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1

After the pioneering contributions around the turn from the 19th to the
20th century, and after the successful period in the 70ies and 80ies on stiff
problems, the numerical solution of ordinary differential equations is again
an active field of research. One of the main interests is now the subject
of geometric numerical integration, which is synonymous with structure-
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This survey concentrates on the structure-preserving integration of Ha-
miltonian systems. A detailed presentation of further results on this topic
can be found in the recent monograph [9].

1.1 Geometric structures in Hamiltonian systems

Hamiltonian systems are differential equations of the form

p=-VgH(p,q), 4= VpH(p,q), (1)

where H : R? x R — R, and the dimension d is the number of degrees of
freedom. In applications the Hamiltonian is often given in the form

H(p,q) = %pTM(q)’lp +U(q) (2)

with a positive definite symmetric mass matrix M (¢) and a potential U(q).
In this situation, the function H(p, ¢) represents the total energy of the sys-
tem. Such problems arise in mechanics, astrophysics, molecular dynamics,
and many other sciences.

Due to their special structure, Hamiltonian systems have several in-
teresting properties (in the following we denote the flow of the system,
mapping an initial value y = (p, ¢) onto the solution at time ¢, by ¢:(y)):

(P1) the group property ¢; o s = @415 is satisfied by every differential
equation; in particular, one has

Pt o p_t = po = identity, (3)

(P2) the Hamiltonian H(p,q) is constant along solutions of (1) which
means that the total energy is a conserved quantity,

(P3) the flow ¢ of (1) is a symplectic transformation, i.e.

0o I
At =1 oo =% ) @

where the prime in ¢}(y) denotes the derivation with respect to y.
Due to det ¢}(y) = 1, this implies that the flow is volume-preserving,

p(pe(A)) = p(A) for >0 (5)

and for systems with one degree of freedom symplecticity turns out
to be equivalent with area-preservation of the flow ¢y,

(P4) if H(—p,q) = H(p,q), the flow ¢, is p-reversible with respect to the
reflection p(p, q) = (—p, q), i.e. it satisfies

(pop)W) = (2 0 p)(y) for all £ and all y. (6)

It is natural to look for numerical methods that satisfy one or several of
these properties.



1.2 Geometric integrators

A numerical method for solving ordinary differential equations is a mapping
®;, defined on the phase space that approximates the time-h flow ¢p; it
is of order r if ®(y) = ¢n(y) + O(R"!). The numerical approximation
at time ¢ = nh is obtained by v, = ®x(yn—1). Motivated by the previous
section, the following properties are of interest:

(S1) the method is symmetric if it satisfies

Dy, 0 ®_y, = identity, (7)
(S2) it is energy-preserving if along numerical solutions of (1)

H(pp, qn) = const, (8)
(S3) it is called symplectic if @y, satisfies

@5, ()" T () = 7, 9)
(S4) it is p-reversible if, for H(—p,q) = H(p, q),

(po®p)(y) = (@, 0p)(y) for all h and all y. (10)

Note that by the property

(po®p)(y) = (®-nop)(y), (11)

which is satisfied by all standard methods, p-reversibility (S4) is equivalent
to symmetry (S1). A numerical method that satisfies one or several of these
properties is called a geometric integrator.

The most important geometric integrator is the so-called Stormer- Verlet
method (cf. [10]). It is the composition of a half-step of the partitioned Euler
method (explicit in ¢, implicit in p) with a half-step of its adjoint (explicit
in p, implicit in ¢) and thus given by the formulae

h
Pn+1/2 = Pn — B} qu(pn+1/QaQn)
h
Int1 = Gnt 3 (VpH(pn+l/2a qn) + VpH(pn+1/2,qn+1)) (12)

h
Pn+1 = Pn+yi1/2 — B} qu(pn+1/27Qn+l)-

Direct verification shows that this method is symmetric (S1) and symplec-
tic (S3). Since it satisfies (11), it is also p-reversible (S4). Tt does not



satisfy (S2), even not for the harmonic oscillator H(p,q) = 1(p*> + ¢°),
but it approximately conserves the Hamiltonian over extremely long time
intervals as we shall see in Section 2 below.

The only disadvantage of the Stérmer-Verlet method (12) is its low
order 2, and it is therefore inefficient for high accuracy computations (as
needed, for example, in planetary motion simulation). Much research of
the last decade has been devoted to the construction and discussion of
higher order geometric integrators (such a composition methods, implicit
Runge-Kutta methods and symmetric multistep methods), cf. [9] and [7].

