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Numerical Evaluation of the Accuracy and Stability
Properties of High-order Direct Stokes Solvers
with or without Temporal Splitting
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The temporal stability and effective order of two different direct high-order Stokes
solvers are examined. Both solvers start from the primitive variables formulation
of the Stokes problem, but are distinct by the numerical uncoupling they apply on
the Stokes operator. One of these solvers introduces an intermediate divergence free
velocity for performing a temporal splitting (J. Comput. Phys. [1991] 97, 414–443)
while the other treats the whole Stokes problem through the evaluation of a diver-
gence free acceleration field (C.R. Acad. Sci. Paris [1994] 319 Serie I, 1455–1461;
SIAM J. Scient. Comput. [2000] 22(4), 1386–1410). The second uncoupling is known
to be consistent with the harmonicity of the pressure field (SIAM J. Scient. Comput.
[2000] 22(4), 1386–1410). Both solvers proceed by two steps, a pressure evaluation
based on an extrapolated in time (of theoretical order Je) Neumann condition, and
a time implicit (of theoretical order Ji ) diffusion step for the final velocity. These
solvers are implemented with a Chebyshev mono-domain and a Legendre spectral
element collocation schemes. The numerical stability of these four options is inves-
tigated for the sixteen combinations of (Je, Ji ), 1�Je, Ji �4.
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1. INTRODUCTION

The numerical simulation of incompressible fluid flows is performed by
solving the Navier–Stokes equations. In the framework of the spectral
approximations, the state-of-the-art time algorithms handle the pressure
and the viscous terms implicitly through an unsteady Stokes problem, with
the non-linear terms treated explicitly in time as source. This holds even
for the direct numerical simulation of turbulent flows [15]. Solving accu-
rately and efficiently the two-dimensional (2D) or three-dimensional (3D)
Stokes system in primitive variables is therefore the corner stone of accu-
rate numerical experiments. Among the numerous solvers available so far,
the Uzawa and influence matrix (or Green functions) methods can be left
aside for their well-known prohibitive costs.

In contrast, the fractional step methods [4,18], based on a tempo-
ral splitting of the operators, are significantly cheaper. Their extensions
to high-order accuracy in time has been established by Karniadakis et al.
[12], leading to the hereafter referred to as high-order splitting (HOS)
schemes. The pressure is evaluated through an extrapolated in time (of the-
oretical order Je) Neumann boundary condition, whereas the velocity is
obtained by a time implicit (of theoretical order Ji) diffusion step. How-
ever the HOS schemes are known to be inconsistent with the continuous
Stokes problem [12,16]. Recently, Guermond and Shen [9,11,10] reformu-
lated the HOS and provided a first rigorous proof of stability and conver-
gence of the HOS limited to Ji =1,2 and Je =1 time schemes.

A non-splitting and therefore consistent formulation (hereafter referred
to as HONS) of the HOS scheme is proposed in this paper. This method
gathers the advantages of the HOS scheme (high-order accuracy) with the
consistency of the projection-diffusion scheme proposed in [2]. In both
schemes the pressure step calls for an explicit in time boundary condition (of
order Je) and is followed by an implicit in time (of order Ji) diffusion step
for the velocity. A numerical investigation of the comparative properties of
the HOS schemes and projection-diffusion schemes [2] has been initiated in
[16], but only in the case where the temporal integration orders are the same,
Je =Ji , up to the fourth order. A numerical evaluation of the stability and
time accuracy properties, with any combination 1� (Je, Ji)�4, is performed
here for both HOS and HONS schemes with two spectral space integration
approaches : a Chebyshev collocation method (hereafter denoted by CCM),
and a Legendre spectral element method (SEM).
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The paper is organized as follows : the governing equations are given in
Sec. 2, then the HOS and HONS Stokes solvers in their continuous-in-space
formulation are briefly presented in Sec. 3. Section 4 contains the main fea-
tures of the space discretisation. The stability and the effective time accuracy
of the HOS and HONS schemes are successively reported in Secs. 5 and 6.

2. THE GOVERNING EQUATIONS

Let us consider the dimensionless unsteady (time t) two- or three-
dimensional Stokes equations, written in the open domain Ω with coor-
dinates x = (xi, i = 1, d), ≡ (x, y) or (x, y, z) with d = 2,3, respectively, d

being the space dimension and T a real positive number:

∂u
∂t

= ∆u −∇p + f for (x, t)∈Ω×]0, T [, (2.1)

∇ ·u = 0 for (x, t)∈Ω×]0, T [, (2.2)

where u = (u, v,w) is the velocity field, p the pressure and f the source
term including the non-linear advective terms beside possible prescribed
body forces. We denote the closure of Ω by Ω and the boundary by ∂Ω.
For the sake of simplicity, we consider Dirichlet boundary conditions

u =U for (x, t)∈ ∂Ω×]0, T [ (2.3)

and compatible initial conditions are given,

u(t =0)=U0 for x ∈Ω, (2.4)

U0 being divergence-free.

