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High-accuracy schemes have been proposed here to solve computational acoustics4
and DNS problems. This is made possible for spatial discretization by optimizing5
explicit and compact differencing procedures that minimize numerical error in the6
spectral plane. While zero-diffusion nine point explicit scheme has been proposed7
for the interior, additional high accuracy one-sided stencils have also been developed8
for ghost cells near the boundary. A new compact scheme has also been proposed9
for non-periodic problems—obtained by using multivariate optimization technique.10
Unlike DNS, the magnitude of acoustic solutions are similar to numerical noise11
and that rules out dissipation that is otherwise introduced via spatial and tempo-12
ral discretizations. Acoustics problems are wave propagation problems and hence13
require Dispersion Relation Preservation (DRP) schemes that simultaneously meet14
high accuracy requirements and keeping numerical and physical dispersion relation15
identical. Emphasis is on high accuracy than high order for both DNS and acous-16
tics. While higher order implies higher accuracy for spatial discretization, it is shown17
here not to be the same for time discretization. Specifically it is shown that the 2nd18
order accurate Adams-Bashforth (AB)—scheme produces unphysical results com-19
pared to first order accurate Euler scheme. This occurs, as the AB-scheme introduces20
a spurious computational mode in addition to the physical mode that apportions to21
itself a significant part of the initial condition that is subsequently heavily damped.22
Additionally, AB-scheme has poor DRP property making it a poor method for23
DNS and acoustics. These issues are highlighted here with the help of a solution24
for (a) Navier–Stokes equation for the temporal instability problem of flow past a25
rotating cylinder and (b) the inviscid response of a fluid dynamical system excited26
by simultaneous application of acoustic, vortical and entropic pulses in an uniform27
flow. The last problem admits analytic solution for small amplitude pulses and can28
be used to calibrate different methods for the treatment of non-reflecting boundary29
conditions as well.30
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1. INTRODUCTION33

With powerful computers and newer methods it is now routine to solve34
the governing Navier–Stokes equation resolving all the scales for turbulent35
flows by DNS at moderate Reynolds numbers. In this context compact36
and other higher-order schemes are finding more and more applications.37
Similarly, in wave propagation problems one solves hyperbolic partial38
differential equations and such solutions are required to be accurate in the39
far field and for long time periods. These requirements demand that the40
adopted numerical method be highly accurate and dispersion error free.41
Lighthill [1] has discussed the problems of computational aero-acoustics42
(CAA) with respect to these issues.43

The compact schemes, based on Padé approximation, offer high-44
accuracy approximations to differential and integral operators using com-45
pact implicit stencils. Some of the early works in this field are reported in46
[2–4].47

For DNS of incompressible flows, it is important to compute flows48
with large directional convection of vortical structures. Thus, DNS requires49
capturing high amplitude signals without suffering numerical instabilities.50
This instability may be caused due to linear instability, error accumu-51
lation due to aliasing and/or non-linear instabilities. While using com-52
pact schemes, it is thus quite common to add numerical dissipation via53
upwinding during discretization [5–7] or filtering [4,8] the solution after54
each time step. The basic idea of adding algebraically a dissipation term is55
equivalent to providing a negative feedback. Thus, if one uses 2nd deriv-56
ative as numerical dissipation then it is strictly added, while for the 4th57
derivative term the dissipation term has to be subtracted. Quite often, in58
the literature, this has been stated simply as “adding numerical dissipation”.59

In contrast, solving acoustics problems involve capturing weak signals60
that are hard to distinguish from numerical errors. Thus, one of the major61
consideration is that one should not add numerical dissipation that would62
remove useful high frequency—high wave number parts of the signal. In a63
major work Tam and Webb [9] discussed this and the issue of using DRP64
schemes for computational acoustics. Unlike in DNS, acoustic signal prop-65
agation can be treated as a linear phenomenon in the absence of attendant66
flow instabilities. If one works in the physical plane, there are no problems67
of aliasing error and the main concern in computational acoustics is one68
of accuracy and avoiding spurious reflections from computational bound-69
aries. High accuracy requirements can be achieved by optimizing the finite70
difference approximations of derivatives in the wave number space, as the71
truncation error is minimized in [4,6,7,9,10]. In Tam and Webb [9] this72
has been separately for the spatial and temporal derivatives using explicit73
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schemes. In the other references this has been performed for spatial74
derivatives only using compact schemes. In the present exercise the75
optimization process would be extended to non-periodic problems for both76
the explicit and a compact schemes.77

In many researches, disproportionate amount of attention has been78
paid on the accuracy of spatial discretization in comparison to temporal79
discretization. In many applications, first order accurate Euler time inte-80
gration is used for DNS and computational acoustics. In contrast, in [9]81
time integration is performed by an optimized stencil that is O(∆t3) accu-82
rate. It is usual to expect that a choice of higher order time integration83
schemes will help achieve higher accuracy and allow taking larger time84
steps. Explicit higher order time integration schemes are also commonly85
in use for reactive flow computations [11] and geophysical fluid dynamics86
[12]. For example, in weather predictions using inviscid equations, three87
time-level leapfrog marching scheme is used and then the numerical pro-88
cedure would bring in two amplification factors. For example, when this89
time integration strategy is used for integrating one-dimensional advec-90
tion equation, both the amplification factors (G1 and G2) indicate neu-91
tral behavior, but with phase error (see [13] for details). In this paper,92
the following notations have been used to express the amplification factors.93
While G1 and G2 denote the amplification factors for physical and com-94
putational modes, subsequently we have used G(2) to indicate the ampli-95
fication factor with Euler time integration, where the superscript within96
brackets denote the order of spatial discretization.97

Weather prediction with leapfrog time marching, decorrelates with98
time due to aliasing error, phase error and other effects due to non-99
linearity. Haltiner and Williams [13] have shown that one component of100
the solution (called the physical mode) corresponding to G1 approaches101
exact solution, while the second component of the solution (called the102
computational mode) corresponding to G2, approaches zero as ∆x and103
∆t are allowed to approach zero. It is also noted in [13] that the com-104
putational mode alternates in sign with every time step and propagates105
in the opposite direction of the exact solution. Thus, the second mode106
is a spurious one would be a source of numerical error. Similarly, the107
time integration strategy used in [9] has four modes- out of which three108
are spurious numerical modes. It is stated [9] that the adoption of such109
schemes may lead to numerical instability due to poor property of any one110
of the spurious modes. Fig. 3(b) of [9] clearly shows that ω∆t has to be111
chosen less than 0.4 to avoid this instability, negating the advantages of112
higher order time integration scheme. In fact, the physical mode also shows113
strong attenuation beyond this value of ω∆t , while the other two modes114
are severely damped.115
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Lilly [14], while examining time advancement schemes for simplified116
form of barotropic vorticity equation noted that the second order Adams-117
Bashforth (AB) scheme performs the best with respect to efficiency and118
accuracy. For a typical time evolution equation,119