1.3 Numerical experiment

It is of course a natural task to use numerical integrators ®; that share
several geometric properties with the exact flow of the problem. But does
this have any consequences on the global error of the method when it is
applied over long time intervals?

The following numerical experiment shows the essential difference be-
tween numerical solutions obtained by geometric and non-geometric inte-
grators. We consider the Kepler problem which is Hamiltonian with

1
NCEY R

and we take initial values ¢;(0) = 1 — e, ¢2(0) = p1(0) = 0, pa(0) =
(14+¢€)/(1 —e) so that the solution is periodic with period 27. This
Hamiltonian system has as further invariant the angular momentum

1
H(p1,p2,q1.q2) = 5(17% +p§) - (13)

L(p1,p2, 1. q2) = Q12 — q2p1. (14)

We integrate this problem with e = 0.2 over a time interval of 100000
periods, and we use a classical explicit method on the one hand and a sym-
plectic and symmetric integrator on the other hand. Both are of order 8
and the (constant) step sizes are such that the numerical work is compara-
ble. For this experiment it is of no importance if we consider composition,
Runge-Kutta, or multistep methods. The result is plotted in Figure 1.

The upper picture shows the global error as a function of time. For
the symplectic and/or symmetric method it behaves like O(th®) — linear
error growth. For a non-symplectic and non-symmetric method of order
8 the global error behaves like O(th® + t?h%)  quadratic error growth for
t > h~!. For a non-symplectic and non-symmetric method of odd order we
would have observed the quadratic error growth already from the beginning
of the integration.

The lower picture of Figure 1 shows the error in the two first integrals
of the system. For the symplectic integrator, the angular momentum is
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Figure 1: Long-time behaviour of geometric integrators compared to clas-
sical non-symplectic and non-symmetric methods

exactly conserved (up to round-off), and the error in the Hamiltonian (total
energy) behaves like O(h®) and no drift can be observed. For the non-
symplectic and non-symmetric method we have a linear drift in the error
of the Hamiltonian as well as in that of the angular momentum.

All these statements on the long-time behaviour of geometric integrators
can be explained with the help of a backward error analysis. The basic ideas
of this theory will be sketched in the following section.

2 Backward error analysis

Backward error analysis is the most important tool for a deeper under-
standing of the improved long-time behaviour of geometric integrators.

2.1 Modified equations

We start with a general ordinary differential equation § = f(y) and an
arbitrary numerical method y,4+1 = ®4(y,,). The idea of backward error
analysis consists in considering a modified differential equation

g =) +hf2(y) +h*fs(y) + ..., (15)



such that the exact time-h flow @ (y) of (15) is formally equal to the
numerical flow @5, (y). We emphasize that equality has to be understood in
the sense of formal power series of h, because the series in (15) is in general
divergent for all h > 0.

As an example, consider the %
pendulum equation %1
L
i

(R
€

¢=p,  p=—sing

which is Hamiltonian with

1
H(p,q) = §p2—cosq.

The numerical flow of the explicit Euler method y,4+1 = Yn + hf(Yn)
is ®,(y) = y+ hf(y). Developing the exact solution @, (y) of (15) into
powers of h and comparing it to @y (y), yields recurrence relations for the
coefficient functions f;(y). For the special case of the pendulum equation
this gives

ay _ P h [ sing h? —4pcosq
(f’) - (—SinCI) "2 (pcosq> 1 ((p2+4cOSq) sing) T (16)

Figure 2 (left picture) shows several exact solutions of the truncated modi-
fied equation (16) with h = 0.4. Also included is the numerical solution of
the explicit Euler method applied to the initial value that is indicated as a
large black dot. We observe that this numerical solution agrees extremely
well with the flow of (16).

Next, consider the symplectic Euler (explicit in ¢, implicit in p) which,
for the Hamiltonian system (1), is given by ppt1 = pn — AV H (Dnt1, Gn),
Gnt+1 = ¢n + hVpH(Pn+1, ¢n). The modified equation of this method is

g\ _ D h (—sing h_2 2pcosq
(f’) B (—sinq) + 2 (pcosq> + 1 ((p2—2c0sq) Sinq) +... (17

=\

SH)

)

Figure 2: Numerical solution compared to the exact solution of the trun-
cated modified equation



and, similar as before, the right picture of Figure 2 shows exact solutions
of (17) together with a numerical solution of the symplectic Euler method.
The important observation is that the system (17) is Hamiltonian with

~ 1 h h?

H(p,q) = §p2 —cosg— 5 p sinq + E(p2 —cosq)cosq+... . (18)
This explains why the solution curves are closed. We again observe the
excellent agreement of the numerical solution with the flow of (17). Later
in this section we shall see that the numerical solution stays close to the
level set of (18) for exponentially long times.