3. THE STOKES SOLVERS

The unsteady Stokes problem is now solved with two different (u, p)

decoupling schemes. The first one, denoted by HOS, is the well established
fractional step algorithm [12]. It is briefly summarized in the beginning of
this section. Basically linked to a time scheme, its presentation is made
in a semi-discrete framework, i.e., discretised in time and continuous in
space. The second one, the HONS, is then presented in more detail.

3.1. The HOS Method

Proposed in 1991 as a high-order splitting method for the Navier–
Stokes equations, the HOS time discretised system, applied to the unsteady
Stokes problem, uses the backward Euler scheme of order Ji . Its continu-
ous-in-space version reads:
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û −∑Ji−1
q=0 αqun−q

∆t
= −∇pn+1 + fn+1 for x ∈ Ω, (3.1)

∇ · û = 0 for x ∈ Ω, (3.2)

γ0un+1 − û
∆t

= ∆un+1 for x ∈ Ω, (3.3)

un+1 = Un+1 for x ∈ ∂Ω, (3.4)

where û is an intermediate velocity field, constrained to fulfil the incom-
pressibility condition (3.2), and un ≡u(n ∆t). Equations (3.1) and (3.2) are
combined to lead to the Poisson problem for the pressure, with boundary
conditions obtained from a time extrapolation of order Je proposed in [12,
17] and analysed in [16]:

∆pn+1 =∇ ·
(
∑Ji−1

q=0 αqun−q

∆t
+ fn+1

)

for x ∈Ω,

(3.5)

∂pn+1

∂n =
(

−
(

∂U
∂t

)n+1 −∑Je−1
q=0 βq∇ × (∇ ×un−q)+ fn+1

)

·n for x ∈ ∂Ω,

(3.6)

with n being the outward normal unit vector. As explained in [16], the
−∇ ×∇ ×u solenoidal term in the pressure boundary condition is chosen
instead of ∆u in order to preserve the ellipticity of the Stokes problem.
The irrotational part ∇(∇ ·u) is dropped in accordance with Eq. (2.2). The
case Je =Ji has been analysed, up to the fourth order, in [16], where the
weights γ0 , αq and βq may be found. Any combination 1� (Je, Ji)�4 is
considered in the present work.

3.2. The HONS Method

Here the decoupling is defined independently of any temporal scheme.
An intermediate divergence free field is introduced, the acceleration a,

a = ∂u
∂t

−∆u.

The original problem (2.1) and (2.2) splits, for each t ∈]0, T [, into two
steps:
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(1) first step:

a +∇p = f for x ∈Ω, (3.7)

∇ ·a = 0 for x ∈Ω, (3.8)

∂p

∂n
= (−a + f) ·n for x ∈ ∂Ω. (3.9)

This projection step can be rewritten either as a quasi-Poisson problem (cf.
[16]) or as a Poisson–Neumann problem similar to (3.5) and (3.6):

∆p = ∇ · f for x ∈Ω, (3.10)

∂p

∂n
=
(

− ∂U
∂t

−∇ × (∇ ×u)+ f
)

·n for x ∈ ∂Ω. (3.11)

In this paper, the Poisson–Neumann problem is preferred because the
quasi-Poisson problem is difficult to extend to the multi-domain spectral
element case.

(2) Second step:

∂u
∂t

−∆u = a for x ∈Ω, (3.12)

u = U for x ∈ ∂Ω. (3.13)

The two steps are now discretised in time and read as follows:
(1) first step:

∆pn+1 =∇ · fn+1 for x ∈Ω,

(3.14)

∂pn+1

∂n =
(

−
(

∂U
∂t

)n+1 −∑Je−1
q=0 βq∇ × (∇ ×un−q)+ fn+1

)

·n for x ∈ ∂Ω.

(3.15)

(2) second step:

γ0un+1−∑Ji−1
q=0 αqun−q

∆t
−∆un+1=an+1=fn+1−∇pn+1 for x ∈Ω, (3.16)

un+1 = Un+1 for x ∈ ∂Ω. (3.17)



30 Leriche et al.

3.3. Comments

Both schemes have been presented, the second one from its continu-
ous- to the discrete-in-time formulations whereas the first one requires a
time discretisation scheme form the start. In both schemes, the two stages
are coupled only through the same normal boundary condition, (3.6) or
(3.15). In the first steps (3.5), (3.6) and (3.14), (3.15) the pressure is com-
puted through the solution of the Poisson–Neumann problem. It is to be
noted that the part

∑Ji−1
q=0 αqun−q/∆t of the velocity time derivative ∂u/∂t

is a source term in the pressure Poisson equation for the HOS scheme.
The second steps (3.3), (3.4) and (3.16), (3.17) supply the velocity field by
solving a vectorial elliptic problem. They are formally identical but, fed by
the pressure gradient, they lead to different velocity fields for the reason
mentioned just above. This is the essential cause of the inconsistency of
the HOS scheme with respect to the following continuous uncoupled prob-
lem (harmonic pressure and biharmonic velocity fields, [12]),

∆p = ∇ · f,
(

∂

∂t
−∆

)

∆ u =0, for (x, t)∈Ω×]0, T [

as fully investigated in [16].

