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Abstract
The optimization problem with sparsity arises in many areas of science and engineering such
as compressed sensing, image processing, statistical learning and data sparse approxima-
tion. In this paper, we study the dual-density-based reweighted �1-algorithms for a class of
�0-minimization models which can be used to model a wide range of practical problems.
This class of algorithms is based on certain convex relaxations of the reformulation of the
underlying �0-minimization model. Such a reformulation is a special bilevel optimization
problem which, in theory, is equivalent to the underlying �0-minimization problem under
the assumption of strict complementarity. Some basic properties of these algorithms are dis-
cussed, and numerical experiments have been carried out to demonstrate the efficiency of the
proposed algorithms. Comparison of numerical performances of the proposed methods and
the classic reweighted �1-algorithms has also been made in this paper.
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1 Introduction

Let ‖x‖0 denote the number of nonzero components of the vector x . We consider the �0-
minimization problem

min
x∈Rn

‖x‖0
s.t. ‖y − Ax‖2 ≤ ε, Bx ≤ b,

(1)

where A ∈ Rm×n and B ∈ Rl×n are two matrices with m � n and l ≤ n, y ∈ Rm and
b ∈ Rl are two given vectors, and ε ≥ 0 is a given parameter, and ‖x‖2 = (

∑n
i=1 |xi |2)1/2

is the �2-norm of x . In compressed sensing (CS), the parameter ε denotes the level of the
measurement error η = y − Ax . Clearly, the problem (1) is to find the sparsest point in the
convex set

T = {x : ‖y − Ax‖2 ≤ ε, Bx ≤ b}. (2)

The constraint Bx ≤ b is motivated by some practical applications. For instance, many signal
recovery models might include extra constraints reflecting certain special structures or prior
information of the target signals. The model (1) is general enough to cover several important
applications in compressed sensing [5,6,12,13], 1-bit compressed sensing [19,23,35] and
statistical regression [21,24,29,31]. The following two models are clearly the special cases
of (1):

(C1) min
x

{‖x‖0 : y = Ax}; (C2) min
x

{‖x‖0 : ‖y − Ax‖2 ≤ ε}.
The problem (C1) is often called the standard �0-minimization problem [7,16,35]. Some
structured sparsity models, including the nonnegative sparsity model [6,7,16,35] and the
monotonic sparsity model (isotonic regression) [32], are also the special cases of the model
(1).

Clearly, directly solving the problem (1) is generally very difficult since the �0-norm
is a nonlinear, nonconvex and discrete function. Moreover, due to the analysis in [33], the
problem (1) might have infinitely many optimal solutions so that it is needed to develop some
efficient algorithms to solve the problem (1). Some algorithms have been developed for some
special cases of the problem such as (C1) and (C2) over the past decade, including convex
optimization and heuristic methods [13,14,16,35]. For instance, by replacing the �0-norm in
problem (1) with the �1-norm, we immediately obtain the �1-minimization problem

min
x

{‖x‖1 : x ∈ T }. (3)

A more efficient class of models than (3) is the so-called weighted �1-minimization model
[8,17,35,38]. For (C1) and (C2), the reweighted �1-minimization model can be stated respec-
tively as

(E1) min
x

{‖Wx‖1 : y = Ax}; (E2) min
x

{‖Wx‖1 : ‖y − Ax‖2 ≤ ε},
where W = diag(w) is a diagonal matrix with w ∈ Rn+ being a weight vector. A single
weighted �1-minimization is not efficient enough to outperform the standard �1-minimization.
As a result, the reweighted �1-algorithm has been developed, which consists of solving a
series of individual weighted �1-minimization problems [1,2,8,17,35,38]. Taking (C1) as an
example, this method solves a series of the following reweighted �1-problems:

min
x

{(wk)T |x | : y = Ax},

where k denotes the kth iteration and the weightwk is updated by a certain rule. For example,
the first-order method would yield a good updating scheme forwk . The convergence of some
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reweighted algorithms was shown under certain conditions [9,22,35,38]. The reweighted �1-
minimization may perform better than �1-minimization on sparse signal recovery when the
initial point is suitably chosen (see, e.g., [8,9,15,22,35,38]). Although this paper focuses on
the study of reweighted algorithms, it is worth mentioning that there exist other types of
algorithms for �0-minimization problems, which have also been widely studied in the CS
literature, such as orthogonal matching pursuits [14,25,30], compressed sampling matching
pursuits [16,27], subspace pursuits [10,16], thresholding algorithms [3,11,14,16,26], and the
newly developed optimal k-thresholding algorithms [36].

Recently, a new framework of reweighted algorithms for sparse optimization problems
was proposed in [35,37,39] which is derived from the perspective of the dual density. The
key idea is to use the complementarity between the solutions of the �0-minimization and
theoretically equivalent weighted �1-minimization problem. Such complementarity property
makes it possible to reformulate the �0-minimization problem as an equivalent bilevel opti-
mization which seeks the densest solution of the dual problem of a weighted �1-problem
(see [35] for details). In this paper, we generalize this idea to the �0-minimization problem
(1) and develop new dual-density-based algorithms through convex relaxation of the bilevel
optimization. More specifically, to possibly solve the model (1), we consider the problem

min
x

{‖Wx‖1 = wT |x | : x ∈ T }, (4)

which is the weighted �1-minimization problem associated with the problem (1) for a given
weight w ∈ Rn+ (W = diag(w)). The dual-density-based reweighted �1-algorithms for (1)
are directly derived from the relaxation of the bilevel optimization reformulation of the prob-
lem (1). To this goal, we develop a sufficient condition for the strict complementarity of
the solutions of weighted �1-minimization problem associated with the problem (1) and the
solutions of its dual problem.We propose three types of convex relaxations of the bilevel opti-
mization problem in order to develop our dual-density-based �1-algorithms for the problem
(1).

The paper is organized as follows. In Sect. 2, we recall the merit functions for sparsity and
give a few examples of such functions, andwe introduce the classic reweighted �1-algorithms.
Section 3 is denoted to the development of a sufficient condition for the strict complementarity
property to hold. In Sect. 4, we show that the �0-problem (1) can be reformulated equivalently
as a bilevel optimization problem which, in theory, can generate an optimal weight for
weighted �1-minimization problems. In Sect. 5, we discuss several new relaxation strategies
for such a bilevel optimization problem, based on which we develop the dual-density-based
reweighted �1-algorithms for the problem (1). Finally,we demonstrate somenumerical results
for the proposed algorithms.

Notation The �p-norm on Rn is defined as ‖x‖p = (
∑n

i=1 |xi |p)1/p , where p ≥ 1. The
n-dimensional Euclidean space is denoted by Rn . Rn+ and Rn++ are the sets of nonnegative
and positive vectors respectively. The set ofm×n matrices is denoted by Rm×n . The identity
matrix of a suitable size is denoted by I . The complementary set of S ⊆ {1, . . . , n} is denoted
by S̄, i.e., S̄ = {1, . . . , n} \ S. For a given vector x ∈ Rn and S ⊆ {1, . . . , n} , xS is the
subvector of x supported on S.

