Skip to main content
Log in

Further Development of a Conservative Front-Tracking Method for Systems of Conservation Laws in One Space Dimension

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we further analyze, improve and develop the conservative front-tracking method developed in Mao(1995, SIAM. J. Numer. Anal., 32, 1677–1703). The method in Mao(1995, SIAM. J. Numer. Anal., 32, 1677–1703) is only first-order accurate near the tracked discontinuities when applied to systems of conservation laws. This is because in the system case near tracked discontinuities there are waves in other characteristic fields and they may propagate across the discontinuities. The method in Mao(1995, SIAM. J. Numer. Anal., 32, 1677–1703) treats this propagate-across of waves in a first-order fashion. In this paper, we develop a high-order treatment of this wave propagate-across on tracked discontinuities and thus enhance the accuracy of the method. We present a rigorous analysis of truncation error to show that the method equipped with the developed treatment of wave propagate-across is high-order accurate in a certain sense. We also discuss some matters concerning the application of the method to the Euler system of gas dynamics, such as the treatment of reflection wall boundaries, application to the multifluid flows, and the programming of the algorithm. Numerical examples are presented to show the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aslam T.D. (2003). A level set algorithm for tracking discontinuities in hyperbolic conservation laws II: system of equations. J. Sci. Comput. 19, 37–62

    Article  MATH  MathSciNet  Google Scholar 

  • Aslam T.D. (2001). A level set algorithm for tracking discontinuities in hyperbolic conservation laws I: scalar equations. J. Comput. Phys. 167(2): 413–438

    Article  MATH  Google Scholar 

  • Chern, I-L., and Colella, P. (1987). A conservative front tracking method for hyperbolic system of conservation laws, LLNL Rep. No. UCRL-97200 (1987)

  • Colella P., Woodward P.R. (1984). The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput Phys. 54, 115–173

    Article  MATH  MathSciNet  Google Scholar 

  • Glimm J., Li Xiao-lin., Liu Ying-jie., Xu Zhi-liang., Zhao Ning. (2003). Conservative front-tracking with improved accuracy. SIAM J. Numer. Anal. 41(5): 1926–1947

    Article  MATH  MathSciNet  Google Scholar 

  • Henshaw W.D. (1987). A scheme for numerical solution of hyperbolic system of conservation laws. J. Comput. Phys 68, 25–47

    Article  MATH  Google Scholar 

  • Harten A. (1989). ENO schemes with subcell resolution. J Comput. Phys. 83, 148–184

    Article  MATH  MathSciNet  Google Scholar 

  • Harten A., Engquist B., Osher S., Chakravarthy S.R (1987). Uniformly high-order accurate essentially non-oscillatory scheme, III. J. Comput. Phys. 71, 231–303

    Article  MATH  MathSciNet  Google Scholar 

  • Karni S. (1994). Multicomponent flow calculations by a consistent primitive algorightm. J. Comput. Phys. 112, 31–43

    Article  MATH  MathSciNet  Google Scholar 

  • Lax P.D. (1957). Hyperbolic system of conservation laws. II J. Comm. Pure Appl. Math. 10, 537–566

    Article  MATH  MathSciNet  Google Scholar 

  • LeVeque R.J., Shyue K.M. (1996). Two dimensional front tracking based on high resolution wave progation methods. J.Comput. Phys. 123, 354–368

    Article  MATH  MathSciNet  Google Scholar 

  • LeVeque R.J., Shyue K.M. (1995). One dimensional front tracking based on high resolution wave propogation methods. SIAM J. Sci. Comput. 16, 348–377

    Article  MATH  MathSciNet  Google Scholar 

  • LeVeque R.J. (1990). Numerical Methods for Conservation Laws. Birkhauser-verlag, Basel, Boston, Berlin

    Google Scholar 

  • LeVeque, R. J. (2000). Finite Volume Methods for Hyperbolic Problems, Published by the press Syndicate of the University of Cambridge

  • Mao D. (2000). Towards front tracking based on conservation in two space dimension. SIAM J. SCI. Comput. 22, 113–151

    Article  MATH  MathSciNet  Google Scholar 

  • Mao D. (1995). A shock tracking technique based on conservation in one space dimmension. SIAM J. Numer. Anal. 32, 1677–1703

    Article  MATH  MathSciNet  Google Scholar 

  • Mao D. (1992). A treatment of discontinuities for finite difference methods. J. Comput. Phys. 103, 359–369

    Article  MATH  MathSciNet  Google Scholar 

  • Mao D. (1991). A Treatment of discontinuities in shock-capturing finite difference methods. J. Comput. Phys. 92, 422–455