4. SPACE DISCRETISATION

Two spectral space approximations have been adopted, a mono-domain
CCM, and a multi-domain Legendre SEM. The former deals only with sim-
ple orthogonal geometry (Cartesian in the present paper), whereas the latter
takes advantage of the finite element flexibility to get accurate numerical
flow simulation in complex geometries, partitioned into elements [6]. Both
spectral discretizations proceed by expanding, either in the domain or in
each element, the u and p fields in tensor product of high-order Lagrang-
ian polynomials, (N,M,L) for the (x, y, z) dependencies, respectively. In the
present study, N , M, and L are equal, and denoted by N . The CCM con-
sists of exactly enforcing the differential equations, and the boundary condi-
tions, at the Gauss–Lobatto–Chebyshev points [3,8]. The SEM is based on
a Galerkin formulation of the differential equations, using Gauss–Lobatto–
Legendre interpolants [6]. For the SEM computations the object-oriented
spectral element toolbox SPECULOOS is used [7].

For the sake of comparison of the CCM and SEM numerical
properties, the same geometry has been adopted, the Cartesian domain
([−1,+1])d , and the same number of nodes in each space direction.
Moreover the same number of elements, E, has been taken in each space
direction.
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In both space discretisations applied to HOS and HONS schemes, the
velocity u and pressure p fields are approximated in the same polynomial
space. These solvers are therefore of (PN,PN) type, where PN is the space
of all polynomials of degree less than or equal to N in each space direc-
tion. However, as already shown in Sec. 3.3 of [16], these methods are free
from any spurious pressure modes, or, equivalently, neither from any alge-
braic compatibility condition [13], nor from any inf-sup or LBB compati-
bility condition [1]. Indeed at the boundaries, only Dirichlet conditions are
imposed on the velocity, and not the vanishing of its divergence. The pres-
sure is therefore evaluated within a constant.

From now on, u and p denote the set of the nodal values of the cor-
responding fields.

5. STABILITY PROPERTIES OF THE STOKES SOLVERS

We proceed by an eigenvalue analysis of the fully discrete time evo-
lution operators. For this purpose the source term is discarded (f =0) and
the velocity is constrained to vanish at the boundary.

Let us introduce several discrete operators: D and (D·) represent,
respectively, the gradient and divergence operators; AD and AN are
defined, respectively, as the discrete Laplacian–Dirichlet and Poisson–Neu-
mann operators; H is the discrete Helmholtz operator, which includes the
homogeneous Dirichlet boundary conditions imposed on the velocity,

H=AD − γ0

∆t
I

and I is the unit matrix in CCM and a diagonal matrix whose entries are
the quadrature weights in SEM.

The time evolution operators for the HOS and HONS methods read:

un+1 = (H)−1

⎡

⎣−
∑Ji−1

q=0 αqun−q

∆t
+D p

⎤

⎦ . (5.1)

From Eqs. (3.5), (3.6) and (3.14), (3.15), p is solution of the following
discrete system:

ANp = D ·S, (5.2)

∂p

∂n
=
⎛

⎝−
Je−1∑

q=0

βqD × (D ×un−q)

⎞

⎠ ·n, (5.3)
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with D·S standing for the discrete right-hand side of the pressure Poisson
equations (3.5) and (3.14), respectively, for the HOS and HONS schemes.
S reads then as follows:

S =
{

0 for the HONS scheme,
∑Ji−1

q=0 αqun−q

∆t
for the HOS scheme,

(5.4)

where S =0 means that the corresponding pressure field comes only from
the normal pressure boundary condition.

The resulting evolution matrices are full. Their size is of order
[dEJNd ]2, where d is the space dimensionality, J =max (Ji, Je) and E =1
for the CCM method. So, their complete spectrum evaluation has been
limited to the 2D case with a reduced number of nodes, namely, N = 24
(CCM) or E = 2, N = 12 (SEM) for any time order discretisation. For
larger nodes numbers either the power method or the ARPACK software
[14] is applied to get the leading eigenvalues.

As first results for characterizing the stability properties of the HOS
and HONS schemes, the leading eigenvalues of the evolution operators
are computed for a large time step, ∆t = 10+7, with the CCM (N = 128)
and SEM (E = 2,N = 8) discretisations, respectively, for any combination
Je and Ji . For each combination, the leading eigenvalues are found to be
identical for the HOS and HONS schemes, in agreement with what can be
expected from Eqs. (5.1) and (5.4). Indeed, for very large time step sizes,
the normal pressure boundary condition (5.3) fully drives both schemes
with S = 0, and the HOS and HONS evolution operators coincide. The
real and imaginary parts and the moduli of those eigenvalues are gath-
ered in Tables I and II. The pressure stage time order Je is seen to con-
trol the largest eigenvalue magnitude, mainly through the imaginary parts,
and therefore the nature of the stability, from the unconditional stability
for Je � 2 to a conditional one for Je � 3. In this latter case, a stabil-
ity criterion on the time step size is expected. It will be commented just
below.