2 Preliminary

In this section,we recall the notion ofmerit functions for sparsity and list a few such examples.
We also briefly outline the classic reweighted �1-methods for the problem (1). A function

123



752 Journal of Global Optimization (2021) 81:749–772

is called a merit function for sparsity if it can approximate the �0-norm in some senses
[35,38]. Some concave functions are shown to be the good candidates for the merit functions
for sparsity [8,20,35,37,38]. As pointed out in [38,39], we may choose a family of merit
functions in the form

�ε(s) =
n∑

i=1

ϕε(si ), s ∈ Rn+,

where ϕε is a function from R+ to R+. �ε(s) satisfies the following properties:

• (P1) for any given s ∈ Rn+, �ε(s) tends to ‖s‖0 as ε tends to 0;
• (P2) �ε(s) is twice continuously differentiable with respect to s ∈ Rn+ in the open

neighborhood of Rn+;
• (P3) ϕε(si ) is concave and strictly increasing with respect to every si ∈ R+.

We denote the set of such merit functions by

F = {�ε : �ε satisfies (P1), (P2) and (P3)}.
The following merit functions satisfying (P1)-(P3) have been used in [38,39]:

�ε(s) = n −
∑n

i=1 log(si + ε)

log ε
, s ∈ Rn+, (5)

�ε(s) =
n∑

i=1

si
si + ε

, s ∈ Rn+, (6)

�ε(s) =
n∑

i=1

(si + ε1/ε)ε, s ∈ Rn+ (7)

where ε ∈ (0, 1). In this paper, we also consider the following merit function:

�ε(s) = 2

π

n∑

i=1

arctan(
si
ε

), s ∈ Rn+, (8)

where ε > 0. It is easy to show that (8) belongs to the set F.

Lemma 1 The function (8) satisfies (P1)-(P3) on Rn+.

Proof Obviously, the function (8) satisfies (P1) and (P2). We now prove that it also satisfies
(P3). In Rn+, note that

∇�ε(s) = (∇ϕε(s1), . . . , ∇ϕε(sn))
T = 2

π

(
ε

s21 + ε2
, . . . ,

ε

s2n + ε2

)T

,

and

∇2�ε(s) = 4

π
diag

(

− εs1
(s21 + ε2)2

, . . . ,− εsn
(s2n + ε2)2

)

.

Due to si ≥ 0 and ε > 0, we have ∇ϕε(si ) > 0 and ∇2ϕε(si ) ≤ 0 for i = 1, . . . , n which
implies that �ε(s) is concave and strictly increasing with respect to every entry of s ∈ Rn+.
Thus (8) satisfies (P1), (P2) and (P3). 	
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In order to compare the algorithms proposed in later sections, we briefly introduce the classic
reweighted �1-method. Following the idea in [38] and [35], replacing ‖x‖0 with �ε(t) ∈ F
leads to the following approximation of the problem (1):

min
(x,t)

{�ε(t) : x ∈ T , |x | ≤ t}. (9)

By using the first order approximation of �ε(t) ∈ F at the point tk, the problem (9) can be
approximated by the optimization

min
(x,t)

{∇�T
ε (tk)t : x ∈ T , |x | ≤ t}, (10)

which is used to generate the new iterate (xk+1, tk+1). Due to the fact that �ε(t) is strictly
increasing with respect to each ti ∈ R+, it is evident that the iterate (xk, tk) must satisfy
tk = |xk |, which implies that

xk+1 ∈ argminx {∇�T
ε (|xk |)|x | : x ∈ T }.

This is the classic reweighted �1-minimization method described in [35].

Based on the generic convergence of revised Frank-Wolfe algorithms (FW -RD) for a
class of concave functions in [28], the generic convergence of the algorithm RA can be
obtained (see details in [28]), that is, there exists a family of merit functions �ε ∈ F such
that RA converges to a stationary point of the problem. The convergence of RA to a sparse
point in the case of linear-system constraints can be found in [35].

3 Duality, strict complementarity and optimality condition

To develop the dual-density-based reweighted �1-algorithms, we first discuss the duality and
the optimality condition of the model (4), and we give a sufficient condition for the strict
complementarity to satisfy for the model (4).

3.1 Duality and complementary condition

By introducing two variables t ∈ Rn and γ ∈ Rm such that

|x | ≤ t and γ = y − Ax,
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we can rewrite (4) as the following problem:

min
(x,γ,t)

wT t

s.t. ‖γ ‖2 ≤ ε, Bx ≤ b,
γ = y − Ax, |x | ≤ t, t ≥ 0.

(11)

Obviously, (11) is equivalent to (4). Additionally, if w ∈ Rn++, then the solution (x∗, t∗, γ ∗)
to (11) must satisfy that |x∗| = t∗ and γ ∗ = y − Ax∗, and the following relation of the
solutions of (4) and (11) is obvious.

Lemma 2 If x∗ is optimal to the problem (4), then all vectors (x∗, t∗, γ ∗) satisfying

|x∗
supp(w)| = t∗supp(w), |x∗

supp(w)
| ≤ t∗

supp(w)
and γ ∗ = y − Ax∗

are optimal to the problem (11). Moreover, if (x̄, t̄, γ̄ ) is optimal to the problem (11), then x̄
is optimal to the problem (4).

Let λ = (λ1, . . . , λ6) be the dual variable, then the dual problem of (11) can be stated as
follows:

max
λ

−λ1ε − λT
2 b + λT

3 y

s.t. BT λ2 − AT λ3 + λ4 − λ5 = 0,
w = λ4 + λ5 + λ6, ‖λ3‖2 ≤ λ1,

λi ≥ 0, i = 1, 2, 4, 5, 6, .

(12)

The strong duality between (11) and (12) can be guaranteed under suitable condition. Thus
the following results follows from the classic optimization theory [4].

Lemma 3 Let Slater conditionhold for the convexproblem (11), i.e., there exists (x∗, γ ∗, t∗) ∈
ri(T ) such that

∥
∥γ ∗∥∥

2 < ε, Bx∗ ≤ b, |x∗| ≤ t∗, y = Ax∗ + γ ∗, t∗ ≥ 0,

where ri(T ) is the relative interior of T . Then there is no duality gap between (11) and its
dual problem (12). Moreover, if the optimal value of (11) is finite, then there exists at least
one optimal Lagrangian multiplier such that the dual optimal value can be attained.

In this paper, we assume that Slater condition holds for (11). Clearly, the optimal value of
(11) is finite when w is a given vector, and hence the strong duality holds for (11) and (12)
and the dual optimal value can be attained. Actually, the set {x : Ax = y, Bx ≤ b} is in
practice not empty due to the fact that y and b are the measurements of the signals. Thus
Slater condition is a very mild sufficient condition for strong duality to hold for the problems
(11) and (12).

3.2 Optimality condition for (11) and (12)

It is well-known that for any convex minimization problem with differentiable objective
and constraint functions for which the strong duality holds, Karush-Kuhn-Tucker (KKT)
condition is the necessary and sufficient optimality condition for the problem and its dual
problem [4]. Since Slater condition holds for (11), by Lemma 3, the optimality condition for
(11) is stated as follows.
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Theorem 1 If Slater condition holds for (11), then (x∗, γ ∗, t∗) is optimal to (11) and λ∗
i , i =

1, . . . , 6 is optimal to (12) if and only if (x∗, γ ∗, t∗, λ∗) satisfies the KKT conditions for (11),
i.e., ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ ∗ = y − Ax∗, ‖γ ∗‖2 ≤ ε, x∗ ≤ t∗, − t∗ ≤ x∗,
Bx∗ ≤ b, t∗ ≥ 0, λ∗

i ≥ 0, i = 1, 2, 4, 5, 6,
λ∗
1(ε − ‖γ ∗‖2) = 0, λ∗T

2 (b − Bx∗) = 0,
λ∗T
4 (t∗ − x∗) = 0, λ∗T

5 (x∗ + t∗) = 0, λ∗T
6 t∗ = 0,

∂x L(x∗, γ ∗, t∗, λ∗) = BT λ∗
2 − AT λ∗

3 + λ∗
4 − λ∗

5 = 0,
∂γ L(x∗, γ ∗, t∗, λ∗) = (λ∗

1)∇(‖γ ∗‖2) − λ∗
3 = 0,

∂t L(x∗, γ ∗, t∗, λ∗) = w − λ∗
4 − λ∗

5 − λ∗
6 = 0.

