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We discuss the use of Padé-Legendre interpolants as an approach for

the postprocessing of data contaminated by Gibbs oscillations. A fast in-

terpolation based reconstruction is proposed and its excellent performance

illustrated on several problems. Almost non-oscillatory behavior is shown

without knowledge of the position of discontinuities. Then we consider the

performance for computational data obtained from nontrivial tests, reveal-

ing some sensitivity to noisy data. A domain decomposition approach is

proposed as a partial resolution to this and illustrated with examples.

1. INTRODUCTION
The nonuniform pointwise convergence, known as the Gibbs phenomenon, of

polynomial approximations to a discontinuous function is a well known and much
studied phenomenon, see e.g. [13] and references therein. Among the consequences
of the Gibbs phenomenon is the lack of convergence at the jump with an overshoot
of approximately 9% of the jump size, a global O(N−1) convergence rate in mean,
and a steepness of the approximation right at the jump being proportional to the
order, N , of the polynomial expansion.

The literature is rich with methods trying to reduce or even eliminate these
problems. The perhaps simplest approach is that of modal filtering, essentially
modifying the expansion to make it converge more rapidly in regions sufficiently
far away from the discontinuities [13, 16, 22]. An alternative approach is physical
space filtering using mollifiers [14, 21], yielding similar behavior, the latter requiring
approximate information about the location of the discontinuity. Both methods,
however, do not overcome the lack of convergence at the point of discontinuity. To
achieve this, information about the exact shock location is needed. With this, the
Gibbs phenomenon can be completely resolved [13], albeit this approach has con-
siderable practical problems, i.e. the need to know the location of the discontinuity
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exactly and convergence and conditioning problems at high orders of approximation
[3, 10].

In this work we discuss the use of rational functions, Padé-Legendre interpolants,
as a tool for postprocessing of discontinuous functions represented by classic orthog-
onal polynomials. As rational functions are richer than simple polynomial repre-
sentations, one can hope that the impact of the discontinuity will be less severe
and, thus, that one can use this as a postprocessing tool to reduce the impact of
the Gibbs phenomena in polynomial expansions.

Similar efforts has been pursued recently, see e.g. [5, 6, 8, 9, 19]. However, most
of these previous efforts have dealt with exact expansions and simple functions.
An exception is [5] in which a rational approximation was used to post-process the
pseudo-spectral Fourier solution of Burgers’ equation and an incompressible Boussi-
nesq convection flow. Furthermore, most previous work is based on Fourier-Padé
methods [5, 6, 9]. Although [8, 19] also deal with functions based on orthogonal
polynomials as in this paper, they consider only simple functions and denominators
of very low order.

In this work we shall discuss a number of different aspects. First, we shall not
assume knowledge of expansions but rather of point values, leading to interpolatory
rational functions. We discuss the interpolants in detail and present an efficient
algorithm for computing the Padé interpolant of a function. Secondly, we shall
investigate the behavior of these interpolants for problems with inexact or noisy
data, e.g., reconstructions based on computed data only.

In Section 2 we shall recall basic properties of the Legendre polynomials, Gauss
quadratures, and associated interpolation polynomials while Section 3 defines the
rational Padé-Legendre interpolants. This sets the stage for Section 4 where we
discuss the computational construction of the Padé-Legendre interpolants, leading
to an algorithm that requires only point values of the function, in contrast with
[6, 8, 20] which require knowledge of the expansion coefficients. In Section 5 we
illustrate the performance of these interpolants for the postprocessing of polynomial
representations of functions with limited regularity. We also discuss in detail the
impact of noise in the data, e.g., due to computations, and propose a multi-domain
approach to the reconstruction in such cases. We extend the test cases to include
the postprocessing of pseudo-spectral solutions of both Burgers’ equation and the
1-D shock entropy problem. Section 6 contains a few concluding remarks.

2. LEGENDRE POLYNOMIALS AND EXPANSIONS

Let L2(−1, 1) be the space of measurable functions, u, such that the integral∫ 1

−1
|u(x)|2dx is finite. Equipped with the scalar product

〈u, v〉 :=
∫ 1

−1

u(x)v(x)dx, (1)

L2(−1, 1) is a Hilbert space. The norm derived from this scalar product (1) is
denoted ‖u‖ :=

√〈u, u〉. A Hilbert basis of L2(−1, 1) is given by the Legendre
polynomials Pn(x). These polynomials of order n are defined by

∀(n,m) ∈ N × N, 〈Pn, Pm〉 =
1

n+ 1/2
δn,m, (2)
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with δ being the Kronecker symbol. Every function in L2(−1, 1) has an L2-convergent
expansion in Legendre polynomials

L(u) :=
∞∑

n=0

ûnPn,

where ûn is the n-th Legendre coefficient of u

ûn :=
1

‖Pn‖2
〈u, Pn〉 = (n+

1
2
)
∫ 1

−1

u(x)Pn(x) dx. (3)

For N ∈ N, one defines the truncated series

LN (u) :=
N∑

n=0

ûnPn.