df

dt
=F(f, t) (1)120

the AB-scheme is given by,121

f (tn+1)=f (tn)+ ∆t

2
[3F(tn)−F(tn−1)] . (2)122

For this scheme, it is noted in [13] that the computational mode is123
heavily damped and the physical mode has to be kept from becoming124
unstable by keeping ∆t small. It is also stated that -the Adams- Bashforth125
scheme is suitable unless the period of integration is lengthy [13]. Despite126
this cautionary note, this scheme is finding application in many researches127
in the so called DNS that would require solving governing equations for128
long time. For example, among innumerable references, it has been used in129
finite difference methods of solving Navier-Stokes equation in [15], [16]130
for channel flow; in [17] for flow over a wavy wall; in [18] for jet flows;131
in [19] for boundary layer instability; in [20] for free surface channel132
flow and in [21] for LES. It has even been used for spectral calculations133
in [22]. Hence a detailed analysis of this scheme is warranted. However,134
none of these references used compact schemes that are proving to be very135
useful for DNS. Thus, it is also necessary to analyze AB-time integration136
scheme for its suitability for DNS and acoustics when used with com-137
pact schemes. We also explore the four-stage Runge–Kutta time integration138
scheme (RK4) that is often used for high accuracy computing.139

The paper is structured in the following manner. In the next section140
we discuss and develop various explicit and implicit schemes for spatial141
discretization. In Sec. 2 various time discretization schemes are analyzed142
with the help of one- dimensional convection equation. In Sec. 3, two143
examples drawn from acoustics and flow instability are shown to highlight144
various issues discussed herein.145

2. HIGH ACCURACY SCHEMES FOR SPATIAL DERIVATIVES146

In compact schemes, on a uniform grid of spacing h=∆x, the first147
derivative u′ is obtained from the solution of the following linear algebraic148
equation:149

[A]u′ = [B]u. (3)150
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This is an implicit linear algebraic equation involving the derivatives151
and function values at different nodes. If [A] is an identity matrix, then152
we have corresponding explicit schemes. For the purpose of analysis, the153
above equation is rewritten as,154

u′ = [C]u. (4)155

This method of evaluation of first derivative can be represented in the156
spectral plane [7] by u′(xj )=

∫
ikeqÛ(k)e

ikxj dk, where157

ikeq(xj )=
N∑
l=1

Clj e
ik(xl−xj ). (5)

158

This general method of characterizing any discretization technique in159
the spectral plane was introduced in [7] and provides a means for full160
domain analysis simultaneously. Such an approach becomes very relevant161
to evaluate various boundary closure schemes. Some optimal globally sta-162
ble schemes were introduced in [7] with the help of this method. Differ-163
ent numerical schemes have different estimates of keq and it is in general a164
complex quantity. The imaginary part of keq represents numerical dissipa-165
tion when it is negative. A spatial discretization scheme, that has a positive166
imaginary part of keq at a point, locally contributes to numerical instabil-167
ity as it is equivalent to adding anti-diffusion.168

The developed methodology in [7] can form the basis of optimization169
to develop new high accuracy schemes for non-periodic problems. Essen-170
tial ideas for periodic problems or only for the interior stencils of a com-171
pact scheme for non-periodic problem have been discussed in [4,6,7,10]172
and a brief account is added here for ease of understanding. The following173
constrained minimization problem, whose solution would provide a high174
accuracy scheme with improved resolution is attempted whereby one min-175
imizes176

E(., .)=
N∑
l=1

el =
N∑
l=1

∫
|Llh(kh)−Ll(kh)|2U2(k)dk. (6)

177

Here Ll(kh)= ikh and Llh(kh)=
∑N
j=1Clj (Rlj + iIlj ) are the exact and178

numerical differential operators operating on the Laplace transform of the179
initial condition of the function. Arguments on the left-hand side of (6)180
are the parameters over which the problem is minimized. In optimizing181
the stencil, we use U(k)=1, so that we are seeking a conservative estimate182
with respect to a white noise or Dirac delta excitation of the system. In183
[10] this optimization was performed for periodic one-dimensional wave184
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equation with a particular type of band-limited spectra of initial data. The185
objective function for the lth node can be expressed as,186

el =
∫ km

km

∣∣∣ N∑
j=1

CljRjl + i
N∑
j=1

(Clj Ilj −kh)
∣∣∣2
dk. (7)

187

The above can be further simplified to188

el/[π(N −1)]= 2π2

3
+
j=N∑
j �=l

4Clj
j − l (−1)(j−l)+2C2

ll +
j=N∑
j �=l

C2
lj . (8)

189

This L2- norm for error for the approximation of first derivative is190
dependent on the property of C matrix i.e. on A and B matrices in Eq.191
(3). The first term in the above equation, is contributed by the exact differ-192
ential operator and is always positive. The third and fourth terms are also193
positive and cannot reduce the error norm, except the fact that Cll can be194
made identically equal to zero. This is the case for explicit central differ-195
ence schemes and they can be termed as low error schemes as compared to196
equivalent upwind schemes. The off-diagonal terms of C matrix can reduce197
error through the second term in (8). As Clj is scaled by (l− j), most of198
the contributions would come from the immediate neighboring points of199
the diagonal. The contributions coming from j = l ± 1 and j = l ± 2 are200
4[Cll−1 −Cll+1] and 2[Cll−2 −Cll+2], respectively. For example, one can esti-201
mate the error for 2nd -order and 4th -order central differencing schemes as202
equal to ((2π2/3)− (3/2)) and ((2π2/3)− (319/72)) respectively.203

Here we intend to develop a high accuracy optimized compact scheme204
for non-periodic problems. For this purpose we intend using the following205
stencil for the interior point,206

αu′
l−1 +u′

l +αu′
l+1 = b

4h
(ul+2 −ul−2)+ a

2h
(ul+1 −ul−1). (9)207

For non-periodic problems, one would require special one-sided bou-208
ndary stencils as the ones used in [7]. For the first and second points of209
the domain they are given by,210

u′
1 = 1

2h
(−3u1 +4u2 −u3), (10)211

212

u′
2=

1
h

[(
2γ2

3
−1

3

)
u1−

(
8γ2

3
+1

2

)
u2+(4γ2 +1) u3 −

(
8γ2

3
+1

6

)
u4+2γ2

3
u5

]
(11)

213
214
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Similarly, one can write down the boundary closure schemes for j=N215
and j =N−1 using γN−1. γj are the free parameters chosen for j =2 and216
j =N−1 independently. Eqs. (9)–(11) would assist one in compiling the C217
matrix and thus it is easy to see that E is a function of (α, a, b, γ2, γN−1).218
E has to be optimized subject to the compatibility condition: 1+2α=a+219
b, that ensures at least second-order accuracy. To search for the optimum,220
multivariate evolutionary optimization technique of [23] is used that gave221
the following values for a choice of N =30 as,222

a=1.546277, b=0.329678, γ2 =−0.025 and γN−1 =0.09.223

These parameter values and the optimum does not change when N224
is increased further. Following the convention in [7], we refer to this as225
OUCS4 scheme in the subsequent discussion.226