(13)

where L(x∗, γ ∗, t∗, λ∗) = wT t∗ −λ∗
1(ε −‖γ ∗‖2)−λ∗T

2 (b− Bx∗)−λ∗T
3 (Ax∗ +γ ∗ − y)−

λ∗T
4 (t∗ − x∗) − λ∗T

5 (x∗ + t∗) − λ∗T
6 t∗.

From the optimality condition in (13), we see that t∗ and λ∗
6 satisfy the complementary

condition.

Corollary 1 Let Slater condition hold for (11). Then, for any optimal solution pair
((x∗, t∗, γ ∗), λ∗), where (x∗, t∗, γ ∗) is optimal to (11) and λ∗ = (λ∗

1, . . . , λ
∗
6) is optimal to

(12), t∗ and λ∗
6 are complementary in the sense that

(t∗)T λ∗
6 = 0, t∗ ≥ 0 and λ∗

6 ≥ 0.

Clearly, if (x∗, t∗, γ ∗) is optimal to (11) and w is positive, it must hold |x∗| = t∗. Hence by
Corollary 1, for i = 1, . . . , n, we have

|x∗
i |(λ∗

6)i = 0, (λ∗
6)i ≥ 0. (14)

When w is nonnegative, and if (x∗, t∗, γ ∗) is optimal to (11), we have

|x∗
i | = t∗i , i ∈ supp(w); |x∗

i | ≤ t∗i , i ∈ supp(w).

For i ∈ supp(w), (14) is valid. For i ∈ supp(w), due to the constraintsw = λ4 +λ5 +λ6 and
λ4, λ5, λ6 ≥ 0,wi = 0 implies that (λ∗

6)i = 0. This means (14) is also valid for i ∈ supp(w).
Therefore, we have the following result:

Theorem 2 Letw be a nonnegative given vector, and let Slater condition hold for (11). Then,
for any optimal solution pair ((x∗, t∗, γ ∗), λ∗), where (x∗, t∗, γ ∗) is optimal to (11) and
λ∗ = (λ∗

1, . . . , λ
∗
6) is optimal to (12), |x∗

i | and (λ∗
6)i are complementary in the sense that

|x∗
i |(λ∗

6)i = 0 and (λ∗
6)i ≥ 0, i = 1, . . . , n. (15)

The relation (15) implies that
∥
∥x∗∥∥

0 + ∥
∥λ∗

6

∥
∥
0 ≤ n,

where n is the dimension of x∗ or λ∗
6. Suppose |x∗| and λ∗

6 are strictly complementary, i.e.,

|x∗|T λ∗
6 = 0, λ∗

6 ≥ 0 and |x∗| + λ∗
6 > 0.

Then
∥
∥x∗∥∥

0 + ∥
∥λ∗

6

∥
∥
0 = n.
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3.3 Strict complementarity

For nonlinear optimization models, the strictly complementary property might not hold.
However, it might be possible to develop a condition such that the strict complementarity
holds for the model (4) or (11). We now develop such a condition for the problems (11) and
(12) under the following assumption.

Assumption 1 Let W = diag(w) satisfy the following properties:

• 〈G1〉 The problem (4) with w has an optimal solution which is a relative interior point
in the feasible set T , denoted by x∗ ∈ ri(T ), such that

∥
∥y − Ax∗∥∥

2 < ε, Bx∗ ≤ b,

• 〈G2〉 the optimal value Z∗ of (4) is finite and positive, i.e., Z∗ ∈ (0,∞),
• 〈G3〉 w j ∈ (0,∞] for all 1 ≤ j ≤ n.

Example 1 Consider the system ‖y − Ax‖2 ≤ ε, Bx ≤ b with ε = 10−1, where

A =
⎡

⎣
1 0 −2 5
0 1 4 −9
1 0 −2 5

⎤

⎦ , B =
⎡

⎣
−0.5 0 1 −2.5
0.5 −0.5 −1 2
−3 −3 −2 3

⎤

⎦ , y =
⎡

⎣
1

−1
1

⎤

⎦ , b =
⎡

⎣
−0.5
1

−1

⎤

⎦ .

We can see that the problem (4) with w = (1, 100, 1, 100)T has an optimal solution
(1/2, 0,−1/4, 0)T which satisfies Assumption 1.

Next we prove the following theorem concerning the strict complementarity for (11) and
(12) under Assumption 1.

Theorem 3 Let y and b be two given vectors, A ∈ Rm×n and B ∈ Rl×n be two given
matrices, and w be a given weight which satisfies Assumption 1. Then there exists a pair
((x∗, t∗, γ ∗), λ∗), where (x∗, t∗, γ ∗) is an optimal solution to (11) and λ∗ = (λ∗

1, . . . , λ
∗
6)

is an optimal solution to (12), such that t∗ and λ∗
6 are strictly complementary, i.e.,

(t∗)T λ∗
6 = 0, t∗ + λ∗

6 > 0, (t∗, λ∗
6) ≥ 0.

Proof Note that (G1) in Assumption 1 implies that Slater condition holds for (11). This,
combined with (G2), indicates from Lemma 3 that the duality gap is 0, and the optimal value
Z∗ for (12) can be attained. For any given index j : 1 ≤ j ≤ n, we consider a series of
minimization problems:

min
(x,t,γ )

−t j

s.t. ‖γ ‖2 ≤ ε, Bx ≤ b, γ = y − Ax,
|x | ≤ t, − wT t ≥ −Z∗, t ≥ 0.

(16)

The dual problem of (16) can be obtained by using the same method for developing the dual
problem of (11), which is stated as follows:

max
(μ,τ)

−μ1ε − μT
2 b + μT

3 y − τ Z∗

s.t. BTμ2 − ATμ3 + μ4 − μ5 = 0, ‖μ3‖2 ≤ μ1,

τw = μ4 + μ5 + μ6 + p, μi ≥ 0, i = 1, 2, 4, 5, 6, τ ≥ 0,

(17)

where p is a vector whose j th component is 1 and the remains are 0, i.e.,

p j = 1; pi = 0, i �= j .
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Next we show that (16) and (17) satisfy the strong duality property under Assumption 1. It
can be seen that (x, t, γ ) is a feasible solution to (16) if and only if (x, t, γ ) is an optimal
solution of (11), or if x is optimal to (4). If w satisfies the conditions in Assumption 1, then
there exists an optimal solution x̄ of (4) such that ‖y − Ax̄‖2 < ε, Bx̄ ≤ b andwT |x̄ | = Z∗,
which means there is a relative interior point (x̄, t̄, γ̄ ) of the feasible set of (16) satisfying

‖γ̄ ‖2 < ε, Bx̄ ≤ b, γ̄ = y − Ax̄, |x̄ | ≤ t̄, wT t̄ ≤ Z∗, t̄ ≥ 0.

