Skip to main content
Log in

Nonconvex sensitivity-based generalized Benders decomposition

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper considers general separable pseudoconvex optimization problems with continuous complicating variables in which primal and projected problems are both pseudoconvex problems. A novel decomposition method based on generalized Benders decomposition, named nonconvex sensitivity-based generalized Benders decomposition, is developed and proved strictly to obtain optimal solutions of general separable pseudoconvex optimization problems of interest without constructing surrogate models. By the use of a reformulation strategy (introducing an extra equality constraint and constructing several subproblems), the algorithm handles the nonconvexity by direct manipulations of consistent linear Benders cuts and the check of optimality conditions and approximating the feasible region of complicating variables by supporting hyperplanes. The master problems of the new algorithm are always linear programming problems and the solution of the algorithm contains sensitivity information about complicating variables. Moreover, the new algorithm could also be used as a tool to check the nonconvexity of an optimization problem. Two cases are given to confirm the validity and applicability of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sahinidis, N.V., Grossmann, I.E.: Convergence properties of generalized Benders decomposition. Comput. Chem. Eng. 15, 481–491 (1991)

    Article  Google Scholar 

  2. Chu, Y., You, F.: Integrated scheduling and dynamic optimization of sequential batch processes with online implementation. AIChE J. 59, 2379–2406 (2013)

    Article  Google Scholar 

  3. Chu, Y., You, F.: Integration of scheduling and dynamic optimization of batch processes under uncertainty: two-stage stochastic programming approach and enhanced generalized benders decomposition algorithm. Ind. Eng. Chem. Res. 52, 16851–16869 (2013)

    Article  Google Scholar 

  4. Chu, Y., You, F.: Integrated scheduling and dynamic optimization of complex batch processes with general network structure using a generalized benders decomposition approach. Ind. Eng. Chem. Res. 52, 7867–7885 (2013)

    Article  Google Scholar 

  5. Nie, Y., Biegler, L.T., Wassick, J.M.: Integrated scheduling and dynamic optimization of batch processes using state equipment networks. AIChE J. 58, 3416–3432 (2012)

    Article  Google Scholar 

  6. Nie, Y., Biegler, L.T., Villa, C.M., Wassick, J.M.: Discrete time formulation for the integration of scheduling and dynamic optimization. Ind. Eng. Chem. Res. 54, 4303–4315 (2015)

    Article  Google Scholar 

  7. Liu, C., Zhao, C., Xu, Q.: Integration of electroplating process design and operation for simultaneous productivity maximization, energy saving, and freshwater minimization. Chem. Eng. Sci. 68, 202–214 (2012)

    Article  Google Scholar 

  8. Li, X., Chen, Y., Barton, P.I.: Nonconvex generalized benders decomposition with piecewise convex relaxations for global optimization of integrated process design and operation problems. Ind. Eng. Chem. Res. 51, 7287–7299 (2012)

    Article  Google Scholar 

  9. Sarabia, D., de Prada, C., Cristea, S.: Hybrid predictive control of a simulated continuous-batch process. In:  Proceedings of the International Conference on Control Applications, pp. 1400–1407 (2007)

  10. De Prada, C., Mazaeda, R., Podar, S.: Optimal operation of a combined continuous–batch process. Comput. Aid. Chem. Eng. 44, 673–678 (2018)

    Article  Google Scholar 

  11. Yue, D., You, F.: Planning and scheduling of flexible process networks under uncertainty with stochastic inventory: MINLP models and algorithm. AIChE J. 59, 1511–1532 (2013)

    Article  Google Scholar 

  12. Terrazas-Moreno, S., Flores-Tlacuahuac, A., Grossmann, I.E.: Simultaneous design, scheduling, and optimal control of a methyl-methacrylate continuous polymerization reactor. AIChE J. 54, 3160–3170 (2008)

    Article  Google Scholar 

  13. Lin, J., Luo, X.: Hybrid parametric minimum principle. Nonlinear Anal. -Hybri. 37, 100902 (2020). https://doi.org/10.1016/j.nahs.2020.100902