Following the above procedure, one can also develop a high accu-227
racy explicit stencils for the first derivative. In [9], a fourth order accu-228
rate seven point central stencil was designed for computational acoustics229
problem. In the following, we similarly develop a nine point stencil for the230
evaluation of first derivative explicitly:231

u′
l = a0

2h
(ul+1 −ul−1)+ b0

4h
(ul+2 −ul−2)232

+ d0

6h
(ul+3 −ul−3)+ e0

8h
(ul+4 −ul−4). (12)233

Equating the successive terms of the Taylor series, the following one234
parameter relations are obtained in terms of a0 as: b0 = 12/5 − 2a0; d0 =235
(45a0 −64)/35 and e0 = (3−2a0)/7. When the corresponding spectral error236
is minimized one obtains the optimum for a0 = 1.66631451979287. For237
actual usage of this scheme, one would require boundary stencils for four238
layers of points those have to be one-sided. For example, one could obtain239
the derivative at l=1 by,240

u′
1 = 1

h

9∑
j=1

ajuj , (13)
241

where all the coefficients are written in terms of a1 by equating coeffi-242
cients of the Taylor series on either side as, a2 = −(8a1 + 481/35); a3 =243
28a1 + 621/80; a4 = −(56a1 + 2003/15); a5 = 70a1 + 691/4; a6 = −(56a1 +244
141); a7 = (28a1 + 2143/30); a8 = −(8a1 + 103/5) and a9 = a1 + 363/140.245
Once again optimization provides one with a1 = −2.62538939007719 for246
least error. The same procedure is repeated here for the points at l= 2,3247
and 4 as well. For brevity, we will call these collectively as the SS- scheme.248
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Fig. 1. keq/k for the first derivative at different nodes evaluated using OUCS4 (Figures (a)
and (b)) and SS (Figures (c) and (d)) schemes.

In Fig. 1, the real and imaginary parts of keq/k is shown for OUCS4249
and the above explicit schemes for different nodes, using the methodology250
of [7]. The real part reveals the superior spectral accuracy of OUCS4 up251
to kh= 2.65 as compared to 2.2 for the scheme given in [10] that was252
found to have largest spectral resolution among the known schemes for253
periodic problems. The imaginary part by itself reveals anti-diffusion for254
near boundary points and is not directly suitable for use. To obtain uni-255
form attenuation for all wave numbers and no instabilities we introduce256
fourth order dissipation to achieve negative feedback stabilization.257

Since the solution of Navier–Stokes equation uses Dirichlet bound-258
ary conditions in the non-periodic direction the properties of the scheme259
for the points at l= 1 and l=N are not relevant. In Fig. 1, the real and260
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imaginary parts of keq/k are also plotted for the SS- scheme. The inte-261
rior point stencil being symmetric, it is non-dissipative and hence keq/k is262
purely real. The boundary stencils are not so and would stabilize or desta-263
bilize the discrete equation depending on its sign.264

These two optimum schemes will be assessed along with the OUCS3265
scheme of [7] and a third-order scheme described in [24].266

3. TEMPORAL DISCRETIZATION SCHEMES267

Temporal discretization in conjunction with spatial discretization can268
be studied only with respect to standard equations. For this purpose, we269
consider the propagation problem given by the one-dimensional convec-270
tion equation,271

∂u

∂t
+ c ∂u

∂x
=0 (14)272

for which the initial solution uo(x) travels to the right with the phase273
speed c. For the numerical solution of the wave equation, we identify it274
as275

u(xm, t
n)=unm=

∫
B(k, tn)eikxmdk (15)

276

such that the initial solution is given by,277

uom=
∫
Ao(k)e

ikxmdk. (16)
278

The following time integration schemes to be used in conjunction279
with different spatial schemes are described briefly. First, we define the280
various properties of the time integration schemes when used with some281
standard differencing schemes for spatial derivatives.282

3.1. Euler Time Integration Scheme283

For Euler time integration and second order central differencing for284
the spatial derivative, if we define the CFL number by Nc = c∆t

∆x
= ω∆t

k∆x
,285

then the amplification factor G(2)(k)= B(k,tn+1)
B(k,tn)

is,286

G(2)(k)= (1+N2
c sin2 k∆x)1/2e−iβ2 ,287
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where tanβ2 =Nc sin k∆x. The general solution at any arbitrary time is,288

unm =
∫
A0(k)[G

(2)(k)]neikxmdk
289

=
∫
A0(k)[1+N2

c sin2 k∆x]
n
2 ei(kxm−nβ2)dk. (17)

290

Thus, β2 gives a measure of the phase speed of the numerical scheme that291
is given by cN = β2

k∆t
while the scaled phase speed is cN

c
= β2
ω∆t

.292
If we replace the second order spatial discretization scheme by fourth-293

order central scheme, as given by294 (
∂u

∂x

)
m

= 1
12∆x

[−um+2 +8um+1 −8m−1 +um−2]
295

then one obtains the following amplification factor G(4)(k)= 1 − i Nc3 [4 −296
cos k∆x] sin k∆x and the general solution at any arbitrary time is297

unm=
∫
A0(k)[1+ N2

c

9
(4− cos k∆x)2 sin2 k∆x]

n
2 ei(kxm−nβ4)dk, (18)

298

where tanβ4 = Nc
3 [4− cos(k∆x)] sin(k∆x).299

It is well known that the above schemes do not produce stable results.300
This is often rectified by resorting to upwinding, as discussed in [24]. In301
particular, a third-order upwind scheme is considered here, that calculates302
the first derivative from the following stencil for Eq. (14):303

∂u

∂x
= 1

6∆x
[unm+2 −2unm+1 +9unm−10unm−1 +2unm−2]. (19)304

Corresponding amplification factor is given by,305

G(3)(k)=1− i Nc
6
(L2 + iL1),306

where L2 = 2[4 − cos(k∆x)] sin(k∆x) and L1 =−24 sin4( k∆x2 ). This can be307
rewritten as308

G(3)(k)=
[(

1+ Nc

6
L1

)2

+ N2
c L

2
2

36

] 1
2

e−iβ3 (20)
309

with which one can obtain the expression for numerical phase speed from310
tan(β3)= ( NcL2

6+NcL1
). The general solution at arbitrary time is given by,311

unm=
∫
A0(k)

[(
1+ Nc

6
L1

)2

+ N2
c L

2
2

36

] n
2

ei(kxm−nβ3)dk (21)
312
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In Fig. 2 the amplification factor for some of these spatial discretization313
schemes are shown, with Euler time integration scheme. It is evident that314
the central schemes, including the SS scheme, are unstable for any time315
steps chosen. The 3rd order scheme allows taking a very small ∆t for sta-316
bility at small k’s. It allows larger ∆t for larger values of k∆x. The third317
order scheme performs the best among these schemes. The SS stencil for318
the second point is asymmetric and it shows a range of k∆x where the319
scheme is selectively stable.320

In Fig. 3 the contours of the numerical phase speed are plotted. One321
can note regions where the numerical phase speed is within 5% toler-322
ance of the exact value. From operational considerations, the contiguous323
region near the origin is the useful range. The OUCS4 scheme has the best324
behavior by this yardstick.325

For DRP property, the relevant quantity is the group velocity of the326
schemes that can be evaluated from the numerical dispersion relation,327
ωeq =cNk, from which the scaled numerical group velocity is evaluated as,328

VgN

c
= cN

c
+ k2

ω

dcN

dk
=− 1

Nch

dβi

dk
.