As a result, the strong duality holds for (16) and (17) for all j . Moreover, due to (G2) and
(G3), w is positive and Z∗ is finite, so t j cannot be ∞. Thus the optimal value of all j th
minimization problems (16) is finite. It follows from Lemma 3 that for each j th optimization
(16) and (17), the duality gap is 0, and each j th dual problem (17) can achieve their optimal
value.

We use ξ∗
j to denote the optimal value of the j th problem in (16). Clearly, ξ∗

j is nonpositive,
i.e.,

ξ∗
j < 0 or ξ∗

j = 0.

Case 1: ξ∗
j < 0. Then (11) has an optimal solution (x ′, t ′, γ ′) where the j th component

in t ′ is positive since t ′j = −ξ∗
j and admits the largest value amongst all the optimal solutions

of (11). ByTheorem1, the complementary condition implies that (12) has an optimal solution
λ′ = (λ′

1, . . . , λ
′
6) where j th component in λ′

6 is 0. Then we have an optimal solution pair
((x ′, t ′, γ ′), λ′) for (11) and (12) such that t ′j > 0 and (λ′

6) j = 0. It means that

t ′j = −ξ∗
j > 0 implies (λ′

6) j = 0.

Case 2: ξ∗
j = 0. Following from the strong duality between (16) and (17), we have an

optimal solution (μ, τ) of the j th optimization problem (17) such that

−μ1ε − μT
2 b + μT

3 y = τ Z∗.

First, we consider τ �= 0. The above equality can be reduced to

−μ1ε

τ
− μT

2

τ
b + μT

3

τ
y = Z∗,

and we also have

BT μ2

τ
− AT μ3

τ
+ μ4

τ
− μ5

τ
= 0,

∥
∥
∥
μ3

τ

∥
∥
∥
2

≤ μ1

τ
, w = μ4

τ
+ μ5

τ
+ μ6

τ
+ p

τ
.

We set

λ
′
1 = μ1

τ
, λ

′
2 = μ2

τ
, λ

′
3 = μ3

τ
, λ

′
4 = μ4

τ
, λ

′
5 = μ5

τ
, λ

′
6 = μ6

τ
+ p

τ
.

Due to strong duality of (11) and (12) again, λ
′ = (λ

′
1, . . . , λ

′
6) is optimal to (12). Note that

(λ6)
′
j = (μ6) j + 1

τ
.

Thus (λ6)
′
j > 0, which follows from μ6 ≥ 0 and τ > 0. Thus

t ′j = −ξ∗
j = 0 implies (λ6)

′
j > 0.

Note that the third constraint in j th optimization of (17) requires τ �= 0 since w, μ4, μ5,
μ6 are all non-negative and p j = 1 so that the j th component in τw must be greater or equal
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than 1. Therefore, all j th optimization problems in (17) are infeasible if τ = 0. As a result, the
optimal solution (μ, τ) of (17) with τ = 0 is impossible to occur. Combining the cases 1 and
2 implies that for each 1 ≤ j ≤ n, we have an optimal solution pair ((x ( j), t ( j), γ ( j)), λ( j))

such that t ( j)j > 0 or (λ
( j)
6 ) j > 0. For all j th solution pairs, they all satisfy the following

properties:

(i) (x ( j), t ( j), γ ( j)) is optimal to (11), and (λ
( j)
1 , λ

( j)
2 , λ

( j)
3 , λ

( j)
4 , λ

( j)
5 , λ

( j)
6 ) is optimal to

(12);
(ii) the j th component of t ( j) and the j th component of λ( j)

6 are strictly complementary, such

that t ( j)j (λ
( j)
6 ) j = 0, t ( j)j + (λ

( j)
6 ) j > 0.

Denote (x∗, t∗, γ ∗, λ∗) by

x∗ = 1

n

n∑

j=1

x ( j), t∗ = 1

n

n∑

j=1

t ( j), γ ∗ = 1

n

n∑

j=1

γ ( j), λ∗
i = 1

n

n∑

j=1

λ
( j)
i , i = 1, 2, · · · , 6.

Since (x ( j), t ( j), γ ( j)), j = 1, 2, . . . , n are all optimal solutions of (11), then for any j , we
have {

wT t ( j) = Z∗,
∥
∥γ ( j)

∥
∥
2 ≤ ε, Bx ( j) ≤ b,

γ ( j) = y − Ax ( j), |x ( j)| ≤ t ( j), t ( j) ≥ 0.
(18)

It is easy to see that

wT t∗ = Z∗, Bx∗ ≤ b, γ ∗ = y − Ax∗, t∗ ≥ 0.

Moreover,

∥
∥γ ∗∥∥

2 =
∥
∥
∥
∥
∥
∥

1

n

n∑

j=1

γ ( j)

∥
∥
∥
∥
∥
∥
2

≤
n∑

j=1

∥
∥
∥
∥
1

n
γ ( j)

∥
∥
∥
∥
2

≤ ε,

|x∗| =
∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

x ( j)

∣
∣
∣
∣
∣
∣
≤ 1

n

n∑

j=1

|x ( j)| ≤ 1

n

n∑

j=1

t ( j) = t∗,

where the first inequality of each equation above follows from the triangle inequality. Then
the vector (x∗, t∗, γ ∗) satisfies

{
wT t∗ = Z∗, ‖γ ∗‖2 ≤ ε, Bx∗ ≤ b,
γ ∗ = y − Ax∗, |x∗| ≤ t∗, t∗ ≥ 0.

(19)

Thus (x∗, t∗, γ ∗) is optimal to (11), and similarly it can be proven that λ∗ = (λ∗
1, . . . , λ

∗
6) is

an optimal solution to (12). By strong duality, t∗ and λ∗
6 are complementary. Due to the above-

mentioned property (2), it is impossible to find a pair (t∗, λ∗
6) such that their j th components

are both 0. Thus, (t∗, λ∗
6) is the strictly complementary solution pair for (11) and (12). 	


Remark 1 It can be seen that the following two sets

P∗ = {i : t∗i > 0} and Q∗ = {i : (λ∗
6)i > 0}

are invariant for all pairs of strictly complementary solutions. Suppose there are two distinct
optimal pairs of the solutions of (11) and (12), denoted by (x(k), t(k), γ(k), λ(k)), k = 1, 2,
such that (t(k), λ6(k)), k = 1, 2 are strictly complementary pairs, where (x(k), t(k), γ(k)) are
optimal to (11) and (λ(k)) are optimal to (12). Due to Theorem 1, we know that

(λ6(1))
T t(2) = 0 and (λ6(2))

T t(1) = 0.
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It means that the supports of all strictly complementary pairs of (11) and (12) are invariant.
Otherwise, there exists an index j such that (t(1)) j > 0 and (λ6(2)) j > 0, leading to a
contradiction.

Since the optimal solution (x∗, t∗, γ ∗) to (11) must have t∗ = |x∗| if w > 0, the main
results of Theorem3 also imply that |x∗| andλ∗

6 are strictly complementary underAssumption
1.

4 Bilevel model for optimal weights

For weighted �1-minimization, how to determine a weight to guarantee the exact recovery,
sign recovery or support recovery of sparse signals is an important issue in CS theory. Based
on the complementary condition and strict complementarity discussed above,wemaydevelop
a bilevel optimization model for such a weight, which is called the optimal weight in [37],
[39] and [35].