2.2 Hamiltonian systems

The observation of the previous numerical experiment is true in general.
If one applies any symplectic integrator of order r to a Hamiltonian sys-
tem (1), then the corresponding modified differential equation is (formally)
Hamiltonian with

H(p,q) = H(p.q) + h"Hy1(p, q) + K" "' Hopa(p,q) + ... . (19)

The original proof of this result (c.f. [2] and [15]) is based on the integrabi-
lity lemma, and the existence of the functions H;(p, q) is therefore only of
local nature. However, for all symplectic methods of interest (such as the
symplectic Euler method, the Stormer Verlet scheme, and all partitioned
Runge-Kutta methods) one can find explicit recurrence relations for the
H;(p, q) which show that they are composed of derivatives of H(p,¢q) and
therefore globally defined (mentioned in [2], [13], and discussed in detail in
Section IX.3.2 of [9]). This has an important consequence for the numerical
solution of such symplectic integrators.

Assume for the moment that (15) and (19) are not only formal series
but that they are convergent. In this case the flow &;(p, ¢) of the modified
differential equation would be well defined, and we would have (p,,¢,) =
@h(Pn—1,qn—1) = @nn(po,qo) as well as H(py, qn) = const. This, together
with (19), would then imply that

H(pp, qn) = const + O(h") (20)

as long as the numerical solution (py, g,) stays in a compact set, and the
numerical observations of the lower picture of Fig. 1 and of the right picture
of Fig. 2 would be completely explained. Unfortunately, the series defining
the modified differential equations converges only in exceptional cases and
a more subtle analysis is necessary.



2.3 Rigorous estimates of the local error

To make the above analysis rigorous we have to truncate the modified
differential equation

U= f(y)+ hf2(y) + B2 f3(y) + ...+ BV fn(y), (21)

so that its flow, denoted by ¢n +(y), becomes well defined. This truncation
causes an error in the approximation of the numerical flow and we only
have

121 (y) = Ern@)l < Cn(y)AN . (22)

We still have the freedom in choosing the truncation index N. In the
following we only outline the essential ideas. The details are very technical
and can be found in [2], [14], and in Chapter IX of [9].

Without any further assumptions on the vector field f(y) and on the
coefficient functions of the h-expansion of ®p(y), it is not possible to get
practical estimates for Cn(y) in (22). It is convenient to assume these
functions to be analytic so that Cauchy’s estimates can be used. Choosing
N proportional to (wh) ™! (where w is a measure of the Lipschitz constant
of f(y)) makes the bound in (22) minimal and yields

|2n(y) = Era@) < C)hexp(-2) (23)
as long as the step size h is small enough, i.e. wh < 7. This is the fundamen-
tal estimate in rigorous backward error analysis and is the basic ingredient
of many results on the long-time behaviour of numerical integrators.

For example, the near-conservation of the Hamiltonian (see the end of
Section 2.2) can now be proved rigorously. For a symplectic integrator the
truncated modified equation is Hamiltonian with

Hy(p,q) = H(p,q) + W Hri1(p,q) + - .. + BN Y Hy (p, ).

Since Hy (p, q) is exactly constant along the flow @ 4(p, ¢), we have by (23)
that HHN(pn; qn) - Hi\f(pnfla anl)ﬂ S Cl (Pn—l, anl)heXP(—i%) and,
summing up, yields [|Hy(pn,qn) — Hn(po,qo)|| < Cinhexp(—2). This

then proves (20) on exponentially long time intervals ¢ = nh < exp(5X;).

3 Large Lipschitz constants

In the same way as classical convergence results do not yield any insight into
the numerical solution of stiff differential equations, the theory of Section 2



is useless as soon as wh (product of the Lipschitz constant with the step
size) is not sufficiently small. We consider the problem

i+ 0%q=-VU(q), (24)

where the large Lipschitz constant stems from the linear part in the differ-
ential equation. It is Hamiltonian with

. 1. 1
H(q.4) = 3 ll4ll* + 5 [12a]1* + U (q)- (25)

We assume that €2 is a positive definite symmetric matrix with largest eigen-
value w > 1, and that the derivatives of the potential U(q) are bounded
independently of w. Written as a first order system in the variables (g, ¢),
the Lipschitz constant of the resulting system is close to w.

In the following we consider two situations. Firstly, we treat the case
where the eigenvalues of (2 are all clustered around w and 0. For this case
we shortly present the idea of an alternative theory which gives much in-
sight into the long-time behaviour of numerical solutions. Secondly, we
consider space discretizations of nonlinear wave equations (partial differen-
tial equations) which lead to systems with a large range of frequencies. We
present some numerical experiments with a pseudo-spectral discretization
of the sine-Gordon equation.