By the orthogonality properties of the Legendre polynomials, LN (u)− u is orthog-
onal to PN :

∀p ∈ PN : 〈u− LN (u), p〉 = 0 (4)

where we denote by PN the set of algebraic polynomials of degree less than or equal
to N .

The rate of convergence of the error ‖LN (u)−u‖ is related solely to the smooth-
ness of the function u, e.g., if u belongs to the Sobolev space Hs(−1, 1), s ≥ 0, there
exists a constant c (depending solely on s) such that (consult [2] for instance)

∀N ∈ N : ‖LN (u) − u‖ ≤ cN−s‖u‖Hs .

Hence for smooth u, the polynomial LN (u) is a very accurate approximation of u
as N goes to ∞.

However, for discontinuous functions or functions only belonging to Hs with
s < 1/2, the expansion converges slowly and lacks pointwise convergence, a mani-
festation of the Gibbs phenomenon.

2.1. Legendre Quadratures
For a given N ∈ N, we shall consider the Gauss quadrature

∫ 1

−1

ϕ(x)dx =
M∑

j=1

ϕ(x̃j)ω̃j +
N−M∑
j=0

ϕ(xj)ωj . (5)

where the M nodes, x̃j , are predefined, leaving a total of 2N −M + 2 degrees of
freedom to maximize the accuracy of the summation.

For M = 0, one recovers the maximally accurate classic Gauss quadrature in
which case the N + 1 nodes are given as the roots of PN+1(x). Another important
case is that of M = 2 and x̃j = ±1 in which case the remaining N − 1 nodes are
found as the roots of P ′

N (x). All computed points are, in both cases, entirely inside
the computational domain, i.e.,
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−1 < x0 < x1 < · · · < xN−M−1 < xN−M < 1 .

and satisfy a symmetry relation

∀j = 0, . . . , N −M : xj = −xN−M−j .

Once the integration nodes are known, the weights can be found by requiring that
the quadrature be exact for all polynomials up to orderN . However, the true power
of the Gaussian quadrature emerges when recalling that (5) is in fact exact for all
polynomials ϕ ∈ P2N+1−M .

Associated with the quadrature formula (5) is the discrete scalar product defined
for all continuous functions ϕ and ψ by

〈ϕ, ψ〉N =
M∑

j=1

ϕ(x̃j)ψ(x̃j)ω̃j +
N−M∑
j=0

ϕ(xj)ψ(xj)ωj , (6)

and the associated discrete norm, ‖ϕ‖2
N = 〈ϕ,ϕ〉N . Due to the accuracy of the

Gauss quadrature, if the function ϕψ belongs to P2N+1−M then the discrete and
continuous inner product coincide. However, for M = 2, this implies that for
ϕψ ∈ P2N , the Gauss Lobatto quadrature is no longer exact, i.e., the discrete and
continuous norms are not identical.

2.2. Interpolation
Let us in the following refer to xj as a generic node, be it specified or computed

as part of the quadrature construction. Associated with the nodes, (xj)N
j=0, are the

Lagrange interpolants (�j)N
j=0 defined for j = 0, · · · , N by

�j ∈ PN and �j(xk) = δj,k, ∀k = 0, · · · , N. (7)

The interpolation of a function u at the quadrature points takes the simple form

IN(u) :=
N∑

j=0

u(xj)�j(x).

For a smooth u, the polynomial IN (u) is a very accurate approximation of u, e.g., if
u belongs to the Sobolev space Hs(−1, 1) with s > 1

2 (see [2]) there exists a constant
c such that for all N ∈ N

‖IN (u) − u‖ ≤ cN−s+1/2‖u‖Hs . (8)

An alternative, or dual, form of IN(u) is given as

IN (u) =
N∑

j=0

ũjPj ,

with the discrete Legendre coefficients ũj defined by

ũj := ÎN (u)j =
〈IN (u), Pj〉N

‖Pj‖2
N

. (9)
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For the Gauss quadrature, the accuracy of the quadrature formula implies

ũj = (j + 1/2)〈IN(u), Pj〉N = (j + 1/2)〈u, Pj〉N . (10)

This is, however, not the case for the Gauss-Lobatto quadrature, although the
difference is minimal for most practical purposes [15].