Definition 1 (Optimal Weight) A weight is called an optimal weight if the solution of the
weighted �1-problem with this weight is one of the optimal solution of the �0-minimization
problem.

Let Z∗ be the optimal value of (4). Notice that the optimal solution of (4) remains the
same whenw is replaced by αw for any positive α. When Z∗ �= 0, by replacingW byW/Z∗,
we can obtain

1 = min
x

{∥∥(W/Z∗)x
∥
∥
1 : x ∈ T },

where W = diag(w). We use ζ to denote the set of such weights, i.e.,

ζ = {w ∈ Rn+ : 1 = min
x

{‖Wx‖1 , x ∈ T }}. (20)

Clearly,
⋃

α>0
αζ is the set of weights such that (4) has a finite and positive optimal value,

and ζ is not necessarily bounded. Under Slater condition, Theorem 2 implies that given
any w ∈ ζ , any optimal solutions of (11) and (12), denoted by (x∗(w), t∗(w), γ ∗(w)) and
λ∗(w) = (λ∗

1(w), . . . , λ∗
6(w)), satisfy that |x∗(w)| and λ∗

6(w) are complementary, i.e.,
∥
∥x∗(w)

∥
∥
0 + ∥

∥λ∗
6(w)

∥
∥
0 ≤ n. (21)

Ifw∗ satisfies Assumption 1, then Slater condition is automatically satisfied for (11) withw∗
and (21) is also valid. Moreover, by Theorem 3, there exists a strictly complementary pair
(|x∗(w∗)|, λ∗

6(w
∗)) such that

∥
∥x∗(w∗)

∥
∥
0 + ∥

∥λ∗
6(w

∗)
∥
∥
0 = n.

If w∗ is an optimal weight (see Definition 1), then λ∗
6(w

∗) must be the densest slack variable
among all w ∈ ζ , and locating a sparse vector can be converted to

λ∗
6(w

∗) = argmax{∥∥λ∗
6(w)

∥
∥
0 : w ∈ ζ }.

Inspired by the above fact, we develop a theorem under Assumption 2 which claims that
finding a sparsest point in T is equivalent to seeking the proper weight w such that the dual
problem (12) has the densest optimal variable λ6. Such weights are optimal weights and
can be determined by certain bilevel optimization. This idea was first introduced by Zhao
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and Kočvara [37] (and also by Zhao and Luo [39]) to solve the standard �0-minimization
(C1). In this paper, we generalize their idea to solve the model (1) by developing new convex
relaxation technique for the underlying bilevel optimization problem. Before that we make
the following assumption:

Assumption 2 Let ν be an arbitrary sparsest point in T given in (2). There exists a weight
w̄ ≥ 0 such that

• 〈H1〉 the problem (4) with w̄ has an optimal solution x̄ such that ‖x̄‖0 = ‖ν‖0,
• 〈H2〉 there exists an optimal variable in (12) with w̄, denoted as λ̄, such that λ̄6 and x̄

are strictly complementary,
• 〈H3〉 the optimal value of (4) with w̄ is finite and positive.

An example for the existence of a weight satisfying Assumption 2 is given in the remark
following the next theorem.

Theorem 4 Let Slater condition and Assumption 2 hold. Consider the bilevel optimization

max
(w,λ)

‖λ6‖0
s.t. BT λ2 − AT λ3 + λ4 − λ5 = 0, ‖λ3‖2 ≤ λ1,

−λ1ε − λT
2 b + λT

3 y = min
x

{‖Wx‖1 : x ∈ T },
w = λ4 + λ5 + λ6 ≥ 0, λi ≥ 0, i = 1, 2, 4, 5, 6,

(22)

where W = diag(w), and T is given as (2). If (w∗, λ∗) is an optimal solution to the above
optimization problem (22), then any optimal solution x∗ to

min
x

{∥∥W ∗x
∥
∥
1 : x ∈ T }, (23)

is a sparsest point in T , where W ∗ = diag(w∗).

Proof Let ν be a sparsest point in T . Suppose that (w∗, λ∗) is an optimal solution of (22).
We now prove that any optimal solution to (23) is a sparsest point in T under Assumption 2.
Let w′ be a weight satisfying Assumption 2. This means that (4) with W = diag(w′) has an
optimal solution x ′ such that

∥
∥x ′∥∥

0 = ‖ν‖0. Moreover, there exists a strictly complementary
pair (x ′, λ′

6) satisfying ∥
∥x ′∥∥

0 + ∥
∥λ′

6

∥
∥
0 = n = ∥

∥λ′
6

∥
∥
0 + ‖ν‖0 , (24)

where λ′ = (λ′
1, . . . , λ

′
6) is the dual optimal solution of (12) with w = w′, i.e.,

max
λ

−λ1ε − λT
2 b + λT

3 y

s.t. BT λ2 − AT λ3 + λ4 − λ5 = 0, ‖λ3‖2 ≤ λ1,

w′ = λ4 + λ5 + λ6, λi ≥ 0, i = 1, 2, 4, 5, 6.

(25)

By Lemma 3, Slater condition implies that strong duality holds for the problems (25) and
(11) with w′. Note that the optimal values of (11) and (4) with w′ are equal and finite so that
(w′, λ′) is feasible to (22). Let x∗ be an arbitrary solution to (23). Note that (11) with w∗ is
equivalent to (23), to which the dual problem is

max
λ

−λ1ε − λT
2 b + λT

3 y

s.t. BT λ2 − AT λ3 + λ4 − λ5 = 0, ‖λ3‖2 ≤ λ1,

w∗ = λ4 + λ5 + λ6, λi ≥ 0, i = 1, 2, 4, 5, 6.

(26)

123



Journal of Global Optimization (2021) 81:749–772 761

Moreover, λ∗ = (λ∗
1, . . . , λ

∗
6) is feasible to (26) and the third constraint of (22) implies

that there is no duality gap between (11) with w∗ and (26). Thus, by strong duality,
λ∗ = (λ∗

1, . . . , λ
∗
6) is an optimal solution to (26). Therefore, by Theorem 2, |x∗| and λ∗

6
are complementary. Hence, we have

∥
∥x∗∥∥

0 ≤ n − ∥
∥λ∗

6

∥
∥
0 . (27)

Since (w∗, λ∗) is optimal to (22), we have

∥
∥λ′

6

∥
∥
0 ≤ ∥

∥λ∗
6

∥
∥
0 . (28)

Plugging (24) and (28) into (27) yields

∥
∥x∗∥∥

0 ≤ n − ∥
∥λ∗

6

∥
∥
0 ≤ n − ∥

∥λ′
6

∥
∥
0 = ∥

∥x ′∥∥
0 = ‖ν‖0 ,

which implies ‖x∗‖0 = ‖ν‖0 , due to the assumption that ν is the sparsest point in T . Then
any optimal solution to (24) is a sparsest point in T . 	


Given Assumption 2 and Slater condition, finding a sparsest point in T is tantamountly
equal to look for the densest dual solution via the bilevel model (22).

By the definition of optimal weights, Theorem 4 implies that w∗ is an optimal weight by
which a sparsest point can be obtained via (4). If there is no weight satisfying the properties
in Assumption 2, a heuristic method for finding a sparse point in T can be also developed
from (21) since the increase in ‖λ6(w)‖0 leads to the decrease of ‖x(w)‖0 to a certain level.
Before we close this section, we make some remarks for Assumption 2.

