Skip to main content
Log in

Direct Minimization of the Discontinuous Least-Squares Spectral Element Method for Viscoelastic Fluids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In this paper direct minimization of the discontinuous least-squares spectral element formulation is described. The method will beapplied to the Upper Convected Maxwell (UCM) model which describes a viscoelastic fluid. The new ideas presented in this paper consist of the weak coupling of the fluxes in the least-squares formulations instead of imposing weak continuity of the dependent variables. Furthermore, direct minimization is employed instead of the conventional variational least-squares formulation. The resulting system is solved iteratively using LSQR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pontaza J.P., and Reddy J.N. (2003). Spectral/hp least squares finite element formulation for the Navier–Stokes equation. J. Comput. Phys. 190(2):523–549

    Article  ADS  MathSciNet  Google Scholar 

  2. Pontaza J.P., and Reddy J.N. (2004). Space-time coupled spectral/hp least squares finite element formulation for the incompressible Navier–Stokes equation. J.Comput.Phys. 197(2):418–459

    Article  ADS  MathSciNet  Google Scholar 

  3. Proot M.M.J., and Gerritsma M.I. (2002). A least-squares spectral element formulation for the Stokes problem. J. Sci. Comput. 17(1–3):311–322

    Google Scholar 

  4. Proot M.M.J., and Gerritsma M.I. (2002). Least-squares spectral elements applied to the Stokes problem. J. Comput. Phys. 181(2):454–477

    Article  ADS  CAS  MathSciNet  Google Scholar 

  5. Talwar K.K., Ganpule H.K., and Khomami B. (1994). A note on the selection of spaces in computation of viscoelastic flows using the hp finite element method. J. Non-Newtonian Fluid Mech. 52:293–307

    Article  CAS  Google Scholar 

  6. Van Kemenade V., and Deville M.O. (1994). Application of spectral elements to viscoelastic creeping flows. J. Non-Newtonian Fluid Mech. 51:277–308

    Article  Google Scholar 

  7. Gerritsma M.I., and Phillips T.N. (1999). Compatible spectral approximations for the velocity-pressure-stress formulation of the Stokes problem. SIAMJ.Sci.Comput. 20:1530–1550

    Article  MathSciNet  Google Scholar 

  8. Jiang B.N. (1993). Non-oscillatory and non-diffusive solution of convection problems by the iteratively reweighted least-squares finite element method. J. Comput. Phys. 105:108–121

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. De Maerschalck B., and Gerritsma M.I. (2005). The use of Chebyshev polynomials in the space-time least-squares spectral element method. Num. Alg. 38:173–196

    Article  MathSciNet  Google Scholar 

  10. De Sterck H., Manteuffel T.A., McCormick S.F., and Olson L. (2004). Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs. SIAM J. Sci. Comput. 26(1):31–54

    Article  MathSciNet  Google Scholar 

  11. De Sterck H., Manteuffel T.A., McCormick S.F., and Olson L. (2004). Numerical conservation properties of H(div)-conforming least-squares finite element methods applied to the Burgers equation. SIAM J. Sci. Comput. 26(5):1573–1597

    Article  MathSciNet  Google Scholar 

  12. Alves M.A., Pinho F.T., and Oliveira P.J. (2001). The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods. J. Non-Newtonian Fluid Mech. 97:207–232

    Article  CAS  Google Scholar 

  13. Owens, R.G., and Phillips, T.N. (2002). Computational Rheology, Imperial College Press.

  14. Bochev P.B., and Gunzburger M.D. (1995). Least squares finite methods for the velocity-pressure-stress formulation of the Stokes equations. Comput. Meth. Appl. Mech. . 126(3–4):267–287

    Article  MathSciNet  Google Scholar 

  15. Gerritsma M.I., and Proot M.M.J. (2002). Analysis of a discontinuous least squares spectral element method. J. Sci. Comput. 17(1–3):323–333

    Google Scholar 

  16. Canuto C., Hussaini M.Y., Quarteroni A., and Zang T. (1987). Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin

    Google Scholar 

  17. Karniadakis G.E., and Sherwin S.J. (1999). Spectral/hp Element Methods for CFD. Oxford University Press, Oxford

    Google Scholar 

  18. Björck Å. (1990). Solution of Equations in R n (Part 1): Least Squares Methods, volumeI of Handbook of Numerical Analysis. North-Holland, Amsterdam

    Google Scholar 

  19. Paige C.C., and Saunders M.A. (1982). Lsqr: an algorithm for sparse linear equations and sparse least squares. ACM Trns. Math. Softw. 8(1):43–71

    Article  MathSciNet  Google Scholar 

  20. Hoitinga, W.,deGroot, R., and Gerritsma, M.I. (2005). Direct minimization method of the least-squares spectral element method using the block QR-decomposition. In preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc I. Gerritsma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerritsma, M.I. Direct Minimization of the Discontinuous Least-Squares Spectral Element Method for Viscoelastic Fluids. J Sci Comput 27, 245–256 (2006). https://doi.org/10.1007/s10915-005-9042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9042-z

Keywords

Navigation