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, J., Xu, F., Luo, X.: Dynamic optimization of continuous-batch processes: a case study of an FCCU with CO promoter. Ind. Eng. Chem. Res. 58, 23187–23200 (2019)

    Article  Google Scholar 

  15. Geoffrion, A.M.: Generalized benders decomposition. J. Optim.Theory App. 10, 237–260 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Z., Wu, W., Zhang, B., Wang, B.: Decentralized multi-area dynamic economic dispatch using modified generalized benders decomposition. IEEE T. Power Syst. 31, 1–13 (2015)

    Google Scholar 

  17. Chen, M., Mehrotra, S.: Self-concordance and decomposition-based interior point methods for the two-stage stochastic convex optimization problem. SIAM J. Optim. 21, 1667–1687 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: Accelerating the benders decomposition method: application to stochastic network design problems. SIAM J. Optim. 28, 875–903 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mehrotra, S., Gökhan-Özevin, M.: Convergence of a weighted barrier decomposition algorithm for two-stage stochastic programming with discrete support. SIAM J. Optim. 20, 2474–2486 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Varvarezos, D.K., Grossmann, I.E., Biegler, L.T.: An outer-approximation method for multiperiod design optimization. Ind. Eng. Chem. Res. 31, 1466–1477 (1992)

    Article  Google Scholar 

  21. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wei, Z., Ali, M.M.: Outer approximation algorithm for one class of convex mixed-integer nonlinear programming problems with partial differentiability. J. Optim. Theory App. 167, 644–652 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Viswanathan, J., Grossmann, I.E.: A combined penalty function and outer-approximation method for MINLP optimization. Comput. Chem. Eng. 14, 769–782 (1990)

    Article  Google Scholar 

  24. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66, 327–349 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X., Tomasgard, A., Barton, P.I.: Nonconvex generalized benders decomposition for stochastic separable mixed-integer nonlinear programs. J. Optim. Theory App. 151, 425–454 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, C., Grossmann, I.E.: A generalized benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary rst and second stage variables. J. Global Optim. 75(2), 247–272 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ogbe, E., Li, X.: A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs. J. Global Optim. 75(3), 595–629 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bansal, V., Sakizlis, V., Ross, R., Perkins, J.D., Pistikopoulos, E.N.: New algorithms for mixed-integer dynamic optimization. Comput. Chem. Eng. 27, 647–668 (2003)

    Article  Google Scholar 

  29. Weitzman, M.L.: An ‘economics proof’ of the supporting hyperplane theorem. Econ. Lett. 68, 1–6 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Antman, S.S.: The influence of elasticity on analysis: modern developments. B Am. Math. Soc. 9, 267–292 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lorentz, R.A.: Multivariate hermite interpolation by algebraic polynomials: a survey. J. Comput. Appl. Math. 122, 167–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, X.: Parallel nonconvex generalized Benders decomposition for natural gas production network planning under uncertainty. Comput. Chem. Eng. 55, 97–108 (2013)

    Article  Google Scholar 

  33. Liu, N., Wang, J., Qin, S.: A one-layer recurrent neural network for nonsmooth pseudoconvex optimization with quasiconvex inequality and affine equality constraints. Neural Netw. 147, 1–9 (2022)

    Article  Google Scholar 

  34. Kelley, J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, R., Luo, X., Xu, F.: Economic and control performance of a Fluid Catalytic cracking unit: interactions between combustion air and CO promoters. Ind. Eng. Chem. Res. 53(1), 287–304 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21676295) and the Science Foundation of China University of Petroleum, Beijing (No. 2462021YJRC007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong-Lin Luo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 253 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JJ., Xu, F. & Luo, XL. Nonconvex sensitivity-based generalized Benders decomposition. J Glob Optim 86, 37–60 (2023). https://doi.org/10.1007/s10898-022-01254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01254-9

Keywords

Navigation