Skip to main content

Advertisement

Log in

The NCAR Spectral Element Climate Dynamical Core: Semi-Implicit Eulerian Formulation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A prototype dynamical core for the Community Atmospheric Model (CAM) component of the Community Climate System Model (CCSM) is presented. The 3D governing primitive equations are specified in curvilinear coordinates on the cubed-sphere combined with a hybrid pressure η vertical coordinate. The horizontal space discretisation is based on a \(\mathbb{P}_N - \mathbb{P}_N\) spectral element variational formulation. A semi-implicit time integration scheme is derived in order to circumvent the severe time step restrictions associated with gravity waves. Eigen-mode decomposition of the vertical structure matrix results in a set of decoupled 2D modified Helmholtz problems which are solved using a preconditioned conjugate gradient iteration. An idealized climate simulation is presented, where the semi-implicit scheme permits a much larger time step

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Asselin (1972) ArticleTitleFrequency filter for time integrations Mon. Weather Rev. 100 487–490

    Google Scholar 

  2. P. Bénard (2003) ArticleTitleStability of semi-implicit and iterative centered implicit time discretization schemes for various equation systems used in NWP Mon. Weather Rev. 131 2479–2491

    Google Scholar 

  3. M.B. Blackmon B. Boville F. Bryan R. Dickinson P. Gent J. Kiehl R. Moritz D. Randall J. Shukla S. Solomon G. Bonan S. Doney I. Fung J. Hack E. Hunke J. Hurrell et al. (2001) ArticleTitleThe Community Climate System Model Bull. Amer. Met. Soc. 82 2357–2376 Occurrence Handle10.1175/1520-0477(2001)082<2357:TCCSM>2.3.CO;2

    Article  Google Scholar 

  4. A. Bourchtein V. Kadychnikov (2004) ArticleTitleWell posedness of the initial value problem for vertically discretized hydrostatic equations SIAM J. Numer. Anal. 41 195–207 Occurrence Handle2004i:65102

    MathSciNet  Google Scholar 

  5. W. Bourke (1974) ArticleTitleA multi-level spectral model. I. Formulation and hemispheric integrations Mon. Weather Rev. 102 687–701 Occurrence Handle10.1175/1520-0493(1974)102<0687:AMLSMI>2.0.CO;2

    Article  Google Scholar 

  6. J. Côté M. Béland A. Staniforth (1983) ArticleTitleStability of vertical discretization schemes for semi-implicit primitive equation models: Theory and application Mon. Weather Rev. 111 1189–1207

    Google Scholar 

  7. R. Daley C. Girard J. Henderson I. Simmonds (1976) ArticleTitleShort-term forecasting with a multi-level spectral primitive equations model Atmosphere 14 98–116

    Google Scholar 

  8. F.X. Giraldo J.B. Perot P.F. Fischer (2003) ArticleTitleA spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations J. Comput. Phys. 190 623–650 Occurrence Handle10.1016/S0021-9991(03)00300-0 Occurrence Handle2013031

    Article  MathSciNet  Google Scholar 

  9. F.X. Giraldo T.E.R. Rosmond (2004) ArticleTitleA scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: Dynamical Core Mon. Weather Rev. 132 133–153 Occurrence Handle10.1175/1520-0493(2004)132<0133:ASSEEA>2.0.CO;2

    Article  Google Scholar 

  10. Y.-Y. Hayashi A. Sumi (1986) ArticleTitleThe 30-40 day oscillations simulated in an aqua-planet model J. Meterol. Soc. Jpn. 64 451–467

    Google Scholar 

  11. I.H. Held M.J. Suarez (1994) ArticleTitleA proposal for the intercomparison of the dynamical cores of atmospheric general circulation models Bull. Amer. Met. Soc. 75 1825–1830 Occurrence Handle10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2

    Article  Google Scholar 

  12. M. Iskandarani D.B. Haidvogel J.P. Boyd (1995) ArticleTitleA staggered spectral element model with application to the oceanic shallow water equations Int. J. Numer. Meth. Fluids 20 394–414 Occurrence Handle10.1002/fld.1650200504

    Article  Google Scholar 

  13. Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Briegleb, B. P., Williamson, D. L., and Rasch, P. J. (1996). Description of the NCAR Community Climate Model: CCM3. NCAR Tech. Note, NCAR TN-420+STR, 152 pp. [Available from National Center for Atmospheric Research, Boulder CO, 80307.]

