Skip to main content
Log in

Jacobian–Free Newton–Krylov Methods for the Accurate Time Integration of Stiff Wave Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Stiff wave systems are systems which exhibit a slow dynamical time scale while possessing fast wave phenomena. The physical effects of this fast wave may be important to the system, but resolving the fast time scale may not be required. When simulating such phenomena one would like to use time steps on the order of the dynamical scale for time integration. Historically, Semi-Implicit (SI) methods have been developed to step over the stiff wave time scale in a stable fashion. However, SI methods require some linearization and time splitting, and both of these can produce additional time integration errors. In this paper, the concept of using SI methods as preconditioners to Jacobian–Free Newton–Krylov (JFNK) methods is developed. This algorithmic approach results in an implicitly balanced method (no linearization or time splitting). In this paper, we provide an overview of SI methods in a variety of applications, and a brief background on JFNK methods. We will present details of our new algorithmic approach. Finally, we provide an overview of results coming from problems in geophysical fluid dynamics (GFD) and magnetohydrodynamics (MHD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Biskamp (1993) Nonlinear Magnetohydrodynamics Cambridge University Press Cambridge

    Google Scholar 

  2. D. Biskamp (2000) Magnetic Reconnection in Plasmas Cambridge University Press Cambridge

    Google Scholar 

  3. J.U. Brackbill W.E. Pracht (1973) ArticleTitleAn implicit, almost-Lagrangian algorithm for magnetohydrodynamics J. Comput. Phys. 13 455–482 Occurrence Handle10.1016/0021-9991(73)90028-4

    Article  Google Scholar 

  4. P.N. Brown Y. Saad (1990) ArticleTitleHybrid Krylov methods for nonlinear systems of equations SIAM J. Sci. Stat. Comput. 11 450–481 Occurrence Handle1047206 Occurrence Handle10.1137/0911026 Occurrence Handle0708.65049

    Article  MathSciNet  MATH  Google Scholar 

  5. E.J. Caramana (1991) ArticleTitleDerivation of implicit difference schemes by the method of differential approximations J. Comput. Phys. 96 484–493 Occurrence Handle0732.65082 Occurrence Handle10.1016/0021-9991(91)90248-J

    Article  MATH  Google Scholar 

  6. L. Chacón D.A. Knoll (2003) ArticleTitleA 2D high-β Hall MHD implicit nonlinear solver J. Comput. Phys. 188 573–592 Occurrence Handle1127.76375

    MATH  Google Scholar 

  7. L. Chacón D.A. Knoll J.M. Finn (2002) ArticleTitleAn implicit nonlinear reduced resistive MHD solver J. Comput. Phys. 178 15–36 Occurrence Handle1139.76328

    MATH  Google Scholar 

  8. L. Chacón D.A. Knoll J.M. Finn (2003) ArticleTitleHall MHD effects in the 2-D Kelvin-Helmholtz/tearing instability Phys. Lett. A 308 187–197 Occurrence Handle1086.81559

    MATH  Google Scholar 

  9. T.F. Chan K.R. Jackson (1984) ArticleTitleNonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms. SIAM J Sci. Stat. Comput. 5 533–542 Occurrence Handle754484 Occurrence Handle0574.65043

    MathSciNet  MATH  Google Scholar 

  10. C.N. Dawson H. Klie M.F. Wheeler C.S. Woodward (1997) ArticleTitleA parallel, implicit, cell centered method for two-phase flow with a preconditioned Newton–Krylov solver Comp. Geosciences 1 215–249 Occurrence Handle1690489 Occurrence Handle0941.76062

    MathSciNet  MATH  Google Scholar 

  11. R. Dembo et al. (1982) ArticleTitleInexact Newton methods SIAM J. Numer. Anal. 19 400–408 Occurrence Handle0478.65030 Occurrence Handle650059 Occurrence Handle10.1137/0719025

    Article  MATH  MathSciNet  Google Scholar 

  12. S.C. Eisenstat H.F. Walker (1996) ArticleTitleChoosing the forcing terms in an inexact Newton method SIAM J. Sci. Comput. 17 16–32 Occurrence Handle1375263 Occurrence Handle10.1137/0917003 Occurrence Handle0845.65021

    Article  MathSciNet  MATH  Google Scholar 

  13. F.H. Harlow A.A. Amsden (1971) ArticleTitleA numerical fluid dynamical calculation method for all flow speeds J. Comput. Phys. 8 197–214 Occurrence Handle0221.76011

    MATH  Google Scholar 

  14. D.S. Harned W. Kerner (1985) ArticleTitleSemi-implicit method for three-dimensional compressible magnetohydrodynamic simulation J. Comput.Phys. 60 62–75 Occurrence Handle10.1016/0021-9991(85)90017-8 Occurrence Handle0581.76057