Remark 2 Consider Example 1. It can be seen that (0, 0, 2, 1)T is a sparsest point in the
feasible set T of this example. If we choose weight w = (100, 100, 1, 1)T , then we can
see that (0, 0, 2, 1)T is the unique optimal solution of (4) which satisfies 〈H1〉 and 〈H3〉
in Assumption 2. In addition, (0, 0, 2, 1)T is a relative interior point in the feasible set T .
This, combined with the fact that weights are positive, implies that Assumption 1 is satisfied,
and hence the strict complementarity is satisfied which means that 〈H2〉 in Assumption
2 is satisfied. Specifically, we can find an optimal dual solution λ̄ = (λ̄1, . . . , λ̄6) with
λ̄6 = (32.27, 31.71, 0, 0)T . Therefore, in this example, the weight w = (100, 100, 1, 1)T

satisfies Assumption 2.

5 Dual-density-based algorithms

Note that it is difficult to solve a bilevel optimization.Wenowdevelop three types of relaxation
models for solving the bilevel optimization (22).

5.1 Relaxationmodels

Zhao and Luo [39] presented a method to relax a bilevel problem similar to (22). Motivated
by their idea, we now relax our bilevel model. We focus on relaxing the difficult constraint
−λ1ε − λT

2 b + λT
3 y = minx {‖Wx‖1 : x ∈ T } in (22). By replacing the objective function

‖λ6‖0 in (22) by �ε(λ6) ∈ F, where λ6 ≥ 0, we obtain an approximation problem of (22),
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i.e.,
max
(w,λ)

�ε(λ6)

s.t. BT λ2 − AT λ3 + λ4 − λ5 = 0, ‖λ3‖2 ≤ λ1
−λ1ε − λT

2 b + λT
3 y = minx {‖Wx‖1 : x ∈ T },

w = λ4 + λ5 + λ6 ≥ 0, λi ≥ 0, i = 1, 2, 4, 5, 6.

(29)

We recall the set of the weights ζ given in (20). It can be seen that w being feasible to (29)
implies that (11) and (12) satisfy the strong duality and have the same finite optimal value,
which is equivalent to the fact that w ∈ ζ when Slater condition holds for (11). Moreover,
note that the constraints of (29) indicate that for any givenw ∈ ζ , λ satisfying the constraints
of (29) is optimal to (12). Therefore the purpose of (29) is to find the densest dual optimal
variable λ6 for all w ∈ ζ . Thus (29) can be rewritten as

max
(w,λ)

�ε(λ6)

s.t. w ∈ ζ, BT λ2 − AT λ3 + λ4 − λ5 = 0, ‖λ3‖2 ≤ λ1,

w = λ4 + λ5 + λ6 ≥ 0, λi ≥ 0, i = 1, 2, 4, 5, 6,
where λ = (λ1, . . . , λ6) is optimal to
maxλ{−λ1ε − λT

2 b + λT
3 y : ‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6,

BT λ2 − AT λ3 + λ4 − λ5 = 0, λi ≥ 0, i = 1, 2, 4, 5, 6}.

(30)

Denote the feasible set of (12) by

D(w) :={λ : BT λ2 − AT λ3 + λ4 − λ5 = 0, ‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

λi ≥ 0, i = 1, 2, 4, 5, 6}.
(31)

Clearly, the problem (30) can be presented as

max
(w,λ)

�ε(λ6)

s.t. w ∈ ζ, λ ∈ D(w), where λ is optimal to
maxλ{−λ1ε − λT

2 b + λT
3 y : λ ∈ D(w)}.

(32)

An optimal solution of (32) can be obtained by maximizing �ε(λ6) which is based on
maximizing −λ1ε −λT

2 b+λT
3 y over the feasible set of (32). Therefore,�ε(λ6) and−λ1ε −

λT
2 b+λT

3 y are required to bemaximized over the dual constraints λ ∈ D(w) for allw ∈ ζ . To
maximize both the objective functions, we consider the followingmodel as the first relaxation
of (22):

max
(w,λ)

−λ1ε − λT
2 b + λT

3 y + α�ε(λ6)

s.t. w ∈ ζ, λ ∈ D(w).
(33)

where α > 0 is a given small parameter.
Now we develop the second type of relaxation of the bilevel optimization (22). Note

that under Slater condition, for all w ∈ ζ , the dual objective −λ1ε − λT
2 b + λT

3 y must be
nonnegative and is homogeneous inλ = (λ1, . . . , λ6).Moreover, ifw ∈ ζ , then−λ1ε−λT

2 b+
λT
3 y has a nonnegative upper bound due to the weak duality. Inspired by this observation, in

order to maximize both �ε(λ6) and −λ1ε − λT
2 b + λT

3 y, we may introduce a small positive
α and consider the following approximation:

max
(w,λ)

−λ1ε − λT
2 b + λT

3 y

s.t. w ∈ ζ, λ ∈ D(w), − λ1ε − λT
2 b + λT

3 y ≤ α�ε(λ6).
(34)
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The constraint
− λ1ε − λT

2 b + λT
3 y ≤ α�ε(λ6) (35)

implies that �ε(λ6) might be maximized when −λ1ε − λT
2 b + λT

3 y is maximized if α is
small and suitably chosen.

Finally, we consider the following inequality in order to develop third type of convex
relaxation.

− λ1ε − λT
2 b + λT

3 y + f (λ6) ≤ γ, (36)

where γ is a given positive number, f (λ6) is a certain function depending on ϕε((λ6)i ),
which satisfies the following properties:

(I1) f (λ6) is convex and continuous with respect to λ6 ∈ Rn+;
(I2) maximizing �ε(λ6) over the feasible set can be equivalently or approximately achieved

by minimizing f (λ6).

There are many functions satisfying the properties (I1) and (I2). For instance, we may
consider the following functions:

(J1) e−�ε(λ6); (J2) − log(�ε(λ6) + σ1); (J3) 1
�ε(λ6)+σ1

; (J4) 1
n

∑n
i=1

1
ϕε((λ6)i )+σ1

,

where σ1 is a small positive number. Now we claim that the functions (J1)-(J4) satisfy (I1)
and (I2). Clearly, the functions (J1), (J2) and (J3) satisfy (I2). Note that

1

�ε(λ6) + σ1
≤ 1

n

n∑

i=1

1

ϕε((λ6)i ) + σ1
.

Thus theminimizationof 1
n

∑n
i=1

1
ϕε((λ6)i )+σ1

is likely to imply theminimizationof 1
�ε(λ6)+σ1

,
which means the maximization of�ε(λ6). It is easy to check that the functions (J1)-(J4) are
continuous in λ6 ≥ 0. It is also easy to check that (J1)-(J3) are convex for λ6 ≥ 0. Note that
for any ϕε((λ6)i ) > −σ1, i = 1, . . . , n, all functions 1

ϕε((λ6)i )+σ1
are convex. Therefore their

sum is convex for λ6 ≥ 0 as well. Thus all functions (J1)-(J4) satisfy the two properties
(I1) and (I2). Moreover, the functions (J1), (J3) and (J4) have finite values even when
(λ6)i → ∞.