3. THE PADÉ-LEGENDRE INTERPOLATION

Given integers N , M , and L, we seek to define a rational function P/Q which
interpolates a given function u at N + 1 collocation points. We shall assume that
P ∈ PM and Q ∈ PL.

The main reason for seeking the interpolation of a function, u, by a rational
function R = P/Q is based on the hope that the poles of R are close (in the
complex plane) to the singularities of u. In that case the rational approximation
can capture the “structure” of u and, thus, lead to an improved representation of
u. Furthermore, as the polynomial representation is a special case of the rational
form, no deterioration is expected for smooth problems.

Assume that N ≥ 1. Then

Definition 3.1. Given integers M and L, the pair of polynomials (P,Q) ∈
PM × PL is said to be a solution of the (N,M,L) Padé-Legendre interpolation
problem of a given function u if Q has a constant sign on [−1, 1], i.e.,

∀x ∈ [−1, 1] : Q(x) > 0 (11)

and

∀ϕ ∈ PN : 〈P − Qu, ϕ〉N = 0. (12)

Equation (12) forms a linear system of N+1 equations and M+L+2 unknowns
(the coefficients of P and Q in some polynomial basis). This system always has a
non trivial solution if M + L ≥ N .

Equation (12) is motivated by previous work in which P − Qu is required to
be orthogonal to PN using a continuous inner product. We refer to [8] and [20]
for Legendre expansions, to [19] for Chebyshev expansions, to [5] for Fourier ex-
pansions, and to [17] for the general Jacobi case, although previous work utilizing
orthogonal polynomials have only considered the case with L being very small.

If (11)-(12) has a solution, we define the rational function

R(u) :=
P

Q
. (13)

Let us be a bit more precise about the interpolation properties of R(u).

Remark. [Interpolation] Suppose there exists a solution (P,Q) of the (N,M,L)
Padé-Legendre interpolation problem (11)-(12). Taking in (12) ϕ ∈ PN to be a
Lagrange polynomial �j based on the quadrature points xj we get the relations

∀j = 0, · · · , N : (P − Qu) (xj) = 0.
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Since Q(xj) 	= 0, the rational function R(u) interpolates u at xj i.e.,

∀j = 0, · · · , N : R(u)(xj) = u(xj). (14)

The converse is of course likewise true: if R(u) =
P

Q
with positive denominator,

satisfies the interpolation properties (14), then the pair (P,Q) is a solution of the
(N, degree(P), degree(Q)) Padé-Legendre interpolation problem.

The main question is the existence of a pair (P,Q). Let us first consider the
simple case L = 0, i.e., the denominator is a (non zero) constant. If N = M , the
numerator equals this constant times IN (u), i.e., the interpolation of u at the grid
points. This is known to be a bad approximation if the function u is not regular
enough as shown in Eq.(8). If M < N there could be no solution and if M > N ,
there are an infinite number of solutions, P. In this work, we shall only concern
ourselves with the cases M ≥ 1, M ≤ N , and L ≥ 0.

Thus uniqueness can easily be controlled with some restrictions on the parameters
M and L.

Proposition 3.1 (Uniqueness). Assume M + L ≤ N . Then a solution of
(11)-(12) is unique in the sense that it defines a unique rational approximation
(13).

Proof. If (P1,Q1) and (P2,Q2) are two solutions, then by the Remark above

∀j = 0 · · · , N :
P1

Q1
(xj) =

P2

Q2
(xj) = u(xj).

The polynomial P1Q2 − P2Q1 ∈ PM+L vanishes at the N + 1 different points xj .
The assumption M + L ≤ N implies that P1Q2 − P2Q1 ≡ 0. �

4. COMPUTATION OF THE RATIONAL APPROXIMATION
In the following we shall discuss in some detail the actual computation of the

rational interpolant. From now on we shall assume that

N = M + L. (15)

Remark. Assuming (15), we know that there exists a non trivial solution
(P,Q) of the Padé-Legendre interpolation problem (12). If the denominator Q

never vanishes then we deduce from Proposition 3.1, that the rational approximant
R(u) is unique.

The main difficulty lies in the computation of the denominator. Once this is
done, the computation of the numerator is straightforward.

Let us assume for a moment that the denominator Q has been computed. Taking
ϕ = Pn in (12) with n = 0, · · · , N , we get

〈Qu, Pn〉N = 〈P, Pn〉N = ‖Pn‖2
N p̃n,

from which the Legendre coefficients of P follows directly. Thus, once Q is known,
P follows by a quadrature.
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For the computation of the denominator, observe first that assumption (15) im-
plies

2M + L = M +N ≤ 2N (16)

Taking ϕ = Pn in (12) with n = M + 1, · · · , L+M , we get

〈Qu, Pn〉N = 〈P, Pn〉N .