329

The right-hand side of the above can be estimated for any combi-330
nation of spatial and temporal discretization schemes. In Fig. 4, results331
are graphically displayed in the (k∆x−ω∆t)- plane as contour plots. It is332
seen that among all schemes considered here, OUCS4 scheme performs the333
best, followed by the SS and the third order upwind scheme.334

3.2. Adams-Bashforth Time Integration Scheme335

Application of AB-scheme for time integration of Eq. (14) along with336
2nd order central differencing yields the following discrete equation,337

un+1
m−unm
∆t

=− c
2

[
3
unm+1 −unm−1

2∆x
− um+1

n−1 −um−1
n−1

2∆x

]
338

for which the amplification factors are the roots of the quadratic equation,339

(G−1)+ i Nc
2

(
3− 1

G

)
L=0, (22)

340

where L= sin(k∆x). If the roots are indicated by λ1 and λ2 then341

λ1 =Feiη, (23a)342

λ2 =HeiΓ , (23b)343
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Fig. 2. Amplification factor for solving 1D wave equation with Euler time integration
scheme and (a) CD2; (b) CD4; (c) UD3; (d) OUCS4; (e) SS-interior and (f) SS-second
scheme for spatial discretization.



U
nc

or
re

ct
ed

 P
ro

of

High Accuracy Schemes 13

0.95

0.5

k
∆x

1 2 3

1

2

3
Max = 0.999
Min = 0.0

0.95

0.5

k
∆x

1 2 3

1

2

3
Max = 0.999
Min = 0.0

0.5

1.05

0.5
0.95

0.95

2

k
∆x

1 2 3

1

2

3
Max = 3.759
Min = 0.0

0.5

1.05

0.95

0.95

0.5

1.5
k

∆x

1 2 3

1

2

3

Max = 2.574
Min = 0.0

0.5

0.95
1

ω ∆t

k
∆x

1 2 3

1

2

3
Max = 1.002
Min = 0.0

1.05

0.95

0.5

0.5

ω ∆t

k
∆x

1 2 3

1

2

3
Max = 2.976
Min = 0.0

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Scaled numerical phase speed (cN/c) for solving 1D wave equation by the schemes
indicated in Fig. 2.



U
nc

or
re

ct
ed

 P
ro

of

14 Sengupta, Sircar, and Dipankar

0.95

0.5

0

-0.5

k
∆x

1 2 3

1

2

3 Max = 0.999
Min = -0.999

0.95

0.5

0

-0.5

k
∆x

1 2 3

1

2

3 Max = 0.999
Min = -1.66

-0.5

0

1.05

0.5

0.95

0.95

-5

5

k
∆x

1 2 3

1

2

3 Max = 289.301
Min = -110.245 -0.5

1.05

1.05

0.95

0.5

0

k
∆x

1 2 3

1

2

3 Max = 303.85
Min = -220.45

1
0.95

0.5

0

-0.5

ω ∆t

k
∆x

1 2 3

1

2

3 Max = 1.008
Min = -2.906

-0.5
0

0.5

0.51.05

0.95

0.95

ω ∆t

k
∆x

1 2 3

1

2

3 Max = 9.565
Min = -22.731

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Scaled numerical group velocity (VgN/c) for solving 1D wave equation by the
schemes indicated in Fig. 2.
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where,344

F(k)=
[
C2 +D2 +2CD cos(

ξ

2
− β

2
)

]1/2

, (24a)
345

H(k)=
[
C2 +D2 −2CD cos(

ξ

2
− β

2
)

]1/2

, (24b)
346

C= 1
2

[
1+ 9

4
(NcL)

2
]1/2

, (24c)
347

D= 1
2

[
1+ 81

16
(NcL)

4 − 7
2
(NcL)

2
]1/4

, (24d)
348

tan(β)=− NcL

1− 9
4 (NcL)

2
, (24e)

349

tan
(
ξ

2

)
=−3

2
(NcL), (24f)

350

tan(η)= C sin( ξ2 )+D sin(β2 )

C cos( ξ2 )+D cos(β2 )
, (24g)

351

tan(Γ )= C sin( ξ2 )−D sin(β2 )

C cos( ξ2 )−D cos(β2 )
. (24h)

352

And the general solution is,353

um
n=

∫
M(k)[F ]nei(kxm+nη)dk+

∫
N(k)[H ]nei(kxm+nΓ )dk. (25)

354

In Eq. (25) the first part of the solution is the physical mode and the sec-355
ond part is the computational mode. Ideally one expects the computational356
mode to contribute by negligible amount. In the above expression F and357
H constitute the time dependent part. The multiplicative constants M and358
N in Eq. (25) can be evaluated from the conditions at t=0 (given by Eq.359
(16) ) and at t =∆t (obtained from Eq. (17) for n=1 ). Substitution and360
simplification yields,361

M(k)=A0
1− iNcL−HeiΓ
Feiη−HeiΓ , (26a)

362

N(k)=A0
−1+ iNcL+Feiη
Feiη−HeiΓ . (26b)

363
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As M + N = A0, it implies that M and N distributes the initial condi-364
tion between the physical and computational modes. The overall perfor-365
mance portrait of this time integration scheme is shown in Fig. 5, where366
F , H , M and N are plotted for the CD2 spatial discretization scheme for367
Eq. (14). From Fig. 5(a) and (b), the reason for the nomenclature of the368
physical and computational modes is apparent. As the computational mode369
is severely attenuated, it is noted in the literature that this mode does not370
contribute after few time steps. While this is true, Fig. 5(c) and (d) indi-371
cate another important aspect that has been overlooked earlier. The phys-372
ical mode carries all the information of the initial condition (where it is373
equal to one) only along two lines and everywhere else it is either over-374
or under-estimated. Wherever it is under-estimated, for small k and large375
ω combinations, there the computational mode carries significant propor-376
tion of the initial condition that is lost after a few time-steps only due to377
large attenuation of the computational mode. Thus, for true unsteady prob-378
lems where high frequency events are important, the AB-scheme will sup-379
press these events. This is usually the case for all DNS and it is important380
to note that in [15] simulation of channel flow was performed using this381
combination of spatial and temporal discretization.382

If one replaces CD2 by the CD4 scheme, one obtains amplification383
factors from Eq. (22) with L= 1

3 [4 − cos(k∆x)] sin k∆x. The other quan-384
tities for the CD4 scheme are as given in Eqs. (23)–(26) with the changed385
value of L.386