The time step size dependence of the leading eigenvalues moduli is
depicted in Fig. 1, for the HOS and HONS schemes, with 1 � Je � Ji �
4 and the CCM (N = 64) discretisation. The schemes with Je > Ji are
not shown in Fig. 1 for the sake of clarity and because the interesting
schemes are when Ji � Je (see Sec. 6). Comparing the ∆t = 10+7 data on
this figure to those of Tables I and II shows that the leading eigenvalues
are almost insensitive to the grid refinement. All the curves of this figure
exhibit the same behaviour, namely two plateaus, one at 1 − ε,0 < ε � 1,
for very small time steps, and another one for large time steps, separated
by a transition zone. The former plateau is related to the Euler backward
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Table I. The Leading Eigenvalues λ = λr ± iλi of the HOS- and HONS-CCM

(N =128) Evolution Operators for 1� (Je, Ji )�4 : The Table Presents
(λr , λi )

|λ|

u-Order → Ji =1 Ji =2 Ji =3 Ji =4
p-order ↓

Je =1 (0.808, 0.000) (0.809, 0.000) (0.809, 0.000) (0.809, 0.000)
0.808 0.809 0.809 0.809

Je =2 (0.809, 0.393) (0.809, 0.393) (0.809, 0.393) (0.809, 0.393)
0.899 0.899 0.899 0.899

Je =3 (0.856, 0.783) (0.856, 0.783) (0.856, 0.783) (0.856, 0.783)
1.161 1.161 1.161 1.161

Je =4 (0.955, 1.095) (0.955, 1.095) (0.955, 1.095) (0.955,1.095)
1.453 1.453 1.453 1.453

Table II. The Leading Eigenvalues λ = λr ± iλi of the HOS- and HONS-SEM (E =
2,N =12) Evolution Operators for 1� (Je, Ji )�4 : The Table Presents

(λr , λi )

|λ|

u-Order → Ji =1 Ji =2 Ji =3 Ji =4
p-order ↓

Je =1 (0.860, 0.000) (0.860, 0.000) (0.860, 0.000) (0.860, 0.000)
0.860 0.860 0.860 0.860

Je =2 (0.860, 0.347) (0.860, 0.347) (0.860, 0.347) (0.860, 0.347)
0.927 0.927 0.927 0.927

Je =3 (0.966, 0.629) (0.966, 0.629) (0.966, 0.629) (0.966, 0.629)
1.153 1.153 1.153 1.153

Je =4 (0.995, 1.005) (0.995, 1.005) (0.995, 1.005) (0.995, 1.005)
1.414 1.414 1.414 1.414

part of the schemes, the latter one to the explicit extrapolative pressure
step, and the transition zone reflects the coupling between these two steps
of the schemes. For very small time steps (∆t → 0), the spectrum of both
schemes is clustered nearby the roots of the characteristic polynomial of
the backward Euler scheme of order Ji . These roots are given in Table III,
and the leading one is real of magnitude 1 for any Ji . This explains the
plateau at 1 − ε. For both HOS and HONS schemes, the leading eigen-
values moduli are almost insensitive to Ji , even in the transition zone (see
Figs. 2 and 3). For the schemes HOS and HONS, the case Je �2 (for any
Ji) is found to be unconditionally stable for ∆t ∈ [10−7,10+7], whereas a
conditional stability domain appears (at any Ji) with Je �3. The stability
criterion turns out to be of the explicit viscous type due to the pressure
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Fig. 1. Time step size dependence of the leading eigenvalues moduli with the CCM (N =64)
discretisation and 1�Je �Ji �4. Ji is not indicated for reason appearing in the text.

Table III. The Roots of the Characteristic
Polynomial of the Backward Euler Scheme

of Order Ji

Ji Roots

1 1.0

2 1.0,1/3

3 1.0,(0.3182 ± 0.2839i)

4 1.0,(0.2693 ± 0.492i),0.3815

Neumann boundary used in the projection stage, ∆t < O(N−4), slightly
less stringent for the HONS scheme than for HOS, and also for Je = 3
compared to Je = 4. Both these schemes have therefore the nice property
of being A-stable up to temporal order 2, in agreement with [5].