  14. J.T. Kiehl J.J. Hack G.B. Bonan B.A. Boville D.L. Williamson P.J. Rasch (1998) ArticleTitleThe National Center for Atmospheric Research Community Climate Model: CCM3 J. Climate 11 1131–1149

    Google Scholar 

  15. M. Kwizak A.J. Robert (1971) ArticleTitleA semi-implicit scheme for grid point atmospheric models of the primitive equations Mon. Weather Rev. 99 32–36

    Google Scholar 

  16. Lin, S. J., and Rood, R. B. (2002). A vertically Lagrangian finite-volume dynamical core for global models, Mon. Weather Rev., submitted.

  17. Loft, R. D., Thomas, S. J., and Dennis, J. M. (2001). Terascale spectral element dynamical core for atmospheric general circulation models. Proceedings of ACM/IEEE Supercomputing 2001, CD-ROM.

  18. Y. Maday A.T. Patera E.M. Ronquist (1990) ArticleTitleAn operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow J. Sci. Comput. 5 263–292 Occurrence Handle10.1007/BF01063118 Occurrence Handle92a:76068

    Article  MathSciNet  Google Scholar 

  19. M. Rancic R.J. Purser F. Mesinger (1996) ArticleTitleA global shallow-water model using an expanded spherical cube:Gnomic versus conformal coordinates Q. J. Roy Meteor. Soc. 122 959–982 Occurrence Handle10.1256/smsqj.53208

    Article  Google Scholar 

  20. A.J. Robert (1969) The integration of a spectral model of the atmosphere by the implicit method Proc. WMO-IUGG Symp on NWP. Japan Meteorological Agency Tokyo 19–24

    Google Scholar 

  21. R. Sadourny (1972) ArticleTitleConservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids Mon. Weather Rev. 100 136–144

    Google Scholar 

  22. A.J. Simmons B.J. Hoskins D.M. Burridge (1978) ArticleTitleStability of the semi-implicit method of time integration Mon. Weather Rev. 106 405–412 Occurrence Handle10.1175/1520-0493(1978)106<0405:SOTSIM>2.0.CO;2

    Article  Google Scholar 

  23. A.J. Simmons C. Temperton (1997) ArticleTitleStability of a two-time-level semi-implicit integration scheme for gravity wave motion Mon. Weather Rev. 125 600–615 Occurrence Handle10.1175/1520-0493(1997)125<0600:SOATTL>2.0.CO;2

    Article  Google Scholar 

  24. A.J. Simmons D.M. Burridge (1981) ArticleTitleAn energy and angular momentum conserving vertical finite-difference scheme and hybrid vertical coordinates Mon. Weather Rev. 109 758–766 Occurrence Handle10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2

    Article  Google Scholar 

  25. A.N. Staniforth H.J. Mitchell (1977) ArticleTitleA semi-implicit finite-element barotropic model Mon. Weather Rev. 105 154–169

    Google Scholar 

  26. St-Cyr A., Thomas S.J. (2004). Nonlinear operator integration factor splitting for the shallow water equations. Appl. Numer. Math. submitted.

  27. M. Taylor J. Tribbia M. Iskandarani (1997) ArticleTitleThe spectral element method for the shallow water equations on the sphere J. Comput. Phys. 130 92–108 Occurrence Handle10.1006/jcph.1996.5554

    Article  Google Scholar 

  28. S.J. Thomas R.D. Loft (2002) ArticleTitleSemi-implicit spectral element atmospheric model J. Sci. Comput. 17 339–350 Occurrence Handle10.1023/A:1015129420882 Occurrence Handle1910573

    Article  MathSciNet  Google Scholar 

  29. D.L. Williamson J.G. Olson (1994) ArticleTitleClimate simulations with a semi-Lagrangian version of the NCAR Community Climate Model Mon. Weather Rev. 122 1594–1610 Occurrence Handle10.1175/1520-0493(1994)122<1594:CSWASL>2.0.CO;2

    Article  Google Scholar 

  30. D.L. Williamson J.G. Olson B.A. Boville (1998) ArticleTitleA comparison of semi-Lagrangian and Eulerian tropical climate simulations Mon. Weather Rev. 126 1001–1012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, S.J., Loft, R.D. The NCAR Spectral Element Climate Dynamical Core: Semi-Implicit Eulerian Formulation. J Sci Comput 25, 307–322 (2005). https://doi.org/10.1007/s10915-004-4646-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-004-4646-2

Keywords

Navigation