In Fig. 6(a) and (b) the time dependent parts of the physical and387
computational modes, F and H - contours are plotted in the (k∆x−ω∆t)-388
plane. In Fig. 6(c) and (d) the contours of spectral weights of the initial389
condition, M and N , are shown. The results and the associated problems390
are qualitatively similar to that for CD2 scheme and this combination also391
cannot be used for DNS.392

When the third-order upwind scheme (Eq. (19)) is used for spatial dis-393
cretization along with AB-scheme, the amplification factors are obtained394
as roots of the following quadratic equation:395

G−1+ i Nc
2
(3− 1

G
(L2 + iL1))=0. (27)396

And these roots are397

λ1 =F ′eiη
′
, (28a)398

λ2 =H ′eiΓ
′
, (28b)399
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Fig. 5. Amplification factor for solving 1D wave equation with AB time- integration and
CD2 spatial discretization schemes. Time dependent functions: (a) F for physical; (b) H for
computational modes. Spectral weights of initial condition: (c) M for physical and (d) N for
computational modes.

where,400

L1 =−24 sin4( k∆x2 ), (29a)401

L2 =2[4− cos(k∆x)] sin(k∆x), (29b)402

F ′(k)=
[
C′2 +D′2 +2C′D′ cos( ξ

′
2 − β

′
2 )

]1/2
, (29c)403

H ′(k)=
[
C′2 +D′2 −2C′D′ cos( ξ

′
2 − β

′
2 )

]1/2
, (29d)404
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Fig. 6. Amplification factor for solving 1D wave equation with AB time- integration and
CD4 spatial discretization schemes. Time dependent functions: (a) F for physical; (b) H for
computational modes. Spectral weight of initial condition: (c) M for physical and (d) N for
computational modes.

C′ = 1
2

[
1+ 1

16Nc
2(L1

2 +L2
2)+ NcL1

2

]1/2
, (29e)405

D′ = 1
2

[
1+ NcL1

3 + 1
72Nc

2(11L1
2 −7L2

2)+ 1
48Nc

3L1(L1
2 +L2

2)406

+ 1
64Nc

4(L1
2 +L2

2)2
]1/4

(29f)407

tan(β
′
)=− NcL2(

1
3 +NcL1

4 )

2+ 1
8Nc

2(L1
2−L2

2)+NcL1
3
, (29g)

408
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tan( ξ
′

2 )=− NcL2
4+NcL1

, (29h)409

tan(η′)= C′ sin( ξ
′

2 )+D′ sin( β
′

2 )

C′ cos( ξ
′

2 )+D′ cos( β
′

2 )
, (29i)

410

tan(Γ ′)= C′ sin( ξ
′

2 )−D′ sin( β
′

2 )

C′ cos( ξ
′

2 )−D′ cos( β
′

2 )
, (29j)

411

The general solution in this case is,412

um
n=

∫
M ′(k)[F ′]nei(kxm+nη′)dk+

∫
N ′(k)[H ′]nei(kxm+nΓ ′)dk (30)

413

and M ′ and N ′ are obtained from the initial conditions as414

M ′(k) = A0
(1+ NcL1

6 )−H ′eiΓ ′ − iNcL2
6

F ′eiη′ −H ′eiΓ ′ , (31a)
415

N ′(k) = A0
−(1+ NcL1

6 )+F ′eiη′ + iNcL2
6

F ′eiη′ −H ′eiΓ ′ . (31b)
416

In Fig. 7(a) and (b) F ′ and H ′- contours are plotted in the (k∆x−417
ω∆t)- plane. Compared to central schemes, here the computational mode is418
not negligible for any combination of k∆x and ω∆t . Furthermore, there419
are large ranges of k∆x and ω∆t for which the computational mode is420
unstable (H ′> 1). For physical mode there is very limited ranges of k∆x421
and ω∆t available over which this mode is near-neutral. The physical422
mode shows instability for practically the whole range of ω∆t when k∆x423
approaches zero. Thus, this scheme has a tendency of instability at the424
largest length scale for any frequency. Also, this feature of third order425
upwind scheme explains as to why this produces unstable results as the426
grid is refined.427

The spectral weights, M ′ and N ′ for the initial condition, are plot-428
ted in Fig. 7(c) and (d), respectively. One notices that the computational429
mode significantly contributes to the solution. Also there are ranges of430
k∆x and ω∆t over which the computational mode has negative sign. Over-431
all, the solution will be contaminated significantly by the computational432
mode when AB-scheme is used with third order upwind scheme. Next, we433
write down the various expressions, when OUCS4 scheme is used for spa-434
tial discretization along with the AB-scheme. The amplification factors are435
given by the roots of Eq. (27) where,
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Fig. 7. Amplification factor for solving 1D wave equation with AB time- integration and
UD3 spatial discretization schemes. Time dependent functions: (a) F’ for physical; (b) H’ for
computational modes. Spectral weight of initial condition: (c) M’ for physical and (d) N’ for
computational modes.

L1 = −6
N∑
l=1

Cjl cos((l− j)k∆x), (32a)
436

L2 = 6
N∑
l=1

Cjl sin((l− j)k∆x). (32b)
437
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The general solution in this case is given as in Eq. (30). The time depen-438
dent and the independent parts are as given in Eqs. (29) and (31).439

If we replace the OUCS4 by SS scheme, then the amplification fac-440
tors are obtained from Eq. (22) with L = a0 sin(k∆x) + b0

2 sin(2k∆x) +441
d0
3 sin(3k∆x)+ e0

4 sin(4k∆x). a0, b0, d0, and e0 are the same as in Eq. (12).442
The general solution is as given in Eq. (25) and the numerical phase speed,443
group velocity etc. are calculated from Eqs. (24) and (26).444

In Fig. 8(a) and (b) the time dependent parts, F ′ and H ′, are plotted445
for the OUCS4 scheme used with the AB-scheme. It is seen that OUCS4446
scheme will perform well only when ω∆t is restricted to a small value-447
beyond which the physical mode is unstable. It is noted that the computa-448
tional mode is unstable for large k∆x and ω∆t combinations. Overall, this449
scheme will work for small time steps. Fig. 8(c) and (d) show the varia-450
tion of time independent parts of the general solution and this shows that451
the computational mode has less contribution as compared to the other452
schemes discussed before.453

In Fig. 9(a)–(d) the corresponding information is given for the SS454
scheme. The behavior of this scheme is similar to other central schemes455
discussed before. The computational mode will be important for DNS when456
large ω∆t values are present.457

The scaled numerical phase speed contours are shown in Fig. 10 for458
the physical and computational modes for CD2, CD4 and the third order459
upwind schemes. The physical mode shows desirable property on a small460
patch near the origin for all the schemes. The computational mode has461
very high phase speed for all length scales and very small ω∆t for all the462
schemes. For the third order scheme there is a line, across which phase of463
the computational mode display discontinuous jump.464

In Fig. 11(a), (c), and (e) the numerical phase speed contours of465
OUCS4, SS scheme for interior points and SS scheme for the second point466
are shown for the physical mode. All the three figures show a large range467
of k∆x over which the numerical phase speed is close to the actual value468
for small ω∆t- the range for k∆x is twice the value obtained for the469
schemes shown in Fig. 10. The contours for the numerical phase speed for470
the computational mode of these schemes are shown in Fig. 11(b), (d), and471
(f). These show very large phase speeds for small ω∆t values.472

