(p1, . . . , pm) and therefore:

0 ≤ L(q2
i p j ) = L̂(q2

i p j ) = λi p j (ai )

This equality proves that p j (ai ) ≥ 0 for j ∈ {1, . . . , m} and i ∈ {1, . . . , N } so we can
conclude {a1, . . . , aN } ⊆ S. ��
Remark 7.4 The above results: Theorem 7.1 and Corollary 7.3 can be written in terms of an
optimal solution of a Moment relaxation of even degree by taking as an optimal solution its
restriction to one degree less.

Remark 7.5 Note that this algorithm is not always terminating for all polynomial optimization
problems, since if we end up in step 19 then we try again to solve a new semidefinite program
and check if for this case the associated matrix has a generalized Hankel form. We refer the
reader to Chapter 6 in [18] for more details about the conditions required in the polynomial
optimization problem to find minimizers.

Remark 7.6 Note that this algorithm is not always terminating for all polynomial optimization
problems, since if we end up in step 19 then we try again to solve a new semidefinite program
and check if for this case the associated matrix has a generalized Hankel form. We refer the
reader to Chapter 6 in [18] for more details about the conditions required in the polynomial
optimization problem to find minimizers.

8 Software and examples

To find an optimal solution of the Moment relaxation and for solving the semidefinite opti-
mization problems we have used the following softwares:

• YALMIP: developed by J. Löfberg. It is a toolbox for Modeling and Optimization in
MATLAB. Published in the Journal Proceedings of the CACSD Conference in 2004. For
more information see: http://yalmip.github.io/.

• SEDUMI: developed by J. F. Sturm. It is a toolbox for optimization over symmetric
cones. Published in the Journal Optimization Methods and Software in 1999. For more
information see: http://sedumi.ie.lehigh.edu/.

• MATLAB and Statistics Toolbox Release 2016a, The MathWorks, Inc., Natick, Mas-
sachusetts, United States.
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Algorithm 1: Algorithm for extracting minimizers of (P)
Input: A polynomial optimization problem (P) (2).
Output: The minimum P∗ and minimizers a1, . . . , ar ⊆ S of (P).

1 k := max{deg f , deg p1, . . . , deg pm };
2 Compute an optimal solution M := M# k

2 $
(y) of the Moment relaxation (Pk) and also computeWM

matrix such that:

M =
(

AM AMWM
WT

MAM CM

)

;

3 if WT
MAMWM is a Hankel matrix then

4 go to 7

5 else
6 k:=k+1 and go to 2.

7 if (k even and f ∈ R[X ]k−1) or (k odd and f ∈ R[X ]k−2) then
8 go to 14

9 else
10 if CM = WM AM WM then
11 go to 14

12 else
13 k:=k+1 go to 2

14 Compute the truncated multiplication operators of M: A1,M, . . . ,An,M and go to 15.;
15 Compute an orthonormal basis {v1, . . . , vr } of TM of common eigenvectors of the truncated

multiplication operators such that Ai,Mv j = a j ,iv j and go to 16.;
16 if a1, . . . , an ∈ S then
17 go to 20

18 else
19 k:=k+1 and go to 2

20 We can conclude that the points {a1, . . . , ar } ⊆ S are minimizers of (P), and P∗ = f(ai ) for all
i ∈ {1, . . . , r}

Example 8.1 Let us apply the algorithm to the following polynomial optimization problem,
taken from [13] :

minimize f (x) = 100(x2 − x21 )
2 + 100(x3 − x22 )

2 + (x1 − 1)2 + (x2 − 1)2

subject to − 2.048 ≤ x1 ≤ 2.048

− 2.048 ≤ x2 ≤ 2.048

− 2.048 ≤ x3 ≤ 2.048

We initialize k = 4 and compute an optimal solution of the Moment relaxation (P4). In this
case, it reads as:

M := M4,1 (y) =

1 X1 X2 X3 X2
1 X1 X2 X1 X3 X2

2 X2 X3 X2
3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X1 X2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X1 X3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2 X3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 5.6502
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We can check that:

W T
MAMWM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

is a generalized Hankel matrix but f /∈ R[X1, X2, X3]3 and CM �= W T
MAMWM, so we need

to try again with k = 5 and in this case the solution of the Moment relaxation (P5) reads as:

M := M5,1 (y) =

1 X1 X2 X3 X2
1 X1 X2 X1 X3 X2

2 X2 X3 X2
3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X1 X2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X1 X3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2 X3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0014

we can calculate that:

W T
MAMWM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

is a Hankel matrix but f /∈ R[X1, X2, X3]3 and CM �= W T
MAMWM. In this case if by

rounding we can consider CM = W T
MAMWM, i.e. M flat, and continue with the algorithm

and we could obtain already the minimizers, but to be more precise let us increase to k = 6
and we get the following optimal solution in the Moment relaxation (P6):

M := M6,1(y) =
(

AM AMWM

W T
MAM CM

)

(44)

where:

AM =

1 X1 X2 X3 X2
1 X1 X2 X1 X3 X2

2 X2 X3 X2
3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
X1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
X2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
X3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
X2
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X1 X2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
X1 X3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X2 X3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
X2
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

WM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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and

CM =

X3
1 X2

1 X2 X2
1 X3 X1 X2

2 X1 X2 X3 X1 X2
3 X3

2 X2
2 X3 X2 X2

3 X2
3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

X3
1 5.2880 0.9994 0.9994 2.4826 0.9989 2.4744 0.9988 1.0004 1.0020 1.0001

X2
1 X2 0.9994 2.4826 0.9989 0.9988 1.0004 1.0020 2.4832 1.0010 1.6671 1.0007

X2
1 X3 0.9994 0.9989 2.4744 1.0004 1.0020 1.0001 1.0010 1.6671 1.0007 2.4638

X1 X2
2 2.4826 0.9988 1.0004 2.4832 1.0010 1.6671 0.9983 1.0007 1.0015 1.0001

X1 X2 X3 0.9989 1.0004 1.0020 1.0010 1.6671 1.0007 1.0007 1.0015 1.0001 1.0016
X1 X2

3 2.4744 1.0020 1.0001 1.6671 1.0007 2.4638 1.0015 1.0001 1.0016 0.9912
X3
2 0.9988 2.4832 1.0010 0.9983 1.0007 1.0015 5.2883 1.0071 2.4669 1.0072

X2
2 X3 1.0004 1.0010 1.6671 1.0007 1.0015 1.0001 1.0071 2.4669 1.0072 2.4579

X2 X2
3 1.0020 1.6671 1.0007 1.0015 1.0001 1.0016 2.4669 1.0072 2.4579 1.0040

X3
3 1.0001 1.0007 2.4638 1.0001 1.0016 0.9912 1.0072 2.4579 1.0040 14.6604

We calculate that:

W T
M AMWM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is a generalized Hankel matrix and f ∈ R[X1, X2, X3]5. By Theorem 7.3 we have optimality
with optimal value P∗ = P∗6 = 2.3527 · 10−8 ≈ 0. Finally we get that the matrices of the
truncated GNS operators with respect to the orthonormal basis v := 〈1〉M are:

M(MM,X1 , v) = (1) , M(MM,X2 , v) = (1) and M(MM,X2 , v) = (1)

The operators are in diagonal form sowe have already an orthonormal basis of TM of com-
mon eigenvectors of the truncated GNS operators of M v := 〈1〉M, then a global minimizer
is (1, 1, 1) ∈ R

n , and:

M̃ = V3(1, 1, 1)V T
3 (1, 1, 1).

Example 8.2 Let us consider the following polynomial optimization problem, defined on a
non convex closed semialgebraic set, taken from [14, problem 4.6] :

minimize f (x) = −x1 − x2

subject to x2 ≤ 2x41 − 8x31 + 8x21 + 2

x2 ≤ 4x41 − 32x31 + 88x21 − 96x1 + 36

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 4

We initialize k = 4. An optimal solution of (P4) reads as:

123



594 Journal of Global Optimization (2021) 81:559–598

M := M4,1(y)

=

1 X1 X2 X2
1 X1X2 X2

2
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 1.0000 3.0000 4.0000 9.0000 12.0000 16.0000
X1 3.0000 9.0000 12.0000 27.0000 36.0000 48.0000
X2 4.0000 12.0000 16.0000 36.0000 48.0000 64.0000
X2
1 9.0000 27.0000 36.0000 107.6075 109.0814 176.3211

X1X2 12.0000 36.0000 48.0000 109.0814 176.3211 194.9661
X2
2 16.0000 48.0000 64.0000 176.3211 194.9661 368.5439

(45)

and

M̃ =

1 X1 X2 X2
1 X1X2 X2

2⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 1.0000 3.0000 4.0000 9.0000 12.0000 16.0000
X1 3.0000 9.0000 12.0000 27.0000 36.0000 48.0000
X2 4.0000 12.0000 16.0000 36.0000 48.0000 64.0000
X2
1 9.0000 27.0000 36.0000 81.000 108.000 144.000

X1X2 12.0000 36.0000 48.0000 108.000 144.000 192.00
X2
2 16.0000 48.0000 64.0000 144.000 192.000 256.000

(46)

taking for example:

WM =
⎛

⎝
9 0 0
0 0 0
0 3 4

⎞

⎠

M̃ is a generalized Hankel matrix. The matrix of the truncated GNS multiplication oper-

ators with respect to the orthonormal basis v =
〈
1
M
〉
are:

M(MM,1, v) = ( 3 ) and M(MM,1, v) = ( 4 )

Hence the candidate to minimizer is (3, 4), however it does not lie in S, then (3, 4) cannot
be a minimizer and f (3, 4) = −7 cannot be the minimum. Then we try with a relaxation of
order k = 5. An optimal solution of the Moment relaxation (P5) is the following:

M := M5,1(y) =

1 X1 X2 X2
1 X1X2 X2

2
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 1.00 2.67 4.00 8.00 10.67 16.00
X1 2.67 8.00 10.67 24.00 32.00 42.67
X2 4.00 10.67 16.00 32.00 42.67 64.00
X2
1 8.00 24.00 32.00 72.00 96.00 128.00

X1X2 10.67 32.00 42.67 96.00 128.00 170.67
X2
2 16.00 42.67 64.00 128.00 170.67 256.00

(47)

In this caseCM = W T
MAMWM, thereforeM is flat and in particular the operators commute

by Proposition 5.19. After the simultaneous diagonalization of the truncated GNS operators
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we get that the candidates to minimizers are (0, 4) /∈ S and (3, 4) /∈ S. Hence we try with a
relaxation of order k = 6. An optimal solution of the Moment relaxation (P6) reads as:

M := M6,1 (y) =

1 X1 X2 X2
1 X1 X2 X2

2 X3
1 X2

1 X2 X1 X2
2 X3

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1 1.00 2.67 4.00 8.00 10.67 16.00 24.00 32.00 42.67 64.00

X1 2.67 8.00 10.67 24.00 32.00 42.67 72.00 96.00 128.00 170.67

X2 4.00 10.67 16.00 32.00 42.67 64.00 96.00 128.00 170.67 256.00

X2
1 8.00 24.00 32.00 72.00 96.00 128.00 216.00 288.00 384.00 512.00

X1 X2 10.67 32.00 42.67 96.00 128.00 170.67 288.00 384.00 512.00 682.66

X2
2 16.00 42.67 64.00 128.00 170.67 256.00 384.00 512.00 682.66 1024.00

X3
1 24.00 72.00 96.00 216.00 288.00 384.00 204299.70 870.25 19035.69 1583.15

X2
1 X2 32.00 96.00 128.00 288.00 384.00 512.00 870.25 19035.69 1583.15 18023.54

X1 X2
2 42.67 128.00 170.67 384.00 512.00 682.66 19035.69 1583.15 18023.54 2822.34

X3
2 64.00 170.67 256.00 512.00 682.66 1024.00 1583.15 18023.54 2822.34 58336.42

(48)

and

W T
MAMWM =

X3
1 X2

1 X2 X1X2
2 X3

2⎛

⎜
⎝

⎞

⎟
⎠

X3
1 648.00 863.99 1151.99 1535.99

X2
1 X2 863.99 1151.99 1535.99 2047.99

X1X2
2 1151.99 1535.99 2047.99 2730.65

X3
2 1535.99 2047.99 2730.65 4095.99

is a generalized Hankel matrix. However we get the same candidates to minimizers as in
the previous relaxation which do not belong to S. Finally we increase to k = 7, and we get
after rounding, the following optimal solution of (P7):

M := M7,1 (y) =

1 X1 X2 X2
1 X1 X2 X2

2 X3
1 X2

1 X2 X1 X2
2 X3

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1 1.00 2.33 3.18 5.43 7.40 10.10 12.64 17.25 23.53 32.11

X1 2.33 5.43 7.40 12.64 17.25 23.53 29.45 40.18 54.82 74.80

X2 3.18 7.40 10.10 17.25 23.53 32.11 40.18 54.82 74.80 102.07

X2
1 5.43 12.64 17.25 29.45 40.18 54.82 68.60 93.60 127.72 174.26

X1 X2 7.40 17.25 23.53 40.18 54.82 74.80 93.60 127.72 174.26 237.77

X2
2 10.10 23.53 32.11 54.82 74.80 102.07 127.72 174.26 237.77 324.42

X3
1 12.64 29.45 40.18 68.60 93.60 127.72 159.81 218.05 297.51 405.94

X2
1 X2 17.25 40.18 54.82 93.60 127.72 174.26 218.05 297.51 405.94 553.88

X1 X2
2 23.53 54.82 74.80 127.72 174.26 237.77 297.51 405.94 553.88 755.74

X3
2 32.11 74.80 102.07 174.26 237.77 324.42 405.94 553.88 755.74 1031.16

It holds that M̃ =M, therefore in particular M̃ is a generalizedHankel matrix and the trun-
cated multiplication operators commute. The matrices of the truncated GNS multiplication

operators with respect to the orthonormal basis v := {1M} are:
M(MM,X1 , v) = ( 2.3295 ) and M(MM,X2 , v) = ( 3.1785 )

Since (2.3295, 3.1785) ∈ S then it is also a minimizer and we proved optimality P∗ =
P∗7 = −5.5080.