Replacing −λ1ε − λT
2 b + λT

3 y ≤ α�ε(λ6) in (34) by (36) leads to the model

max
(w,λ)

−λ1ε − λT
2 b + λT

3 y

s.t. w ∈ ζ, λ ∈ D(w), − λ1ε − λT
2 b + λT

3 y + f (λ6) ≤ γ.
(37)

Clearly, the convexity of f (λ6) guarantees that (37) is a convex optimization. Moreover,
(36) and the property (I2) of f (λ6) imply that maximizing −λ1ε − λT

2 b + λT
3 y is roughly

equivalent to minimizing f (λ6) over the feasible set, and thus maximizing �ε(λ6). The
properties (I1) and (I2) ensure that the problem (37) is computationally tractable and is a
certain relaxation of (32) and (22).

5.2 One-step dual-density-based algorithm

Note that the set ζ has no explicit form, and we need to deal with the set ζ to solve three
relaxation problems (33), (34) and (37). First we relax w ∈ ζ to w ∈ Rn+ and obtain three
convex minimization models. In this case, the difficulty for solving the problems (33) and
(34) is that �ε(λ6) might attain an infinite value when wi → ∞. We may introduce a
bounded merit function �ε ∈ F into (33) and (34) so that the value of �ε(λ6) is finite.
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Table 1 DDA(I)–DDA(III) Name Constants Dual-density-based problem

DDA(I) α (38)

DDA(II) α (39)

DDA(III) γ (40)

Moreover, to avoid the infinite optimal value in the model (33), w ∈ ζ can be relaxed to
−λ1ε − λT

2 b+ λT
3 y ≤ 1 due to the weak duality. Based on the above observation, we obtain

a solvable relaxation for (33) and (34) respectively as follows:

max
(w,λ)

−λ1ε − λT
2 b + λT

3 y + α�ε(λ6)

s.t. w ∈ Rn+, λ ∈ D(w), − λ1ε − λT
2 b + λT

3 y ≤ 1.
(38)

and
max
(w,λ)

−λ1ε − λT
2 b + λT

3 y

s.t. w ∈ Rn+, λ ∈ D(w), − λ1ε − λT
2 b + λT

3 y ≤ α�ε(λ6).
(39)

Due to the constraints (36), the optimal value of the problem (37) is finite if it is feasible. By
replacing ζ by Rn+ in (37) , we also obtain a new relaxation of (22):

max
(w,λ)

−λ1ε − λT
2 b + λT

3 y

s.t. w ∈ Rn+, λ ∈ D(w), − λ1ε − λT
2 b + λT

3 y + f (λ6) ≤ γ.
(40)

Thus, a new weighted �1-algorithm for the model (1) is developed:

In this paper, we consider the forms DDA(I)–DDA(III). The corresponding constants, the
dual-density-based problems for these algorithms are listed in Table 1.

5.3 Dual-density-based reweighted �1-algorithm

Now we develop reweighted �1-algorithms for (1) based on (32). To this need, we introduce
a bounded convex setW forw to approximate the set ζ . By replacing ζ withW in the models
(33), (34) and (37), we obtain the following three types of convex relaxation models of (22):

max
(w,λ)

−λ1ε − λT
2 b + λT

3 y + α�ε(λ6)

s.t. w ∈ W, λ ∈ D(w), − λ1ε − λT
2 b + λT

3 y ≤ 1,
(41)

max
(w,λ)

−λ1ε − λT
2 b + λT

3 y

s.t. w ∈ W, λ ∈ D(w), − λ1ε − λT
2 b + λT

3 y ≤ α�ε(λ6),
(42)

max
(w,λ)

−λ1ε − λT
2 b + λT

3 y

s.t. w ∈ W, λ ∈ D(w), − λ1ε − λT
2 b + λT

3 y + f (λ6) ≤ γ.
(43)
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Inspired by [37] and [39], we can choose the following bounded convex set:

W =
{

w ∈ Rn+ : (x0)Tw ≤ M, 0 ≤ w ≤ M∗e
}

, (44)

where x0 is the initial point, which can be the solution of the �1-minimization (3), and M ,
M∗ are two given numbers such that 1 ≤ M ≤ M∗. We also consider the set

W =
{

w ∈ Rn+ : wi ≤ M

|x0i | + σ2

}

, (45)

where both M and σ2 are two given positive numbers. (x0)Tw ≤ M in (44) andwi ≤ M
|x0i |+σ2

in (45) are motivated by the idea of existing reweighted algorithm in [8,37,39]. The set W
can be seen as not only a relaxation of ζ , but also being used to ensure the boundedness of
�ε(λ6). Based on (44) and (45), we update W in the algorithms either as:

Wk =
{

w ∈ Rn+ : (xk−1)Tw ≤ M, 0 ≤ w ≤ M∗e
}

, (46)

or

Wk =
{

w ∈ Rn+ : wi ≤ M

|xk−1
i | + σ2

}

. (47)

This yields the following algorithm (DRA for short).

The initial step of DRA is to solve DDA and to get the initial weight w0 and the set W1.
Different choice of the dual-density-based problems, dual-density-based weighted problem
and the setW yields different forms of DRA. In this paper, we consider the following forms
of DRA(I)–DRA(VI). The corresponding constants, W , DDA and the dual-density-based
weighted problems for these algorithms are listed in the following table.
Notice that w is restricted in the bounded set W so that the optimal value of (41) cannot be
infinite. Therefore, we can use the bounded or unbounded merit functions in �ε ∈ F, for
example, (5), (6), (7) and (8). In addition, M can not be too small. If M is a sufficiently small
positive number, there might be a gap between the maximum of −λ1ε − λT

2 b+ λT
3 y and the

maximum of �ε(λ6) over the feasible set.
The existing reweighted �1-algorithm, RA, always needs an initial iterate, which is often

obtained by solving a simple �1-minimization. Unlike these existing methods, DRA(I)–
DRA(VI) can create an initial iterate by themselves.
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Table 2 DRA(I)–DRA(VI)

Name Constants DDA W Dual-density-based weighted problem

DRA(I) α, M, M∗ DDA(I) (46) (41)

DRA(II) α, σ2, M DDA(I) (47) (41)

DRA(III) α, M, M∗ DDA(II) (46) (42)

DRA(IV) α, σ2, M DDA(II) (47) (42)

DRA(V) γ, M, M∗ DDA(III) (46) (43)

DRA(VI) γ, σ2, M DDA(III) (47) (43)

6 Numerical experiments

In this section, by choosing proper parameters and merit functions, the performance of the
dual-density-based reweighted �1-algorithms DRA(I)–DRA(VI) will be demonstrated. We
use the random examples of convex sets T in our experiments. We first set the noise level ε
and the parameter ε of merit functions. The sparse vector x∗ and the entries of A and B (if B
is not deterministic) are generated from Gaussian random variables with zero mean and unit
variance. For each generated (x∗, A, B), we set y and b as follows:

y = Ax∗ + c1ε

‖c‖2 c, Bx∗ + d = b, (48)

where d ∈ Rl+ is generated as absolute Gaussian random variables with zero mean and unit
variance, and c1 ∈ R and c ∈ Rm are generated as Gaussian random variables with zeromean
and unit variance. Then the convex set T is generated, and all examples of T are generated
this way. We use ∥

∥x ′ − x∗∥∥ /‖x∗‖ ≤ 10−5 (49)

as our default stopping criterion where x ′ is the solution found by the algorithm, and one
success is counted as long as (49) is satisfied. In our experiments, we make 200 random
examples for each sparsity level. All the algorithms are implemented in Matlab 2018a, and
all the convex problems are solved by CVX (Grant and Boyd [18]).