In Fig. 12 and 13 the numerical group velocity contours are plot-473
ted in (k∆x−ω∆t)- plane for both the modes for AB-scheme. Figure 12474
shows the scaled numerical group velocity components for the physical and475
computational modes for CD2, CD4 and the third order upwind schemes476
of spatial discretization. The corresponding results are shown for OUCS4477
and SS spatial discretization schemes in Fig. 13. The variations are quali-478
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Fig. 8. Amplification factor for solving 1D wave equation with AB time- integration and
OUCS4 spatial discretization scheme. Time dependent functions: (a) F’ for physical; (b) H’
for computational modes. Spectral weight of initial condition: (c) M’ for physical and (d) N’
for computational modes.

tatively the same for the physical mode as the numerical phase speed vari-479
ations shown in Fig. 11 for OUCS4 and SS schemes. Both the physical480
and computational modes for the CD2 and CD4 schemes show a straught481
line along which the group velocity is zero. For the third order scheme the482
zero group velocity line is curved. For the CD2 and CD4 schemes, this483
line also shows an interesting feature. If the physical mode travels from left484
to right, the corresponding computational mode travels from right to left485
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Fig. 9. Amplification factor for solving 1D wave equation with AB time- integration and
SS spatial discretization scheme. Time dependent functions: (a) F for physical; (b) H for
computational modes. Spectral weight of initial condition: (c) M for physical and (d) N for
computational modes.

and vice versa. Similar features also holds good for the third order upwind486
scheme. As compared to the schemes of Fig. 12, OUCS4 and SS schemes487
have better DRP property, as shown in Fig. 13. However, the computa-488
tional mode has wider variations and the SS interior scheme does not dis-489
play any upstream propagating mode.490



U
nc

or
re

ct
ed

 P
ro

of

24 Sengupta, Sircar, and Dipankar

0.95

1.05

0.05

0.5

k
∆x

1 2 3

1

2

3
Max = 1.183
Min = 0.0

6.98245

2.64616

0.74245

0.156576

0.0663804

k
∆x

1 2 3

1

2

3 Max = 174.93
Min = 0.0

0.95

1.05

0.05

0.5

k
∆x

1 2 3

1

2

3
Max = 1.183
Min = 0.0

6.91517 1.
27

63
8

0.177605

0.0638529

k
∆x

1 2 3

1

2

3 Max = 174.93
Min = 0.0

0.05
0.5

0.95

1.05

1.05
0.95

0.5

ω ∆t

k
∆x

1 2 3

1

2

3
Max = 1.567
Min = 0.0

14 4

1

1

0.586

0.586
0.586

0.06

ω ∆t

k
∆x

1 2 3

1

2

3 Max = 349.75
Min = 0.0

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Scaled numerical phase speed (cN/c) for 1D wave equation with AB time-integra-
tion scheme. Figure (a), (c) and (e) show physical mode of CD2, CD4, UD3; (b), (d) and (f)
show computational mode of CD2, CD4 and UD3, respectively.
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Fig. 11. Scaled numerical phase speed (cN/c) for 1D wave equation with AB time-integra-
tion scheme. Figure (a), (c), (e) show physical mode and (b), (d), (f) show computational
mode of OUCS4, SS-interior and SS-second scheme, respectively.
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Fig. 12. Scaled numerical group velocity (VgN/c) for 1D wave equation with AB time-inte-
gration scheme. Figure (a), (c) and (e) show physical mode and (b), (d) and (f) show compu-
tational mode of CD2, CD4 and UD3 scheme, respectively.
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Fig. 13. Scaled numerical group velocity (VgN/c) for 1D wave equation with AB time-inte-
gration scheme. Figure (a), (c), (e) show physical mode and (b), (d), (f) show computational
mode of OUCS4, SS-interior and SS-second scheme, respectively.
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3.3. Four Stage Runge Kutta Method491

Following the same methodology discussed in the previous two sub-492
sections and using the symbolic toolbox of MATLAB we have estimated493
the amplification rate, scaled numerical phase speed and numerical group494
velocity for CD2 and CD4 schemes when used with RK4 time integration495
scheme. The results are shown in Fig. 14. For both the spatial schemes,496
the amplification factor displays a large range of ω∆t over which the497
scheme is neutrally stable- a very desirable feature of DNS methodol-498
ogy. While the range of wave numbers and frequencies over which this499
is true is identical for both the schemes, it is the numerical phase speed500
and group velocity that shows difference between these two methods. In501
both respects, CD4 scheme performs better than CD2 scheme. The range502
of k∆x can be further increased over which DRP property is maintained,503
if one replaces the CD4 scheme by compact schemes. Such a scheme is504
used for the acoustics problem discussed in the following section.505

4. ILLUSTRATIVE EXAMPLES506

Here we demonstrate some of the properties of the schemes discussed507
in the previous two sections. We choose two problems to highlight the508
problems of spurious computational mode in using multilevel time integra-509
tion schemes.510

4.1. Solving Navier–Stokes Equation Using Third Order Upwind Scheme511

The results of Sec. 2 clearly reveals that for high Reynolds number512
flows central schemes are unsuitable when used with either Euler or AB-513
scheme due to numerical instability. This is avoided by switching over to514
upwind schemes those having a range of k∆x for which the schemes are515
stable when used with Euler time integration scheme. To avoid changing516
physical dissipation while stabilizing computations, it is practical to use517
third order upwind schemes, as the one given by Eq. (19). Considering518
numerical instability one is restricted to very small time steps when third519
order upwind scheme is used. In contrast, the physical mode of AB-scheme520
allows taking much larger time steps. But the major problems arise, as521
the computational mode is non-negligible and has non-physical contribu-522
tions including a part of the energy at large length scales that propagates523
upstream—as indicated by the group velocity.524

The above observations are demonstrated here by solving Navier–525
Stokes equation for flow past a rotating circular cylinder, using the third526
order upwind scheme for spatial discretization and Euler and AB—scheme527
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Fig. 14. Amplification factor (a) and (d), scaled numerical phase speed (b) and (e) and
scaled numerical group velocity (c) and (f) contours for RK4 time -integration scheme with:
(a)–(c) CD2 and (d)–(f) CD4 scheme.
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for temporal discretization. The physical problem is chosen for the uni-528
form flow at Re= 3800 and a non-dimensional rotation rate, Ω = 10 i.e.529
the peripheral speed of the cylinder is ten times the free-stream speed.530
Flow past rotating cylinder for this type of flow parameters display phys-531
ical instabilities- as reported in [25]. In a recent work [26] a possi-532
ble explanation for the temporal instabilities is provided. In [26], the533
Navier–Stokes equation is solved using (ψ−ω) formulation that uses third534
order upwind scheme with Euler time integration scheme for Ω = 5. It535
was noted that the flow suffered temporal instabilities after an impulsive536
start-up. During these instabilities the loads change abruptly at discrete537
times.538