It is instructive to have a complete picture of the full spectra of the
HOS and HONS evolution operators, for a time step, ∆t =10−2, and any
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Fig. 2. Full spectra of the HOS-CCM (N =24) evolution operator for a time step ∆t =10−2

and any order combination 1� (Je, Ji )�4.

combinations 1 � (Je, Ji) � 4, with the CCM (N = 24) and SEM (E =
2,N = 12) discretisations. The time step size has been chosen as lying
within the corresponding transition zones of Fig. 1. The CCM and SEM
applied to the HOS and HONS schemes provide very similar spectra, and
for sake of conciseness, only two figures are presented here, Figs. 2 (HOS-
CCM (N = 24)) and 3 (HONS-SEM (E = 2,N = 12)). An increase in the
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Fig. 3. Full spectra of the HONS-SEM (E = 2,N = 12) evolution operator for a time step
∆t =10−2 and any order combination 1� (Je, Ji )�4.

order Je leads to a spectrum containing larger dominant complex parts,
the real parts being almost unaffected, whereas an increase in the order
Ji makes the spectrum more complex with a more sophisticated structure.
For Ji �3, part of this structure is developing in the neighbourhood of the
characteristic complex conjugate roots of the BDF polynomial of order Ji

(see Table III). This part is always included inside the unit circle.
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6. THE EFFECTIVE TEMPORAL ORDER OF THE STOKES
SOLVERS

A 2D test problem [2] is considered, in the square [−1,1]2, with the
source term f of Eq. (2.1) and the boundary time-dependent velocity U of
Eq. (2.3) analytically chosen so that the following velocity u = (u, v) and
pressure p fields are solutions of the Stokes problem (2.1) and (2.2)

u(x, y, t) =
√

3 sin(
√

2x + t) cos(
√

3y + t),

v(x, y, t) = −
√

2 cos(
√

2x + t) sin(
√

3y + t),

p(x, y, t) =
√

6 sin(2x −
√

5y +0.7t) sin(
√

5y +0.3t).

The time dependence is periodic, instead of exponentially decreasing, to
allow for a non biased experimental confirmation of the stability crite-
ria and identification of the effective temporal orders. The N =64 (CCM)
and E = 8,N = 8 (SEM) discretisations are taken for evaluating the space
derivatives with enough accuracy (almost at the machine limit) to get only
temporal errors in the numerical data. The Stokes problem is integrated
with the unconditionally stable (Je, Ji) combinations, that is first and sec-
ond temporal orders in pressure, and first to fourth temporal orders in
velocity. The time integration is performed on five units of dimensionless
time, with time steps ranging from 10−4 to 10−1. The maximum point-
wise norm errors are measured for the velocity and pressure with the
CCM discretisation, while the Sobolev H 1 and L2 norms are, respec-
tively, considered with the SEM discretisation. Those errors are denoted
(Eu(∆t),Ep(∆t)).

Tables IV–VII give successively the HOS-CCM, HONS-CCM, HOS-
SEM and HONS-SEM intrinsic accuracies via log10 ((Eu(∆t),Ep(∆t))).
This supplies directly the number of correct decimal digits and allows
also for a quick evaluation of the effective local orders. Indeed, the
errors (Eu(∆t),Ep(∆t)) are given a phenomenological law proportional to
∆t(αu,αp), with (αu, αp) obtained from

α = log10(E(∆t1)/E(∆t2))

log10(∆t1/∆t2)

computed with two successive time steps data. The results are presented in
Tables VIII–XI.

Although non-consistent, the HOS scheme appears systematically
more accurate, by approximately an order of magnitude on the errors,
than the consistent HONS one, for the selected test case.
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Table IV. The Errors (Eu,Ep) on the (u, p) Fields for the HOS-CCM (N =64) Scheme for
any Combination 1�Ji �4 (u) and Je �2 (p) : The Table Presents (log10(Eu), log10(Ep))

∆t 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

(Ji , Je)

(1,1) −1.12, 0.46 −1.63, 0.27 −2.78,−0.74 −3.19,−1.22 −3.97,−2.38 −4.26,−2.92 −4.95,−3.79

(2,1) −1.30, 0.45 −1.86, 0.18 −3.20,−0.83 −3.80,−1.30 −5.17,−2.42 −5.76,−2.90 −7.15,−4.03

(3,1) −1.38, 0.41 −1.94, 0.14 −3.29,−0.88 −3.88,−1.35 −5.25,−2.47 −5.85,−2.95 −7.23,−4.09

(4,1) −1.38, 0.41 −1.94, 0.14 −3.29,−0.88 −3.88,−1.35 −5.25,−2.47 −5.85,−2.95 −7.23,−4.09

(1,2) −1.96,−0.86 −2.24,−0.98 −2.96,−1.89 −3.26,−2.15 −3.95,−2.80 −4.25,−3.09 −4.95,−3.77

(2,2) −2.24,−0.19 −3.05,−0.91 −4.84,−2.64 −5.51,−3.38 −6.98,−5.10 −7.59,−5.81 −8.99,−7.45

(3,2) −2.27,−0.15 −3.08,−0.91 −5.08,−2.68 −5.96,−3.46 −8.04,−5.26 −8.93,−6.05 −11.03,−7.98