Example 8.3 Let us consider the following polynomial optimization problem taken from [16,
example 5]:

minimize f (x) = −(x1 − 1)2 − (x1 − x2)
2 − (x2 − 3)2

subject to 1− (x1 − 1)2 ≥ 0

1− (x1 − x2)
2 ≥ 0

1− (x2 − 3)2 ≥ 0

For k = 2 and k = 3 in the algorithm, the modified moment matrix of the optimal solution
of theMoment relaxation is generalizedHankel andwe get as a potential minimizers, after the
truncated GNS construction, (1.56, 2.18) ∈ S in both relaxations, however f /∈ R[X1, X2]1
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so we can not conclude (1.56, 2.18) is a global minimum. When we increase to k = 4, and
compute an optimal solution of the Moment relaxation (P4). We get:

M := M4(y) =

1 X1 X2 X2
1 X1 X2 X2

2
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 1.0000 1.4241 2.1137 2.2723 3.0755 4.5683
X1 1.4241 2.2723 3.0755 3.9688 4.9993 6.8330
X2 2.1137 3.0755 4.5683 4.9993 6.8330 10.1595
X2
1 2.2723 3.9688 4.9993 7.3617 8.8468 11.3625

X1 X2 3.0755 4.9993 6.8330 8.8468 11.3625 15.7120
X2
2 4.5683 6.8330 10.1595 11.3625 15.7120 23.3879

and we can verify M̃ =M. Hence in this caseM is flat, then it is clear that M̃ is a generalized
Hankel matrix implying that the truncated GNS multiplication operators ofM commute. We
proceed to do the truncated GNS construction and we get the following orthonormal basis
of WM:

WM =
〈
1
M

,−2.08816+ 2.0234X1
M

,−6.0047− 0.9291X1 + 3.4669X2
M
〉

Denote v := {1M,−2.08816+ 2.0234X1
M

,−6.0047− 0.9291X1 + 3.4669X2
M} such a

basis. Then the transformation matrices of the truncated GNS multiplication operators with
respect to this basis are:

A1 := M(MM,X1 , v) =
⎛

⎝
1.4241 0.4942 0.0000
0.4942 1.5759 0.0000
0.0000 0.0000 2.0000

⎞

⎠

A2 := M(MM,X2 , v) =
⎛

⎝
2.1137 0.1324 0.2884
0.1324 2.1543 0.3361
0.2884 0.3361 2.7320

⎞

⎠

Again we follow the same idea as in [20, algorithm 4.1 Step 1] to apply simultaneous
diagonalization to the matrices A1 and A2. For this purpose we find the orthogonal matrix P
that diagonalize a matrix of the following form:

A = r1A1 + r2A2 where r21 + r22 = 1

For

P =
⎛

⎝
0.7589 0.5572 0.3371
−0.6512 0.6493 0.3929
0.0000 −0.5177 0.8556

⎞

⎠

we get the following diagonal matrices:

PT A1P =
⎛

⎝
1.0000 0.0000 −0.0000
0.0000 2.0000 0.0000
−0.0000 0.0000 2.0000

⎞

⎠ , PT A2P =
⎛

⎝
2.0000 −0.0000 0.0000
−0.0000 2.0000 −0.0000
0.0000 −0.0000 3.0000

⎞

⎠

and with the operation:

PT

⎛

⎝
1
0
0

⎞

⎠ =
⎛

⎝
0.7589
0.5572
0.3371

⎞

⎠

we get the square roots of the weights of the quadrature formula. Then we have the following
decomposition:

M = M̃ = 0.5759V2(1, 2)V T
2 (1, 2)+ 0.3105V2(2, 2)V T

2 (2, 2)+ 0.1137V2(2, 3)V T
2 (2, 3)
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In this case the points (1, 2),(2, 2), and (2, 3) lie on S, as we already know since it holds
the condition of the Theorem 1.6 in [8], and therefore they are global minimizers of (P), and
the minimum is P∗ = P∗4 = −2.
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