    Article  MATH  MathSciNet  Google Scholar 

  • Mao, D. (1991). A treatment for discontinuities. In Engquist B., and Gustafsson, B., (eds.), (Proc. Third International Conference on Hyperbolic Problem, Uppsala, Swedem, 1990), Studentlitteratur, Sweden

  • Mao D. (1985). A difference scheme for shock calculation J. Comput. Math. 3, 356–382(in Chinese)

    Google Scholar 

  • Moretti, (1972). Thoughts and afterthoughts about shock computations, Report No. PIBAL-72-37, PolytechnicInstitute of Brooklyn

  • Richtmyer R.D., Morton K.W. (1967). Difference Methods for Initial-value Problems. Interscience publishers, New York London Sydney

    MATH  Google Scholar 

  • Roe P.L. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372

  • Shyue Keh-Ming. (1998). An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242

    Article  MATH  MathSciNet  Google Scholar 

  • Shu Chi-wang., Osher S. (1989). Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J Comput. Phys. 83, 32–78

    Article  MATH  MathSciNet  Google Scholar 

  • Shu Chi-Wang. (1987). TVB boundary treatment for numerical solutions of conservation laws. Math. Comp. 49, 123–134

    Article  MATH  MathSciNet  Google Scholar 

  • Sod G.A. (1978). A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput. Phys. 27, 1–31

    Article  MATH  MathSciNet  Google Scholar 

  • Swartz B.K., Wendroff B. (1986). A front tracking code based on Godunov’s method. Appl. Numer. Math. 2, 385–397

    Article  MathSciNet  MATH  Google Scholar 

  • LeVeque R.J., Shyue K.M. (1995). One dimensional front tracking based on high resolution wave propogation methods. SIAM J. Sci. Comput. 16, 348–377

    Article  MATH  MathSciNet  Google Scholar 

  • LeVeque R.J. (1990). Numerical Methods for Conservation Laws. Birkhauser-verlag, Basel, Boston, Berlin

    MATH  Google Scholar 

  • LeVeque R. J. (2000). Finite Volume Methods for Hyperbolic Problems, Published by the press Syndicate of the University of Cambridge

  • Mao D. (2000). Towards front tracking based on conservation in two space dimension. SIAM J. SCI. Comput. 22, 113–151

    Article  MATH  MathSciNet  Google Scholar 

  • Mao D. (1995). A shock tracking technique based on conservation in one space dimmension. SIAM J. Numer. Anal. 32, 1677–1703

    Article  MATH  MathSciNet  Google Scholar 

  • Mao D. (1992). A treatment of discontinuities for finite difference methods. J. Comput. Phys. 103, 359–369

    Article  MATH  MathSciNet  Google Scholar 

  • Mao D. (1991). A Treatment of discontinuities in shock-capturing finite difference methods. J. Comput. Phys. 92, 422–455

    Article  MATH  MathSciNet  Google Scholar 

  • Mao, D. (1991). A treatment for discontinuities. In Engquist B., and Gustafsson, B., (eds.), (Proc. Third International Conference on Hyperbolic Problem, Uppsala, Swedem, 1990), Studentlitteratur, Sweden

  • Mao D. (1985). A difference scheme for shock calculation J. Comput. Math. 3, 356–382 (in Chinese)

    Google Scholar 

  • Moretti, (1972). Thoughts and afterthoughts about shock computations, Report No. PIBAL-72-37, PolytechnicInstitute of Brooklyn

  • Richtmyer R.D., Morton K.W. (1967). Difference Methods for Initial-value Problems. Interscience publishers, New York London Sydney

    MATH  Google Scholar 

  • Roe P.L. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372

  • Shyue Keh-Ming. (1998). An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242

    Article  MATH  MathSciNet  Google Scholar 

  • Shu Chi-wang., Osher S. (1989). Efficient implementation of essentially non-oscillatory shock-capturing schemes. II. J Comput. Phys. 83, 32–78

    Article  MATH  MathSciNet  Google Scholar 

  • Shu Chi-Wang. (1987). TVB boundary treatment for numerical solutions of conservation laws. Math. Comp. 49, 123–134

    Article  MATH  MathSciNet  Google Scholar 

  • Sod G.A. (1978). A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput. Phys. 27, 1–31

    Article  MATH  MathSciNet  Google Scholar 

  • Swartz B.K., Wendroff B. (1986). A front tracking code based on Godunov’s method. Appl. Numer. Math. 2, 385–397

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Ams(MOS) Subject Classification: 65M05, 65M10, 35L65

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, L., De-kang, M. Further Development of a Conservative Front-Tracking Method for Systems of Conservation Laws in One Space Dimension. J Sci Comput 28, 85–119 (2006). https://doi.org/10.1007/s10915-005-9008-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9008-1

Keywords

Navigation