(4,2) −2.31,−0.18 −3.13,−0.94 −5.13,−2.71 −6.01,−3.49 −8.09,−5.30 −8.99,−6.08 −11.08,−8.02

Table V. The Errors (Eu,Ep) on the (u, p) Fields for the HONS-CCM (N =64) Scheme for
any Combination 1�Ji �4 (u) and Je �2 (p) : The Table Presents (log10(Eu), log10(Ep))

∆t 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

(Ji , Je)

(1,1) −0.78, 0.56 −1.01, 0.61 −1.66, 0.11 −1.95,−0.17 −2.65,−0.86 −2.95,−1.16 −3.65,−1.86

(2,1) −0.76, 0.62 −1.00, 0.65 −1.66, 0.13 −1.96,−0.16 −2.66,−0.85 −2.96,−1.15 −3.65,−1.85

(3,1) −0.77, 0.62 −1.00, 0.65 −1.66, 0.13 −1.96,−0.16 −2.66,−0.85 −2.96,−1.15 −3.65,−1.85

(4,1) −0.77, 0.62 −1.00, 0.65 −1.66, 0.13 −1.96,−0.16 −2.66,−0.85 −2.96,−1.15 −3.65,−1.85

(1,2) −1.82,−0.38 −2.09,−0.69 −2.64,−1.14 −2.93,−1.41 −3.61,−2.09 −3.91,−2.38 −4.61,−3.08

(2,2) −1.53, 0.25 −2.21,−0.69 −3.66,−2.18 −4.26,−2.77 −5.67,−4.16 −6.27,−4.76 −7.71,−6.38

(3,2) −1.60, 0.13 −2.29,−0.71 −3.74,−2.02 −4.35,−2.61 −5.75,−4.00 −6.36,−4.61 −7.81,−6.14

(4,2) −1.61, 0.12 −2.29,−0.72 −3.74,−2.02 −4.35,−2.61 −5.75,−4.00 −6.36,−4.61 −7.81,−6.14

Moreover,

(a) from the inspection of the columns corresponding to ∆t � 0.01,
the last four columns in Tables VIII–XI, a fairly good uniformity
of the local exponents (αu, αp) allows us to define the effec-
tive time orders of both schemes. They are summarized, rounded
in 1/2 multiples, in Table XII. The HONS scheme is fully con-
trolled, as expected, by the lowest order among Ji and Je,
leading to αu = αp = min(Ji, Je). For the HOS scheme, no such
simple law appears, except in the interesting cases where Ji �Je

for which the pressure order is αp = Je + 1/2. As regards the
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Table VI. The Errors (Eu,Ep) on the (u, p) Fields for the HOS-SEM (E = 8,N = 8)
Scheme for any Combination 1 � Ji � 4 (u) and Je � 2 (p) : The Table Presents

(log10(Eu), log10(Ep))

∆t 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

(Ji , Je)

(1,1) −1.36, 0.06 −1.87,−0.26 −3.00,−1.31 −3.41,−1.81 −4.21,−3.06 −4.50,−3.55 −5.19,−4.20

(2,1) −1.54, 0.02 −2.09,−0.33 −3.42,−1.40 −4.01,−1.89 −5.40,−3.04 −6.00,−3.54 −7.38,−4.72

(3,1) −1.62,−0.03 −2.16,−0.38 −3.50,−1.45 −4.10,−1.94 −5.49,−3.09 −6.08,−3.60 −7.47,−4.77

(4,1) −1.66,−0.05 −2.21,−0.41 −3.56,−1.49 −4.15,−1.98 −5.55,−3.13 −6.14,−3.63 −7.52,−4.81

(1,2) −2.19,−1.30 −2.48,−1.69 −3.20,−2.30 −3.49,−2.56 −4.19,−3.21 −4.49,−3.50 −5.19,−4.18

(2,2) −2.42,−0.74 −3.23,−1.45 −5.08,−3.18 −5.75,−3.93 −7.22,−5.63 −7.83,−6.34 −9.23,−7.89

(3,2) −2.41,−0.71 −3.23,−1.47 −5.25,−3.26 −6.15,−4.04 −8.24,−5.89 −9.14,−6.69 −11.24,−8.57

(4,2) −2.45,−0.75 −3.28,−1.50 −5.30,−3.29 −6.20,−4.07 −8.29,−5.92 −9.20,−6.73 −11.27,−8.60

Table VII. The Errors (Eu,Ep) on the (u, p) Fields for the HONS-SEM (E = 8,N = 8)
Scheme for any Combination 1 � Ji � 4 (u) and Je � 2 (p) : The Table Presents

(log10(Eu), log10(Ep))

∆t 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

(Ji , Je)

(1,1) −1.00, 0.12 −1.25, 0.15 −1.90,−0.42 −2.19,−0.70 −2.89,−1.39 −3.19,−1.69 −3.89,−2.39

(2,1) −1.00, 0.23 −1.25, 0.17 −1.90,−0.40 −2.20,−0.69 −2.89,−1.38 −3.19,−1.68 −3.89,−2.38