To demonstrate the performance of the dual-density-based reweighted �1-algorithms listed
in Table 2, we mainly consider the two cases in our experiments

(N1) A ∈ R50×200, B = 0 and b = 0;
(N2) A ∈ R50×200, B ∈ R50×200.

For all cases, we implement the algorithms DRA(I)–DRA(VI), and compare their perfor-
mance in finding the sparse vectors in T with �1-minimization and the algorithm RA with
different merit functions.

6.1 Merit functions and parameters

The default parameters and merit functions in DRA(I) and DRA(II) are set as that of the
algorithms in [39]. We set (6) as the default merit function for DRA(III) and DRA(IV), and
set (J3) with

f (λ6) = 1

�ε(λ6) + σ1
, �ε(λ6) =

n∑

i=1

(λ6)i

(λ6)i + ε
, λ6 ∈ Rn+ (50)
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Table 3 Default parameters in algorithms

Algorithm/Parameter α γ M M∗ σ1 σ2 ε

DRA(I) 10−8 102 103 10−15

DRA(II) 10−8 102 10−1 10−15

DRA(III) 10−5 10 10 10−15

DRA(IV) 10−5 10 10−1 10−15

DRA(V) 1 10 10 10−1 10−15

DRA(VI) 1 10 10−1 10−1 10−15

Table 4 Algorithms to be
compared

Name Merit function (Reweighted) Methods

�1 ‖x‖1 �1-minimization

CWB
∑n

i=1 log(|xi | + ε) RA

ARCTAN (8) RA

as the default function for DRA(V) and DRA(VI). We choose the noise level ε = 10−4 for
both cases. The default parameters for each dual-density-based reweighted �1-algorithm are
summarized in Tables 3 and 4. The algorithms in Table 4 will be compared with DRA(I)–
DRA(VI).

Candès, Wakin and Boyd in [8] developed a reweighted algorithm which is referred to as
CWB in this section. From the perspective of the reweighted �1-algorithm (RA) in [38], CWB
is a special case of RA using the merit function

∑n
i=1 log(|xi | + ε). The ARCTAN is also a

special case of RA using the function (8) as the merit function for sparsity. CWB, ARCTAN
and �1-minimization (3) will be compared with DRA(I)–DRA(VI) in sparse vector recovery
in this section. The parameter ε in RA is set to 10−1 or 10−5, and the remaining parameters
are the same as DRA.

6.2 Case (N1)

Now we perform numerical experiments to show the behaviors of the dual-density-based
reweighted �1-algorithms in two cases (N1) and (N2). Note that in the case of (N1), the model
(1) is reduced to the sparse model (C2). The numerical results are given in Fig. 1(i)–(iii),
Note that there are five legends in each figure (i)–(iii), corresponding to �1-minimization,
the dual-density-based reweighted �1-algorithms with one iteration or five iterations. For
instance, in (ii), we compare DRA(III) and DRA(IV) which all perform either one iteration
or five iterations. For example, (DRA(III),1) and (DRA(III),5) represent DRA(III) with one
iteration and five iterations, respectively.

It can be seen that the dual-density-based reweighted �1-algorithms are performing better
when the number of iteration is increased and all of them outperform �1-minimization in
our experiment environment, while the performance of DRA(I) with one or five iterations
is similar to the performance of �1-minimization. (i)–(iii) indicate the same phenomena: the
algorithms based on (47) might achieve more improvement than the ones based on (46) when
the number of iteration is increased. For example, in (iii), the success rate of DRA(VI) with
five iterations has improved by nearly 25% compared with those with one iteration for each
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(i) DRA(I) and DRA(II)
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(ii) DRA(III) and DRA(IV)
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(iii) DRA(V) and DRA(VI)
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CWB,10-1

CWB,10-5

ARCTAN,10-1

ARCTAN,10-5

DRA(II),I=5
DRA(IV),I=5
DRA(VI),I=5

(iv) CWB, ARCTAN

Fig. 1 (i)–(iii) Comparison of the performance of the dual-density-based reweighted �1-algorithms by per-
forming 1 iteration and 5 iterations respectively. (iv) Comparison of DRA and RA

sparsity from 14 to 20, while DRA(V) has only improved its performance by 10% after
increasing the number of iterations. We filter the algorithms with the best performance from
(i)–(iii) in Fig. 1 and merge them into (iv) together with CWB and ARCTAN in Fig. 1. It
can be seen that DRA(IV) and DRA(VI) outperform CWB and ARCTAN, especially as ε

in CWB and ARCTAN is relatively small, and they also outperform the �1-minimization as
well.

6.3 Case (N2)

Although the performance of ARCTAN and DRA(VI) is slightly better than that of
DRA(II) and CWB in the case (N2), these algorithms can compete to each other in find-
ing sparse vectors at high sparsity level in many situations (see Fig. 2). The other behaviors
are similar to the case (N1). We compare the reweighted �1-algorithms with updating rule
(46) and (47), which are shown in (i) and (ii) in Fig. 3, respectively. For the algorithms using
(46), when executing 5 iterations, Fig. 3(i) shows that DRA(III) and DRA(V) perform much
better than DRA(I). For the algorithms using (47), when executing 5 iterations, Fig. 3(ii)
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(i) DRA(I) and DRA(II)
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(ii) DRA(III) and DRA(IV)
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(iii) DRA(V) and DRA(VI)
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(iv) CWB, ARCTAN

Fig. 2 (i)–(iii) Comparison of the performance of DRA with one iteration and five iterations. (iv) Comparison
of the performance of the DRA and RA

indicates that the success rates of finding the sparse vectors in T by DRA(II) and DRA(VI)
are very similar.

Finally, we carry out experiment to show how the parameter ε of merit functions affect
the performance of locating the sparse vectors in T by dual-density-based reweighted �1-
algorithms. In Fig. 4, some numerical results for dual-density-based reweighted algorithms
with different ε indicate that the performance of the DRA-typed algorithm is relatively insen-
sitive to the choice of small ε. Experiments reveals that when ε ≤ 10−10, the performance of
CWB and ARCTAN are almost identical to that of �1-minimization, which is also observed
in (iv) in Fig. 1 when ε = 10−5.

7 Conclusions

In this paper, we have studied a class of algorithms for the �0-minimization problem (1). The
one-step dual-density-based algorithms (DDA) and the dual-density-based reweighted �1-
algorithms (DRA) are developed. These algorithms are developed based on the new relaxation
of the equivalent bilevel optimization of the underlying �0-minimization problem.UnlikeRA,
the DRA can automatically generate an initial iterate instead of obtaining the initial iterate
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(i) Algorithms with rule (46)
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(ii) Algorithms with rule (47)

Fig. 3 Comparison of the performance of DRA with (46) or (47)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

qu
en

cy
 o

f S
uc

ce
ss

l1
-1

-5

-15

(i) DRA(III)
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(ii) DRA(VI)

Fig. 4 Comparison of the performance of DRA with different ε

by solving �1-minimization. Numerical experiments show that in some cases such as (N1)
and (N2), the dual-density-based methods proposed in this paper can perform better than
�1-minimization in solving the sparse optimization problem (1), and can be comparable to
some existing reweighted �1-methods. Although the experiments have shown that DRA-
typed algorithms outperform �1-minimization and some classic reweighted �1-algorithms,
there still exist some future work to do. For example, the convergence and the stability of
DRA-typed algorithms areworthwhile futurework,whichmight be investigated under certain
assumptions such as the so-called restricted weak range space property (see, e.g., [34]).
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