Here the results are compared between Euler and AB-time integra-539
tion strategies using the same methods but at the higher rotation rate of540
Ω = 10. In solving this problem a fine grid with 450 points in the radial541
direction and 271 points in the azimuthal direction have been taken. The542
first azimuthal line is 0.0005D distance away from the cylinder and the543
outer boundary is located 24D from the cylinder. A non-dimensional time544
step of 0.0001 have been used for both the time integration strategies.545
The lift and drag coefficients are shown in Fig. 15, where Euler and AB-546
schemes are used to advance the vorticity transport equation. For this547
high rotation rate case, Euler time integration once again displays tem-548
poral instabilities at discrete times. This instability was shown in [26] to549
arise from a mechanism where a given equilibrium flow is destabilized by550
far-field disturbance and as a consequence, lump of vorticity that is con-551
fined within the recirculating fluid around the cylinder is released in the552
wake of the cylinder. However, when the AB-scheme is used, the compu-553
tational mode, has negative group velocity for combinations of small val-554
ues of k∆x and ω∆t . As these are useful excited length and time scales555
the computational mode prevents the lump of vortex to be released in556
the wake. As a consequence the instabilities are weakened and in the Cl557
and Cd vs time plots the discrete jumps in the value are smoothed out.558
This is a demonstration of the spurious behavior of AB-scheme in solving559
time dependent problems where a large range of length and time scales are560
excited.561

4.2. Solving Euler Equation For A Fluid Medium Excited by Pulses562

The effectiveness of the schemes discussed in Sects. 2 and 3 will be563
attempted here with the standard example that was introduced in [9],564
where three Gaussian pulses are introduced in an uniform flow (M∞ =0.5)565
and the response of the system is numerically calculated and compared566
with the exact solution. At t=0, a pressure pulse is taken at the center of567
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Fig. 15. The calculated lift and drag coefficients for Re = 3800 and Ω = 10.0 as a function
of time for impulsive start case using (a) Euler and (b) AB time- integration scheme.

the domain along with a vorticity and an entropy pulse taken downstream568
of the pressure pulse at a distance equal to 1/3 of the length of the com-569
putational domain. All these pulses reach the outflow boundary simulta-570
neously. We take the same computational parameters and amplitude and571
half width of the Gaussian pulses, as were taken in [9]. The codes are572
written for the full Euler equation and the disturbance solution can be573
extracted from it to compare with the exact solution.574

∂U

∂t
+ ∂E

∂x
+ ∂F

∂y
=H, (33)

575

where U =|ρ ρu ρv ρe|T576
E=|ρu ρu2 +p ρuv ρuh|T and F =|ρv ρuv ρv2 +p ρvh|T577
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H represents the forcing term that is zero in the present case. The fol-578
lowing initial conditions for different primitive variables, instead, drive the579
fluid dynamical system:580

pd = ε1e
−α1r

2
, (34a)581

ρd = ε1e
−α1r

2 + ε2e
−α2r

2
, (34b)582

ud = ε3ye
−α3r

2
, (34c)583

vd = −ε3xe
−α3r

2
, (34d)584

where r2 = x2 + y2 and the quantities with subscript d represent distur-585
bance components. We have used the same scales as those used in [9]586
and ε1 =0.01, ε2 =0.1 and ε3 =0.0004 are the amplitudes of the pressure,587
entropy and the vorticity Gaussian pulses respectively. The half- width of588
the respective pulses (bi) are 3,5 and 5—the same that was used in [9].589
This defines αi = ln2

bi
2 .590

In solving Eq. (33) with the initial condition given by Eq. (34), we591
used the same radiation and outflow boundary conditions that are given592
in [9]. We have solved the full Euler equation (Eq. (33)) using the differ-593
ent spatial schemes and three time integration schemes. Apart from Euler594
and AB-scheme we have used the RK4 time integration scheme. The RK4595
scheme was specifically chosen because this is a higher-order scheme, but596
it does not have any spurious computational mode. We have solved the597
equation in the physical plane using (200×200) uniform grid and a CFL598
number of 0.5 and this fixes ∆t = 0.0569. For all the schemes we used599
different layers of ghost cells on all four segments of the boundary to600
check the effectiveness of outflow and radiation boundary conditions. In601
[9] three layers of ghost cells were used, because their spatial discretization602
scheme used seven point explicit stencil. In the SS scheme we have devel-603
oped a nine point stencil that requires four layers of ghost cell. It is to be604
noted that the usage of four layers of ghost cells in 2D can be a matter of605
concern for 3D computations, where a very large numbers of points need606
to be added. For example, for a grid of size (M×N×K), the added num-607
ber of ghost cells are given by 8[MN +MK +NK + 8M + 8N + 8K + 64].608
However, for the compact schemes ghost cells are not required per se,609
but we have used them to avoid spurious reflections from the boundary610
segments.611

First, we compare the exact solution with the numerical solutions612
using few combinations of spatial and temporal discretization schemes in613
Fig. 16. Figure 16(a) and (b) show the comparison of the density and the614
pressure disturbance of the numerical schemes along with the exact solu-615
tion at 500∆t and 2000∆t , using four layers of ghost cells. All the schemes616
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Fig. 16(a). Exact solution of Eqs. (33) and (34) compared with computed solutions after
500∆t , using the indicated space-time schemes using 9-pt. stencil with four layers of ghost
cells. Figure (i) and (ii) show the pressure and density disturbance respectively.

match quite well with the exact solution, except the results shown with617
the AB-scheme at later times, as was stated explicitly in [13] and quoted618
in the Introduction. The computed pressure waveform along the x-axis619
matches with the exact solution for all times for the other schemes. How-620
ever, density contours show a marginal mismatch with the exact solution.621
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Fig. 16(b). Exact solution of Eqs. (33) and (34) compared with computed solutions after
2000∆t , using the indicated space-time schemes using 9-pt. stencil with four layers of ghost
cells. Figure (i) and (ii) show the pressure and density disturbance respectively.