3.1 FPU-type problems

As a simplified model for molecular dynamics simulations we consider a
chain of alternating stiff harmonic and soft nonlinear springs (Fermi—Pasta—
Ulam (FPU) type problem, see [8] and Chapter XIII of [9]). This leads to
a differential equation of the form

G1 = —VaU(q1, )

: 26
G2+ Wiz = —Vg,U(q, q2) (26)

which is of the form (24) where § is diagonal with entries 0 and w > 1.
Here, the components of ¢; denote the displacements from the position
of rest of the stiff springs (slow variables), and those of g2 denote the
expansion/compression of the stiff springs (fast variables).

Besides the Hamiltonian (25) we also consider the oscillatory energy of
the individual stiff springs

N 1
Ik(q’q):5q§7k+§w2qg,k’ k=1,...,K. (27)

Here, g2 is the kth component of g2 and K is the number of stiff springs.
The interesting fact is (see [1] and [3]) that the sum of the oscillatory
energies corresponding to the same large frequency

I(q,q) = Ii(q.4) + - - - + T (q,9) (28)



H L h=2/w H
r I r I
1p 1p ‘ -
0 7 . n TR T 0 g f | u} U U
50 100 150 2500 5000 7500 10000

Figure 3: Oscillatory and total energies along the exact solution (left) and
along the numerical solution obtained by a Gautschi-type method with
large step size h = 2/w (right).

is an adiabatic invariant, which means that along solutions of (26) we have
I(q(t),4(t)) = const +O(w™1) on time intervals of length O(e?*). This can
be observed in the left picture of Figure 3, where for K = 3, w = 100, initial
values satisfying I; = 1, I = I3 = 0, and potential as in [8], the oscillatory
energies and the Hamiltonian are plotted along the exact solution.

For the numerical solution of (24) one can in principle apply the Stérmer—
Verlet method (12). However, the step size is restricted to wh < 2 by sta-
bility requirements. A possibility for avoiding such stability restrictions is
to consider Gautschi-type methods

Gni1 — 2co8(hQ)qn + g1 = —h2UVU(Dgy,). (29)

Here, ¥ = ¢(hQ2), ® = p(hQ2) with functions satisfying 1(0) = ¢(0) = 1.
Notice that the recurrence (29) produces the exact solution when U(q) =
const. Methods of this type have been originally introduced by Gautschi
[6] with (&) = 1 and (&) = sinc?(¢/2) (we use the notation sinc(¢) =
sin{/¢). Renewed interest on them comes from the article by Garcia-
Archilla, Sanz-Serna and Skeel [5], where such long-time-step methods are
considered in view of applications in molecular dynamics simulations. They
treat mainly the case where () is arbitrary and ¥(§) = sinc(§)@(£) so
that the method is symplectic.

The right picture of Figure 3 shows the oscillatory and total energies
along the numerical solution of (29) with ¢(§) = sinc(§), (&) =1, w = 100
and large step size h = 2/w. The Hamiltonian and the sum (28) are well
conserved over long time intervals.

To explain the excellent long-time behaviour of this method, backward
error analysis (Section 2) is not useful because wh is not small. The idea is

10



to write the numerical solution obtained by (29) in the form (for ¢t = nh)

G = yn(t) +Y_ e zi () (30)
k=0

with smooth coefficient functions. Such an expansion has been proposed
in [8] and is called modulated Fourier expansion in [9]. Inserting (30) into
the method (29) and comparing the coefficients of e!*“* yields differential
equations for y,,(¢) and 27 () which are of singular perturbation type. The
coefficient functions of (30) are then the smooth (i.e. non-oscillating) solu-
tions of this system. A detailed study (see Chapter XIII of [9]) shows that
the zf(t) decay like w™'* as |k| — oo, and that the differential equation
for these functions has two formal first integrals (corresponding to H and
to I). This allows one to prove the following result.

Under suitable assumptions on the differential equation (analyticity of
U(q), initial values satisfying £|do[|* + 1/|€2q0||*> < E with E independent
of w), on the method (conditions on (£) and ¢(£)), and on the step size
(hw > cg > 0, h < ho, and the non-resonance condition | sin(3hkw)| > cVh
for k =1,...,N) one can prove that

H(Qnaqn) = H(quq0)+O(h)

(31)
for 0 < nh < h~N¥*1. We mention that these techniques do not allow to
prove the near energy conservation without considering at the same time
also that of the oscillatory energy.