If, for simplicity, we restrict the attention to the use of Gauss quadratures, we have

〈Qu, Pn〉N =
∫ 1

−1

P(x)Pn(x) dx .

By the orthogonality properties of the Legendre polynomials we recover

〈Qu, Pn〉N = 0, ∀n = M + 1, · · · ,M + L. (17)

If the approach is based on the Gauss-Lobatto quadrature, a slight modification is
required for n = M + L but the outcome is essentially the same.

Hence the problem of finding the denominator can be stated as follows: find
Q ∈ PL such that the L discrete Legendre coefficients of the function Qu

(
(̃Qu)n

)M+L

n=M+1

vanish.
Let us write the denominator

Q =
L∑

m=0

q̃mϕm ∈ PL, (18)

the polynomials ϕm being either Pm or xm. To compute the L + 1 coefficients of
the denominator Q from relations (17), we have at our disposal L equations, i.e., a
non trivial solution of this linear system always exists. Inserting the expansion (18)
into (17), we end up with a linear system to solve to determine the denominator

n = M + 1, · · · ,M + L =⇒ (̃Qu)n = 0.

Let us define the vector q(L) = (q̃0, · · · , q̃L)T and the L×(L+1) matrix with entries
depending on the function u, the basis (ϕm)L

m=0 and the parameters N , M , and L

A =

⎡
⎢⎣
〈uϕ0, PM+1〉N · · · 〈uϕL, PM+1〉N

...
...

〈uϕ0, PM+L〉N · · · 〈uϕL, PM+L〉N

⎤
⎥⎦ . (19)

The linear system to be solved is Aq(L) = 0.

Remark. In the following two cases, A is the null matrix.
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1. If u is a polynomial of PM−L, then A is the null matrix. Thus, if a general
function u is replaced by u+ v with v ∈ PM−L, the matrix A is unchanged.

We only consider in this work functions u with “high modes” which is typically the
case for discontinuous functions.

2. If u vanishes at all the grid points, the matrix of the system is also the null
matrix. As discussed below, shifting u as u+ λ will not change this.

Remark. If u(x) = �i(x), i.e., the Lagrange polynomial associated with xi,
then A is a rank-1 matrix. For ϕm = xm, this is immediate and for ϕm = Pm it is
a consequence of the three-term recurrence relation associated with the Legendre
polynomials. This rules out the use of a Padé interpolant of the usual Lagrange
polynomial as the basic building block for a spectral method [15].

The matrix A is the product of three matrices A = BCD with B ∈ RL,N+1,
C ∈ RN+1,N+1, and D ∈ RN+1,L+1 defined by

⎧⎨
⎩
Bi,k = PM+i(xk)ωk 1 ≤ i ≤ L, 0 ≤ k ≤ N.

Ck,j = u(xk)δk,j 0 ≤ k ≤ N, 0 ≤ j ≤ N.

Dk,j = ϕj(xk) 0 ≤ k ≤ N, 0 ≤ j ≤ L.

The matrices B and D depend only on the parameters N , M and L :

B =

⎡
⎢⎣
PM+1(x0)ω0 · · · PM+1(xN )ωN

...
...

PM+L(x0)ω0 · · · PM+L(xN )ωN

⎤
⎥⎦ ,

D is a Vandermonde matrix

D =

⎡
⎢⎣
ϕ0(x0) · · · ϕL(x0)

...
...

ϕ0(xN ) · · · ϕL(xN )

⎤
⎥⎦

and C = diag(u(x0), · · · , u(xN )) is a function of u and N . We list below some basic
properties of the three matrices.

If u > 0, the matrix C is clearly regular. If u changes sign, shifting it by a
factor λ ∈ R such that u+ λ > 0 does not help. This is a consequence of the next
Proposition from which we deduce that A(u+ λ) = A(u) + λBD = A(u).

Proposition 4.1. For L ≤ min(N−1,M+1), the matrix BD is the null matrix
of RL,L+1.

Proof. For n = 1, · · · , L and m = 0, · · · , L, the polynomial
∑N

j=0 PM+nϕm has
degree M + 2L = L + N ≤ 2N . Hence the exactness of the Gauss quadrature
formula implies

(BD)n,m =
N∑

j=0

Bn,jDj,m =
N∑

j=0

PM+n(xj)ϕm(xj)ωj =
∫ 1

−1

PM+n(x)ϕm(x)dx ,



PADÉ-LEGENDRE INTERPOLANTS FOR GIBBS RECONSTRUCTION 9

and the result follows from the orthogonality of PM+n and Pm. �

Proposition 4.2. The matrix B has maximal rank: rank(B) = L and
dim(Null(B)) = M + 1.