It is interesting to note that there is a small dispersion between the two622
solutions at 500∆t , which however disappears at 2000∆t and higher times.623
It is to be noted that the exact solution is in reality the asymptotic solu-624
tion that is due to the poles and singularities near the origin in the spec-625
tral plane. If there are any higher modes and essential singularities that626
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are away from the origin in the ω- plane, then they will be responsible for627
the transients. A bump in the density contour is noted for 2000∆t which628
is of the order of 1% of the peak amplitude. This is obtained for all the629
spatial and temporal discretization combinations and the same bump was630
also noticed in [9] in Fig. 7. Even when the four layers of ghost cells were631
used, the RK4 time integration scheme produced spurious reflections from632
the inflow boundary. To remedy this we used an 8th order Filter (F8) as633
given in [8].634

Having seen that all the schemes show good agreement with the exact635
solution along the x-axis, it is natural to compare the solution at other636
locations next. This has been attempted by plotting the contours for den-637
sity, pressure and speed in the full computational domain in Fig. 17 and638
18.639

In Fig. 17(a) the results are shown for OUCS3 spatial scheme640
used with Euler time discretization scheme. Similarly for the results in641
Fig. 17(b) and (c) the same spatial scheme, but RK4 and AB-time dis-642
cretization schemes have been used. For each combinations of spatial643
and temporal discretization schemes, we have used Five, seven and nine644
point stencils at the boundary for the Euler time integration scheme in645
Fig. 17(a). All the three quantities show that the five point stencil is inad-646
equate to prevent reflections from the boundary. Thus in other time inte-647
gration schemes we do not show five point stencil results. If we compare648
Fig. 17(a) and (b), we find that the density and pressure contours for649
Euler and RK4 schemes match well, however the speed contours in the650
Euler time scheme show oscillations. For the AB-time integration scheme651
the results, as shown in Fig. 17(c), for density and pressure contours are in652
good agreement with Euler and RK4 schemes, with no oscillations. How-653
ever, the central core in density contour disappears as compared to the654
results of Fig. 17(a) and (b) and also with similar results shown in [9].655
The speed contours do not match with the other time integration schemes656
with gross mismatch in the mean value itself. This is due to the large657
dissipation associated with the computational mode as discussed in Sec. 2.2.658
Among the three time integration schemes RK4 performs the best only659
when an 8th-order filter is used. Euler scheme will however, be preferred if660
the high frequency small wavelength oscillations, noted in speed contours,661
are removed by applying a high order filter.662

For OUCS4 spatial scheme, one notices similar features of the solu-663
tion for all the time integration schemes, as was noted for OUCS3 scheme.664
The AB-time integration scheme shows large errors and even the mean665
flow is distorted. Thus, this time integration scheme cannot be used for666
computational acoustics problems. It is to be pointed out that the basic667
OUCS4 scheme has inherent numerical instability problem at the near668
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Fig. 17(a). Solution of Eqs. (33) and (34) obtained using OUCS3 spatial discretization with
Euler time-integration scheme after 2000∆t (∆t = 0.0569). Disturbance quantities shown in
(i)–(iii): density; (iv)–(vi): pressure and (vii)–(ix): speed. Figure in: (i), (iv) and (vii) are with
5 pt. stencil and two layers of ghost cells; (ii), (v) and (viii) are with 7 pt. stencil and three
layers of ghost cells and (iii), (vi) and (ix) are with 9 pt. stencil and four layers of ghost cells.

boundary point which we remove by using explicit 4th order dissipation669
for DNS. However, for the acoustics problem we did not introduce any670
dissipation. Once again, the RK4 scheme used with the 8th order filter671
produces results with no oscillations.672
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Fig. 17(b). Solution of Eqs. (33) and (34) obtained using OUCS3 spatial discretization with
RK4 time-integration scheme after 2000∆t (∆t = 0.0569). Disturbance quantities shown in
(i), (ii): density; (iii), (iv): pressure and (v), (vi): speed. Figures in: (i), (iii) and (v) are with 7
pt. stencil and 3 layers of ghost cells; (ii), (iv) and (vi) are with 9 pt. stencil and 4 layers of
ghost cells.
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Fig. 17(c). Solution of Eqs. (33) and (34) obtained using OUCS3 spatial discretization with
AB time-integration scheme after 2000∆t (∆t=0.0569). Disturbance quantities shown in (i),
(ii): density; (iii), (iv): pressure and (v), (vi): speed. Figure in: (i), (iii) and (v) are with 7 pt.
stencil and three layers of ghost cells; (ii), (iv) and (vi) are with 9 pt. stencil and four layers
of ghost cells.
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Fig. 18(a). Solution of Eqs. (33) and (34) obtained using OUCS4 spatial discretization with
Euler time integration scheme after 2000∆t (∆t=0.0569). Disturbance quantities shown in (i),
(ii): density; (iii), (iv): pressure and (v), (vi): speed. Figure in: (i), (iii) and (v) are with 7 pt.
stencil and three layers of ghost cells; (ii), (iv) and (vi) are with 9 pt. stencil and four layers
of ghost cells.
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Fig. 18(b). Solution of Eqs. (33) and (34) obtained using OUCS4 spatial discretization with RK4
time integration scheme after 2000∆t (∆t=0.0569). Disturbance quantities shown in (i), (ii): den-
sity; (iii), (iv): pressure and (v), (vi): speed. Figure in: (i), (iii) and (v) are with 7 pt. stencil and three
layers of ghost cells; (ii), (iv) and (vi) are with 9 pt. stencil and four layers of ghost cells.
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Fig. 18(c). Solution of Eqs. (33) and (34) obtained using OUCS4 spatial discretization with
AB time integration scheme after 2000∆t (∆t =0.0569). Disturbance quantities shown in (i),
(ii): density; (iii), (iv): pressure and (v), (vi): speed. Figures in: (i), (iii) and (v) are with 7 pt.
stencil and three layers of ghost cells; (ii), (iv) and (vi) are with 9 pt. stencil and four layers
of ghost cells.
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5. CONCLUSION673

In the present work, we have analyzed some time integration schemes674
with different high accuracy compact and explicit spatial discretization675
schemes. Various important properties of spectral accuracy, numerical sta-676
bility and DRP are investigated. Two examples from DNS and compu-677
tational acoustics have been solved to highlight the efficacy of various678
schemes.679

Since the major problem in acoustics is to predict weak signals680
and distinguish it from background noise (which arises due to numerical681
errors), emphasis is on highly accurate discretization schemes. It is shown682
that high order does not necessarily imply high accuracy for both space683
and time schemes. Used spatial compact schemes like the OUCS3 and684
OUCS4 schemes are only 2nd order formally accurate, and yet they per-685
formed as well as the optimum 4th order scheme of [9] and a 6th order686
accurate optimized explicit scheme (SS scheme) developed by us. The com-687
pact schemes has better DRP property than the explicit schemes. We have688
also investigated the effect of using multi-layer ghost cells at the bound-689
ary to avoid spurious reflection, through the SS scheme and its one sided690
variants. Additionally, higher order filter is used for the same purpose.691

Similarly, among time integration schemes, the 2nd order accurate692
AB-scheme performed poorly compared to 1st order accurate Euler time693
integration scheme as shown by comparing the numerical results with694
exact solution of the linearized Euler equation. This is shown due to the695
presence of a spurious computational mode that is heavily damped and696
that apportions to itself a large fraction of the initial condition. The 4th697
accurate RK4 scheme does not suffer from this problem, as this does not698
have computational mode.699

Solution of incompressible Navier–Stokes equation for the problem of700
a rotating and translating circular cylinder showed physical temporal insta-701
bility when Euler time integration scheme was used. The AB-scheme could702
not capture the sharp changes in loads during the instabilities. Solution of703
compressible Euler equation for an acoustics problem showed, once again,704
the inadequacy of the AB-scheme. The Euler and RK4 scheme performed705
satisfactorily, when the latter was used with a 8th order filter to avoid spu-706
rious reflection from the boundary.707
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