Skip to main content
Log in

Spectral Vanishing Viscosity Method for Large-Eddy Simulation of Turbulent Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An efficient spectral vanishing viscosity method for the large-eddy simulation of incompressible flows is proposed, both for standard spectral and spectral element approximations. The approach is integrated in a collocation spectral Chebyshev-Fourier solver and then used to compute the turbulent wake of a cylinder in a crossflow confined geometry (Reynolds number Re=3900)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams N.A., and Stolz S. (2002). A subgrid-scale deconvolution approach for shock capturing. J. Comput. Phys. 178: 391–426

    Article  ADS  CAS  MathSciNet  Google Scholar 

  2. Azaiez M., Fikri A., and Labrosse G. (1994). A unique grid spectral solver of the nD Cartesian unsteady Stokes system. Illustrative numerical results. Finite Elem. Anal. Des. 16(3–4):247–260

    Article  MathSciNet  Google Scholar 

  3. Botella O. (1997). On the solution of the Navier-Stokes equations using Chebyshev projection schemas with third order accuracy in time. Comput. Fluids 26(2):107–116

    Article  MATH  Google Scholar 

  4. Cousin L., and Pasquetti R. (2004). High-order methods for the simulation of transitional to turbulent wakes.In:Lu Y., Sun W., and Tang T (eds). Advances in Scientific Computing and applications, Science Press Beijing/New York

  5. Deville, M. O., Fischer, P. F., and Mund, E. H. (2002). High-order methods for incompressible flows, Cambridge University Press

  6. Gatsky, T. B., Hussaini, M. Y., and Lumley, J. L. (1996). Large Eddy Simulation, In Ferziger, J. H. (ed.). in Simulation and modeling of turbulent flows. ICASE/LaRC Series in Computational Science and Engineering, Oxford University Press, pp. 109–154

  7. Gottlieb D., and Shu C.W. (1997). On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4):644–668

    Article  MathSciNet  Google Scholar 

  8. Chen G.Q., Du Q., and Tadmor E. (1993). Spectral viscosity approximations to multidimensional scalar conservations laws. Math. of Comput. 204: 629–643

    Article  MathSciNet  Google Scholar 

  9. Guo B., Ma H., and Tadmor E. (2001). Spectral vanishing viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 39(4):1254–1268

    Article  MathSciNet  Google Scholar 

  10. Kaber O.S.M. (1995). A Legendre pseudo-spectral viscosity method. J. Comput. Phys. 128(1):165–180

    Article  MathSciNet  Google Scholar 

  11. Karamanos G.S., and Karniadakis G.E. (2000). A spectral vanishing viscosity method for large-eddy simulation. J. Comput. Phys. 163: 22–50

    Article  ADS  MathSciNet  Google Scholar 

  12. Kravchenko A.G., and Moin P. (2000). Numerical studies of flow over a circular cylinder at Re=3900. Phys. Fluids 12(2):403–417

    Article  ADS  CAS  Google Scholar 

  13. Ma X., Karamanos G.S., and Karniadakis G.E. (2000). Dynamic and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410: 29–65

    Article  MathSciNet  ADS  CAS  Google Scholar 

  14. Ma H. (1998). Chebyshev-Legendre superspectral viscosity method for non linear conservation laws. SIAM J. Numer. Anal. 35(3):893–908

    Article  MATH  MathSciNet  Google Scholar 

  15. Maday Y., Patera A.T., and Ronquist E.M. (1990). An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. of Sci. Comp. 5(4):263–292

    Article  ADS  MathSciNet  Google Scholar 

  16. Maday Y., Kaber S.M.O., and Tadmor E. (1993). Legendre pseudo-spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30(2):321–342

    Article  MathSciNet  Google Scholar 

  17. Ong L., and Wallace J. (1996). The velocity field of the turbulent very near wake of a circular cylinder. Experiments in fluids 20: 441–453

    Article  CAS  Google Scholar 

  18. Pasquetti R., and Xu C.J. (2002). High-order algorithms for large eddy simulation of incompressible flows. J. Sci. Comp. 17(1–4):273–284

    Article  MathSciNet  Google Scholar 

  19. Pasquetti R. (2004). On inverse methods for the resolution of the Gibbs phenomenon. J. of Comput. and Appl. Math 170: 303–315

    Article  MATH  MathSciNet  Google Scholar 

  20. Pasquetti R. (2005). High-order LES modeling of turbulent incompressible flow. C.R. Acad. Sci. (Mécanique) 333: 39–49

    Google Scholar 

  21. Pasquetti, R. (in press). Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters. J. of Turbulence

  22. Peyret, R. (2001). Spectral Methods for Incompressible Flow, Applied Mathematical Sciences 148, Springer.

  23. Stolz S., and Adams N.A. (1999). An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11(7):1699–1701

    Article  ADS  CAS  Google Scholar 

  24. Tadmor E. (1989). Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1):30–44

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu C.J., and Pasquetti R. (2001). On the efficiency of semi-implicit and semi-Lagrangian spectral methods for the calculation of incompressible flows. Inter. J. Numer. Meth. Fluids 35: 319–340

    Article  CAS  Google Scholar 

  26. Xu C.J., and Pasquetti R. (2004). Stabilized spectral element computations of high Reynolds number incompressible flows. J. Comput. Phys. 196(2):680–704

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Pasquetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquetti, R. Spectral Vanishing Viscosity Method for Large-Eddy Simulation of Turbulent Flows. J Sci Comput 27, 365–375 (2006). https://doi.org/10.1007/s10915-005-9029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9029-9

Keywords

Navigation