    Article  MATH  Google Scholar 

  15. D.S. Harned Z. Mikic (1989) ArticleTitleAccurate semi-implicit treatment of the Hall effect in magnetohydrodynamics J. Comput. Phys. 83 1–15 Occurrence Handle10.1016/0021-9991(89)90220-9 Occurrence Handle0672.76051

    Article  MATH  Google Scholar 

  16. J.R. Holton (1979) An Introduction to Dynamic Meteorology Academic Press Orlando

    Google Scholar 

  17. J.D. Jackson (1975) Classical Electrodynamics EditionNumber2 Wiley New York Occurrence Handle0997.78500

    MATH  Google Scholar 

  18. C.T. Kelley (1995) Iterative Methods for Linear and Nonlinear Equations SIAM Philadelphia Occurrence Handle0832.65046

    MATH  Google Scholar 

  19. T. Kerkhoven Y. Saad (1992) ArticleTitleOn acceleration methods for coupled nonlinear elliptic systems Numer. Math. 60 525–548 Occurrence Handle1142311 Occurrence Handle0724.65095

    MathSciNet  MATH  Google Scholar 

  20. Knoll D.A., Chacón L. (2002). Magnetic reconnection in the two-dimensional Kelvin–Helmholtz instability. Phys. Rev. Lett. 88, (215003).

  21. D.A. Knoll L. Chacón L.G. Margolin V.A. Mousseau (2003) ArticleTitleOn balanced approximations for the time integration of multiple time scale systems J. Comput. Phys. 185 583–611 Occurrence Handle10.1016/S0021-9991(03)00008-1 Occurrence Handle1047.76074

    Article  MATH  Google Scholar 

  22. D.A. Knoll D.E. Keyes (2003) ArticleTitleJacobian-Free Newton-Krylov methods: A survey of approaches and applications J. Comput. Phys. 193 357–397 Occurrence Handle2030471

    MathSciNet  Google Scholar 

  23. D.A. Knoll W.B. VanderHeyden V.A. Mousseau D.B. Kothe (2002) ArticleTitleOn preconditioning Newton-Krylov methods in solidifying flow applications SIAM J. Sci.Comput. 23 381–397 Occurrence Handle1861255

    MathSciNet  Google Scholar 

  24. M. Kwizak A.J. Robert (1971) ArticleTitleSemi-implicit scheme for grid point atmospheric models of the primative equations. Mon Wea. Rev. 99 32–36

    Google Scholar 

  25. V.A. Mousseau D.A. Knoll W.J. Rider (2000) ArticleTitlePhysics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion J. Comput. Phys. 160 743–765 Occurrence Handle10.1006/jcph.2000.6488 Occurrence Handle0949.65092

    Article  MATH  Google Scholar 

  26. V.A. Mousseau D.A. Knoll J. Reisner (2002) ArticleTitleAn implicit nonlinearly consistent method for the two-dimensional shallow-water equations with Coriolis force Mon. Wea. Rev. 130 2611–2625

    Google Scholar 

  27. M. Pernice M.D. Tocci (2001) ArticleTitleA multigrid-preconditioned Newton–Krylov method for the incompressible Navier-Stokes equations SIAM J. Sci. Comput. 23 398–418 Occurrence Handle1861256 Occurrence Handle10.1137/S1064827500372250 Occurrence Handle0995.76061

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Reisner V.A. Mousseau A. Wyszogrodzki D.A. Knoll (2005) ArticleTitleAn implicitly balanced hurricane model with physics-based preconditioning Mon. Wea. Rev. 133 1003–1022

    Google Scholar 

  29. J. Reisner S. Wynne L. Margolin R. Linn (2000) ArticleTitleCoupled atmospheric-fire modeling employing the method of averages Mon. Wea. Rev. 128 3683–3691 Occurrence Handle10.1175/1520-0493(2001)129<3683:CAFMET>2.0.CO;2

    Article  Google Scholar 

  30. J. Reisner A. Wyszogrodzki V.A. Mousseau D.A. Knoll (2003) ArticleTitleAn efficient physics-based preconditioner for the fully implicit solution of small-scale thermally driven atmospheric flows J. Comput. Phys. 189 30–44 Occurrence Handle10.1016/S0021-9991(03)00198-0 Occurrence Handle1097.76543

    Article  MATH  Google Scholar 

  31. Y. Saad (1996) Iterative Methods for Sparse Linear Systems PWS Publishing Company Boston Occurrence Handle1031.65047

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Knoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoll, D.A., Mousseau, V.A., Chacón, L. et al. Jacobian–Free Newton–Krylov Methods for the Accurate Time Integration of Stiff Wave Systems. J Sci Comput 25, 213–230 (2005). https://doi.org/10.1007/s10915-004-4640-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-004-4640-8

Keywords

Navigation