Skip to main content
Log in

Solving Schemes for Computational Magneto-Aerodynamics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The electromagnetic force introduces a new physics dimension for enhancing aerodynamic performance of aerospace vehicles. In order to simulate interdisciplinary phenomena, the Navier–Stokes and Maxwell equations in the time domain must be integrated on a common frame of reference. For a wide range of applications from subsonic unmanned vehicles to hypersonic flight control, the resultant nonlinear partial differential equations offer a formidable challenge for numerical analysis. The experience and physical insight using the approximate Riemann and compact-differencing formulation as well as several temporal discritizations will be shared. The most recent development and advancement in numerical procedures for solving this system of governing equations are delineated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Resler E.L., Sears W.R. (1958). The prospect for magneto-aerodynamics. J. Aero. Science 1958 25, 235–245 and 258.

    Google Scholar 

  2. J.S. Shang (2001) ArticleTitleRecent research in magneto-aerodynamics Progress in Aerospace Sciences 31 1–20

    Google Scholar 

  3. Shang, J. S. (2003). Historical Perspective of Magneto-Fluid-Dynamics, VKI Lecture Series on Introduction to Magneto-Fluid-Dynamics, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, pp. 27–30.

  4. Shang, J. S. (2003). MFD Research in US Toward Aerospace Applications, VKI Lecture Series on Introduction to Magneto-Fluid-Dynamics, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, pp. 27–30.

  5. M. Mitchner C. Kruger (1973) Partial Ionized Gases John Wiley New York

    Google Scholar 

  6. M. Brio C.C. Wu (1988) ArticleTitleAn upwind differencing scheme for the equations of ideal magnetohydrodynamics JCP 75 400–422 Occurrence Handle940816 Occurrence Handle0637.76125

    MathSciNet  MATH  Google Scholar 

  7. K.G. Powell P.L. Roe T.J. Linde T.I. Gombosi D. Zeeuw ParticleDe (1999) ArticleTitleA solution adaptive upwind scheme for ideal magnetohydrodynamics JCP 154 284–309 Occurrence Handle0952.76045

    MATH  Google Scholar 

  8. Gaitonde, D. V. (2003). Three-dimensional flow-through scramjet simulation with MGD energy-bypass, AIAA 2003–0172.

  9. Surzhikov, S. T. and Shang, J. S. (2003). Glow discharge in magnetic field, AIAA 2003–1054, Reno NV, 6–9.

  10. Surzhikov, S. T. and Shang, J. S. (2003). Glow discharge in magnetic field with heating of neutral gas, AIAA 2003–3654, Orlando FL., 23–26

  11. Raizer Yu.P., Surzhikov S.T. (1988). Two-dimensional structure of the normal glow discharge and the role of diffusion in forming of cathode and anode current spots. High Temperatures 26(3)

  12. Menart, J., Shang, J., Kimmel, R., and Hayes, J. (2003). Effects of magnetic fields on plasmas generated in a Mach 5 wind tunnel, AIAA 2003–4165, Orlando FL

  13. J.S. Shang (2002) ArticleTitlePlasma injection for hypersonic blunt body drag reduction AIAA J. 40 IssueID6 1178–1186 Occurrence Handle10.2514/2.1769

    Article  Google Scholar 

  14. J.S. Shang (2002) ArticleTitleShared knowledge in computational fluid dynamics, electromagnetics, and magneto-aerodynamics Progress in Aerospace Sciences 38 449–467 Occurrence Handle10.1016/S0376-0421(02)00028-3 Occurrence Handle000180191800002

    Article  ISI  Google Scholar 

  15. D. Gottlieb S. Orsag (1997) Numerical analysis of Spectral Methods SIAM Philadelphia, PA

    Google Scholar 

  16. L. Colatz (1966) The Numerical Treatment of Differential Equations Springer-Verlag New York

    Google Scholar 

  17. S.K. Lele (1992) ArticleTitleCompact finite difference schemes with spectral-like resolution JCP 103 16–42 Occurrence Handle0759.65006 Occurrence Handle1188088

    MATH  MathSciNet  Google Scholar 

  18. Tam, C. K. W., and Weber, J. C. (1993). Dispersion-relation-preserving finite different schemes for computational acoustics, JCP 262–281

  19. M.K. Carpenter D. Gottlieb S. Abarbanel (1994) ArticleTitleTime stable boundary conditions for finite-difference scheme solving hyperbolic systems: methodology and application to high-order compact schemes JCP 111 220–236 Occurrence Handle1275021 Occurrence Handle0832.65098

    MathSciNet  MATH  Google Scholar 

  20. D. Gaitonde J.S. Shang (1997) ArticleTitleOptimized compact-difference-based finite-volume schemes for linear wave phenomena JCP 138 617–643 Occurrence Handle1607490 Occurrence Handle0898.65055

    MathSciNet  MATH  Google Scholar 

  21. J.S. Shang (1999) ArticleTitleHigh-order compact-difference schemes for time-dependent maxwell equations JCP 153 312–333 Occurrence Handle0956.78018 Occurrence Handle1705936

    MATH  MathSciNet  Google Scholar 

  22. D. Gaitonde M. Visbal (2003) ArticleTitleAdvances in the application of high-order techniques in simulation of multi-disciplinary phenomena Inter. J. Comp. Fluid Dynamics 17 95–1006 Occurrence Handle1967736 Occurrence Handle1115.76385

    MathSciNet  MATH  Google Scholar 

  23. J.S. Shang (1995) ArticleTitleA fractional-step method for solving 3-D, time-domain maxwell equations JCP 118 109–119 Occurrence Handle0822.65112

    MATH  Google Scholar 

  24. J.L. Steger R.F. Warming (1981) ArticleTitleFlux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods JCP 40 263–293 Occurrence Handle617098 Occurrence Handle0468.76066

    MathSciNet  MATH  Google Scholar 

  25. van Leer, B. (1982). Flux-Vector Splitting for the Euler Equations, Inst. for Computer Applications in Science and Engineering, TR 82-30, NASA Langley.

  26. MacCormack, R. W. (1999). An upwind conservation form method for the ideal magnetohydrodynamics equations, AIAA 99–3609, Norfolk VA.

  27. Shang, J. S., Canupp, P. W., and Gaitonde, D. V. (1999). Computational magneto-aerodynamic hypersonics, AIAA 99–4903, Norfolk VA.

  28. A. Engel Particlevon M. Steenbeck (1932) Elektrische Gasentladungen, Vol. 2 Journal Springer Berlin

    Google Scholar 

  29. W. Hayes R. Probstein (1959) Hypersonic Flow Theory Academic Press New York 333–365 Occurrence Handle0084.42202

    MATH  Google Scholar 

  30. A. Harten (1983) ArticleTitleHigh-resolution schemes for hyperbolic conservation laws J. CP 49 375–385

    Google Scholar 

  31. B. Gustafsson (1975) ArticleTitleThe convergent rate for difference approximations to mixed initial boundary value problems Math. Comp. 29 396–401 Occurrence Handle0313.65085 Occurrence Handle386296

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, J.S. Solving Schemes for Computational Magneto-Aerodynamics. J Sci Comput 25, 289–306 (2005). https://doi.org/10.1007/s10915-004-4645-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-004-4645-3

Keywords

Navigation