(3,1) −1.02, 0.29 −1.24, 0.17 −1.90,−0.40 −2.20,−0.69 −2.89,−1.38 −3.19,−1.68 −3.89,−2.38

(4,1) −1.00, 0.22 −1.24, 0.17 −1.90,−0.40 −2.20,−0.69 −2.89,−1.38 −3.19,−1.68 −3.89,−2.38

(1,2) −2.05,−0.94 −2.33,−1.29 −2.88,−1.70 −3.16,−1.97 −3.85,−2.65 −4.15,−2.94 −4.85,−3.64

(2,2) −1.73,−0.33 −2.42,−1.25 −3.88,−2.71 −4.49,−3.29 −5.90,−4.68 −6.50,−5.28 −7.90,−6.68

(3,2) −1.80,−0.46 −2.51,−1.25 −4.59,−3.14 −3.98,−2.55 −5.99,−4.53 −6.59,−5.13 −7.99,−6.53

(4,2) −1.81,−0.47 −2.52,−1.25 −3.98,−2.55 −4.59,−3.14 −5.99,−4.53 −6.59,−5.13 −7.99,−6.53

velocity time order, it can be noticed that the highest uncondi-
tionally stable order is 3, provided that Je =2;

(b) for larger ∆t ’s, the local time orders depart significantly from
the previous ones and do not lend themselves to an easy
interpretation.

In [11], Guermond and Shen proved the stability and convergence of
the HOS Ji =1,2 and Je =1 scheme. The velocity and pressure error esti-
mates are in full agreement with the present study (see Table XII).
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Table VIII. Local (u, p) Time Accuracy Orders (αu, αp) for the HOS-CCM (N = 64)
Scheme for any Combination 1�Ji �4 (u) and Je �2 (p)

∆t ∈ [0.1, 0.05] [0.05, 0.01] [0.01, 0.005] [0.005, 0.001] [0.001, [0.0005,
(Ji, Je) 0.0005] 0.00001]

(1,1) 1.67, 0.64 1.64, 1.44 1.38, 1.60 1.11, 1.67 0.97, 1.79 0.99, 1.25
(2,1) 1.84, 0.88 1.92, 1.45 1.97, 1.58 1.96, 1.59 1.97, 1.60 1.98, 1.62
(3,1) 1.85, 0.91 1.93, 1.45 1.98, 1.59 1.96, 1.60 1.97, 1.61 1.98, 1.62
(4,1) 1.85, 0.91 1.93, 1.45 1.98, 1.59 1.96, 1.60 1.97, 1.61 1.98, 1.62

(1,2) 0.92, 0.40 1.03, 1.31 0.98, 0.86 0.99, 0.93 1.00, 0.96 1.00, 0.98
(2,2) 2.70, 2.38 2.56, 2.47 2.24, 2.48 2.09, 2.45 2.03, 2.39 2.01, 2.34
(3,2) 2.71, 2.52 2.85, 2.54 2.94, 2.56 2.97, 2.59 2.99, 2.61 3.00, 2.76
(4,2) 2.71, 2.52 2.86, 2.54 2.94, 2.57 2.97, 2.59 2.99, 2.62 3.00, 2.77

Table IX. Local (u, p) Time Accuracy Orders (αu, αp) for the HONS-CCM (N = 64)
Scheme for any Combination 1�Ji �4 (u) and Je �2 (p)

∆t ∈ [0.1, 0.05] [0.05, 0.01] [0.01, 0.005] [0.005, 0.001] [0.001, [0.0005,
(Ji, Je) 0.0005] 0.00001]

(1,1) 0.76, −0.16 0.93, 0.72 0.98, 0.93 0.99, 0.98 1.00, 1.00 1.00, 1.00
(2,1) 0.80, −0.10 0.95, 0.75 0.99, 0.96 1.00, 0.99 1.00, 1.00 1.00, 1.00
(3,1) 0.79, −0.11 0.94, 0.75 0.99, 0.96 1.00, 0.99 1.00, 1.00 1.00, 1.00
(4,1) 0.79, −0.11 0.94, 0.74 0.99, 0.96 1.00, 0.99 1.00, 1.00 1.00, 1.00

(1,2) 0.92, 1.03 0.78, 0.65 0.95, 0.90 0.98, 0.97 1.00, 0.99 1.00, 1.00
(2,2) 2.24, 3.14 2.07, 2.13 2.02, 1.95 2.01, 1.98 2.01, 2.01 2.06, 2.31
(3,2) 2.29, 2.81 2.08, 1.87 2.02, 1.97 2.01, 1.99 2.01, 2.01 2.08, 2.20
(4,2) 2.26, 2.77 2.08, 1.86 2.02, 1.97 2.01, 1.99 2.01, 2.01 2.08, 2.20