The numerical non-resonance condition |sin(3hkw)| > eVh (for k =
1,....N) excludes that hw is o(v/h) close to integral multiples of 7, and
defines via the integer N the length of interval where (31) holds. Without
this technical assumption the analysis is much more complicated, and the
conservation of the total and /or oscillatory energies strongly depends on the
choice of the filter functions ¢(§) and ¥ (&) (see [8] for a detailed discussion
in the case of a quadratic potential).

Similar results can be obtained for the situation where the eigenvalues
of Q are {0, a1w,...,a,w} with fixed a; and w > 1 (see [4]). If the a; are
rationally independent, the oscillatory energies of the individual frequencies
are well conserved. In the presence of resonances among the a;, an energy
exchange can take place on a scale depending on the kind of resonance.

3.2 Sine-Gordon equation

A situation, neither covered by the theory of Section 2 nor by that of Sec-
tion 3.1, is the space discretization of nonlinear wave equations. Following

11



the experiment of Hochbruck and Lubich [12] we consider the sine-Gordon
equation
Upp = Uy — SINU (32)

for —1 < x < 1 and t > 0 subject to periodic boundary conditions. Pseudo-
spectral discretization in space with equidistant collocation points z; =
2j/N (j = —=N/2,...,N/2) yields an approximation

e t) = S qult) e

|kI<N/2

(the prime on the sum indicates that the first and last summands are
multiplied by 1/2), where the N-periodic sequence q(t) = (qi(t)) satisfies

G+ Q%= —Fysin(Fy'lq), (33)

Fn denotes the discrete Fourier transform, and 2 is a diagonal matrix with
entries wy, = k7 for |k| < N/2. Introducing the velocity p = ¢, the system
(33) is seen to be Hamiltonian with

1 . 1
H(p.q) = 50"+ 50" Pq+V(q), V(g)=N Y '(cosU; — 1), (34)
K| <N/2

where U = (Uj) = Fx'q. We are interested in numerical methods that
nearly conserve this Hamiltonian over long time intervals.

Motivated by the analysis of Section 3.1 we also consider the oscillatory
energies

1 1
Ii(p, @) = 5 Ipkl* + 5 wi lax[? (35)

of the individual frequency modes. With initial functions

u(z,0) = =
ug(2,0) = sin(rx) +0.572(1 — 2?)

the Hamiltonian H (p, ¢) and the oscillatory energies It.(p, ¢) are plotted in
Figure 4 along the exact solution of (33) with N = 128. The thick line
(with constant value ~ 2.5) is the Hamiltonian, Iy is the curve oscillating
between 1 and 1073, I; is nearly constant with a value close to 0.5, I is
essentially oscillating between 10™4 and 1072, and the further oscillatory
energies appear in decreasing order. It came as a surprise to us that most
of the oscillatory energies are very close to being constant similar as what
has been observed for (28) in the FPU-type problem.

We apply the explicit, variable step size Runge-Kutta code DOPRI5
(see [11]) with tolerance Tol = 2-10~* to the differential equation (33)

12
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cal of (33) obtained with method (29, (&) = 1 and (&) = sinc?(£/2), and
with three different step sizes.

on the interval [0, 550]. This integration takes 103 953 accepted steps. The
Hamiltonian and the oscillatory energies along the numerical solution, plot-
ted in Figure 5, are not correct. In particular, the oscillatory energy cor-
responding to the high frequency modes do not remain small, but increase
rapidly until they reach a value close to Tol. Some of them continue to
increase slowly and give rise to an unacceptable error in the Hamiltonian.
The oscillatory energy for the low frequency modes are well reproduced in
this experiment.

We finally apply the Gautschi-type method of Section 3.1 with several
different choices of the filter functions to the differential equation (33),
again with N = 128. We use the constant step size h = 0.1 so that only
5500 steps yield an approximation on the same interval as before. In our
experiments we observe that whenever the function ¥(£) contains sinc(€)
as factor, i.e. it vanishes at all integral multiples of 7, the simulation gives
a result that cannot be distinguished from that of the exact solution in
Figure 4. Since the frequencies of the discretized sine-Gordon equation
are in resonance and without any gaps, this is an unexpected long-time
behaviour.

Figure 6 shows the same experiment for the original method of Gautschi
(p(€) = 1and (¢) = sinc?(£/2)), for which the filter function 1(¢) does not

14



vanish at odd integral multiples of 7. In this case, the energies are wrongly
reproduced, and they are very sensitive with respect to small changes in
the step size. This does not seem to be the case when (§) contains the
factor sinc(€). It would be of interest to get more insight into the long-time
behaviour of these methods.
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