Skip to main content
Log in

Denoising by BV-duality

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In this paper we apply Meyer’s G-norm for image processing problems. We use a definition of the G-norm as norm of linear functionals on BV, which seems to be more feasible for numerical computation. We establish the equivalence between Meyer’s original definition and ours and show that computing the norm can be expressed as an interface problem. This allows us to define an algorithm based on the level set method for its solution. Alternatively we propose a fixed point method based on mean curvature type equations. A computation of the G-norm according to our definition additionally gives functions which can be used for denoising of simple structures in images under a high level of noise. We present some numerical computations of this denoising method which support this claim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A. (1975). Sobolev Spaces. Academic Press, New York San Francisco, London

    MATH  Google Scholar 

  2. Ambrosio L., Fusco N., Pallara D. (2000). Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York

    MATH  Google Scholar 

  3. Aubert G., Aujol J.-F. (2005). Modeling very oscillating signals. application to image processing. Appl. Math. Optim. 51, 163–182

    Article  MATH  MathSciNet  Google Scholar 

  4. Aujol F., Aubert G., Blanc-Féraud L., Chambolle A. (2005). Image decomposition into a bounded variation component and an oscillating component. J. Math. Imag. Vis. 22, 71–88

    Article  Google Scholar 

  5. Chan T., Esedo \(\bar{g}\)lu S., Nikolova, M. (2004). Algorithms for finding global minimizers of image segmentation and denoising models, preprint, CAM-report, UCLA, 2004.

  6. Chan T.F., Vese L.A. (2001). Active contours without edges. IEEE Trans. Image Proc. 10, 266–277

    Article  MATH  Google Scholar 

  7. Crandall M.G., Lions P.-L. (1984). Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp. 43, 1–19

    Article  MATH  MathSciNet  Google Scholar 

  8. Ekeland I., Témam R. (1999). Convex analysis and variational problems, vol. 28, SIAM, Philadelphia, PA

    MATH  Google Scholar 

  9. Engl H.W., Hanke M., Neubauer A. (1996). Regularization of Inverse Problems. Kluwer, Dordrecht

    MATH  Google Scholar 

  10. Enquist B., Tornberg A.-K., Tsai R. (2005). Discretization of dirac delta functions in level set methods. J. Comp. Phys. 207, 28–51

    Article  ADS  Google Scholar 

  11. Esedo \(\bar{g}\)lu S., Osher S.J. (2004). Decomposition of mages by the anisotropic Rudin-Osher-Fatemi model. Comm. Pure Appl. Math. 57, 1609–1626

  12. Esedo \(\bar{g}\)lu S., Tsai R. (2006). Threshold dynamics for he piecewise constant mumford-shah functional. J. Comput. Phys. 211, 367–384

  13. Gilbarg D., Trudinger N.S. (1997). Elliptic Partial ifferential Equation of Second-Order. Springer, Berlin, Heidelberg

    Google Scholar 

  14. Giusti E.(1984). Minimal Surfaces and Functions of Bounded Variation, vol. 80 of Monographs in Mathematics, Birkhäuser Verlag, Basel

    MATH  Google Scholar 

  15. Haddard, A., and Meyer, Y. (2004). Variational methods in image processing, preprint, CAM-report, UCLA, 2004.

  16. Jiang G.-S., Peng D. (2000). Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143

    Article  MATH  MathSciNet  Google Scholar 

  17. Jiang G.-S., Shu C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228

    Article  MATH  MathSciNet  Google Scholar 

  18. Kindermann S., Osher S. (2005). Saddle point formulation for a cartoon-texture decomposition, preprint, CAM-report, UCLA, 2005.

  19. Le T.M., Vese L. (2005). Image decomposition using total variation and div(BMO). Multisc. Model. and Simul. 4, 390–423

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu X.-D., Osher S., Chan T. (1994). Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Meyer Y. (2001). Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, vol. 22 of University Lecture Series, American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  22. Mumford D., Shah J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685

    MATH  MathSciNet  Google Scholar 

  23. Osher S., Burger M., Goldfarb D., Xu J., Yin W. (2005). An iterative regularization method for total variation based image restauration. Multisc. Model. Simul. 4, 460–489

    Article  MATH  MathSciNet  Google Scholar 

  24. Osher S., Fedkiw R. (2003). Level Set Methods and Dynamic Implicit Surfaces, vol. 153 of Applied Mathematical Sciences, Springer-Verlag, New York

    MATH  Google Scholar 

  25. Osher S., Scherzer O. (2004). G-norm properties of bounded variation regularization. Commun. Math. Sci. 2, 237–254

    MATH  MathSciNet  Google Scholar 

  26. Osher S., Sethian J.A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49

    Article  MATH  MathSciNet  Google Scholar 

  27. Rudin L.I., Osher S., Fatemi E. (1992). Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268

    Article  MATH  Google Scholar 

  28. Shu C.-W., Osher S. (1988). Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471

    Article  MATH  MathSciNet  Google Scholar 

  29. Shu C.-W., Osher S. (1989). Efficient implementation of essentially nonoscillatory shock-capturing schemes. II. J. Comput. Phys. 83, 32–78

    Article  MATH  MathSciNet  Google Scholar 

  30. Strang, G. (1983). L1 and L approximation of vector fields in the plane. In Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), vol. 81 of North-Holland Math. Stud., North-Holland, Amsterdam, 1983, pp. 273–288.

  31. Sussman M., Smereka P., Osher S. (1994). A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159

    Article  MATH  ADS  Google Scholar 

  32. Vese L.A., Osher S.J. (2004). Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vision. 20, 7–18

    Article  MathSciNet  Google Scholar 

  33. Zeidler E. (1985). Nonlinear Functional Analysis and its Applications III. Springer-Verlag, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kindermann.

Additional information

Dedicated to David Gottlieb on his 60th birthday.

Stefan Kindermann on leave from University Linz, Austria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kindermann, S., Osher, S. & Xu, J. Denoising by BV-duality. J Sci Comput 28, 411–444 (2006). https://doi.org/10.1007/s10915-006-9074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9074-z

Keywords

Navigation