7. CONCLUSIONS

We investigated the spectral discretization of the unsteady Stokes
problem through a CCM and a Legendre SEM. Velocity and pressure
computations are decoupled by two splitting schemes. The pressure is
evaluated through an extrapolated in time (of theoretical order Je) Neu-
mann boundary condition and the velocity is obtained by a time implicit
(backward Euler scheme of theoretical order Ji) diffusion step. The first
scheme is HOS scheme while the second one is a HONS scheme known
to be a consistent split scheme. The common result is that the schemes are
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Table X. Local (u, p) Time Accuracy Orders (αu, αp) for the HOS-SEM (E = 8,N = 8)
Scheme for any Combination 1�Ji �4 (u) and Je �2 (p)

∆t ∈ [0.1, 0.05] [0.05, 0.01] [0.01, 0.005] [0.005, 0.001] [0.001, 0.0005] [0.0005,
(Ji, Je) 0.00001]

(1,1) 1.67, 1.07 1.63, 1.50 1.37, 1.66 1.13, 1.79 0.97, 1.63 0.99, 0.93
(2,1) 1.81, 1.16 1.91, 1.53 1.97, 1.62 1.99, 1.64 1.98, 1.67 1.98, 1.69
(3,1) 1.81, 1.17 1.92, 1.53 1.97, 1.62 1.99, 1.65 1.97, 1.67 1.98, 1.69

(4,1) 1.83, 1.19 1.92, 1.54 1.98, 1.63 1.99, 1.65 1.97, 1.67 1.98, 1.69
(1,2) 0.96, 1.32 1.03, 0.87 0.98, 0.86 0.99, 0.93 1.00, 0.96 1.00, 0.98
(2,2) 2.69, 2.38 2.65, 2.48 2.23, 2.49 2.09, 2.44 2.03, 2.34 2.01, 2.21
(3,2) 2.72, 2.50 2.89, 2.56 2.97, 2.61 2.99, 2.64 3.00, 2.67 3.00, 2.69
(4,2) 2.73, 2.50 2.90, 2.56 2.98, 2.61 2.99, 2.64 3.00, 2.67 2.97, 2.68

Table XI. Local (u, p) Time Accuracy Orders (αu, αp) for the HONS-SEM (E = 8,N = 8)
Scheme for any Combination 1�Ji �4 (u) and Je �2 (p)

∆t ∈ ) [0.1, 0.05] [0.05, 0.01] [0.01, 0.005] [0.005, 0.001] [0.001, 0.0005] [0.0005,
(Ji , Je) 0.00001]

(1,1) 0.84, −0.08 0.93, 0.80 0.98, 0.95 0.99, 0.99 1.00, 1.00 1.00, 1.00
(2,1) 0.85, 0.20 0.92, 0.81 0.99, 0.97 1.00, 0.99 1.00, 1.00 1.00, 1.00
(3,1) 0.74, 0.38 0.94, 0.81 0.99, 0.97 1.00, 0.99 1.00, 1.00 1.00, 1.00
(4,1) 0.78, 0.16 0.94, 0.81 0.99, 0.97 1.00, 0.99 1.00, 1.00 1.00, 1.00

(1,2) 0.92, 1.16 0.79, 0.60 0.95, 0.89 0.98, 0.96 1.00, 0.99 1.00, 1.00
(2,2) 2.31, 3.05 2.09, 2.08 2.03, 1.95 2.01, 1.98 2.00, 1.99 2.00, 2.00
(3,2) 2.38, 2.63 2.08, 1.89 2.02, 1.97 2.01, 1.98 2.00, 2.00 2.00, 2.00
(4,2) 2.37, 2.59 2.09, 1.86 2.02, 1.97 2.01, 1.99 2.00, 2.00 2.00, 2.00

unconditionally stable for Je � 2, whereas a time step criterion of explicit
type occurs –∆t < O(N−4)–, when Je > 2, slightly less restrictive for the
consistent scheme than for the other. The effective time orders are then
measured with 1�Je �2 and 1�Ji �4. For the consistent solver the effec-
tive and expected time orders are in excellent agreement, and some dis-
crepancies occur for the other scheme which turns out to provide slightly
more accurate orders. Finally, the HOS (Ji =3, Je =2) unconditionally sta-
ble scheme provides the best measured time orders, namely, 3rd order for
the velocity and 2.5th order for the pressure.
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Table XII. The Effective Time Orders of
the HOS and HONS Schemes with the CCM
(N = 64) or SEM (E = 8,N = 8) Discretisations
for 1 � Ji � 4 and Je � 2: The Table Presents

(αu, αp)−HOS
(αu, αp)−HONS

u-order →
p-order ↓ Ji =1 Ji =2 Ji =3 Ji =4

Je =1 (1,3/2) (2,3/2) (2,3/2) (2,3/2)
(1,1) (1,1) (1,1) (1,1)

Je =2 (1,1) (2,5/2) (3,5/2) (3,5/2)
(1,1) (2,2) (2,2) (2,2)
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