Proof. The rank of B is the dimension of the linear space spanned by the rows of
u. Let us denote by θl the l’th row of the matrix B and let

∑L
l=1 xlθl = 0 be a linear

combination of the θ’s. Then the polynomial
∑L

l=1 xlPM+l ∈ PM+L vanishes at the
N+1(> M +L) collocation points. Hence it is the null polynomial. It follows from
the rank Theorem that dimNull(B) = N + 1− rank(B) = N + 1−L = M + 1. �

Proposition 4.3. Assume L ≤ N , then

Null(D) = {0}, rank(D) = L+ 1

Proof. For x ∈ RL+1, Dx = 0 implies that

∀j = 0, · · · , N :
L∑

l=0

ϕl(xj)xl = 0.

Hence

0 =
N∑

j=0

|
L∑

l=0

xlϕl(xj)|2ωj = ‖
L∑

l=0

xlϕl‖2
N ,

which implies x = 0 and the matrix D is injective. �

5. NUMERICAL TESTS
In this section we apply the Padé-Legendre interpolant to several functions with

different degrees of smoothness. We first consider the interpolation of functions
where exact values of the function at quadrature points are known. Subsequently,
we move on to the application of Padé-Legendre interpolation and reconstruction
of data obtained by spectral methods and conclude by providing some very gen-
eral guidelines for finding a Padé interpolant; i.e., the order of the numerator and
denominator.

5.1. Padé-Legendre reconstruction of functions
We first consider the ability of the Padé-Legendre interpolation to reconstruct

functions given on exact form. This is clearly the simplest test and shall be used
to illustrate basic properties of the scheme.

The general setting for all tests are

• The parameters N , M , and L satisfy the condition (15).
• All the computations have been done using the canonical basis ϕm(x) = xm

in the computation of the matrix A in (19). The system Aq(L) = 0 is solved by
finding the null space of the matrix A, which can be computed by any classical
linear algebra toolbox.
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– If dim nullA = 1, the non zero vector q ∈ nullA defines the denominator Q.
If the first component of q is non zero, one can ensure Q(0) > 0, which is a minimal
requirement.

– If dim nullA ≥ 2, we take any two non zero linearly independent vectors q1
and q2 of null A and define q = α1q1 +α2q2 such that Q(0) > 0 and Q(1) > 0. This
is always possible if the first component of q1 or that of q2 is non zero and if the
sum of the components of q1 or that of q2 is non zero.

• All the graphics are plotted on a uniform grid of 200 points.

As a first simple test, we validate the ability of the scheme to reproduce polyno-
mials. For u1(x) = 8 x7 − 5.33 x6 + 14 x4 + x3 − 9 with L = 0 and N = M = 7 we
reproduce u1 perfectly as shown in Table 1.

As a likewise simple second example, we confirm the ability to reproduce rational

functions with the test function u2(x) =
4x5 − x4 + x− 1

x2 − x+ 3
. Here also, the function

is perfectly reproduced once L equals the degree of the denominator as illustrated
in Table 1.

For the smooth nonpolynomial function

u3(x) = ex sin(2πx),

Table 1 shows the output of several results. The maximum error is of the same
order as IN (u3) − u3 which is very small since u3 is a smooth function. Note that
for L = 1 and L = 2, the denominator does not degenerate to a constant function.

Consider now a continuous function with a discontinuous derivative,

u4(x) = |x|.

We compute the polynomial interpolation IN (u4) and a rational approximation
R(u4). The three curves u4, R(u4) and I(u4) seem to collapse but a zoom around
the discontinuity in Fig. 1 shows the precision of the rational approximation. In
Fig. 2, we display the pointwise error in log scale: the error decreases very fast
at points far from the discontinuous derivative at x = 0. Furthermore, the decay
rate clearly improves with the order, L, of the denominator. This was found also
in [7, 8] where similar results were found for low order of the denominator (L ≤ 2).
The results presented here confirm that this trend continues also for higher degrees
of the denominator.

Consider now the discontinuous function

u5(x) = sign(x).

The polynomial interpolation illustrates the Gibbs phenomenon, see Fig. 3. The
Padé-Legendre reconstruction essentially removes the oscillations except near the
discontinuity where the over/under shoots are still present, but severely reduced.
In Fig. 4, we display the pointwise error in log scale: the polynomial error is
quite uniformly distributed on the whole interval, while the error of the rational
interpolant decreases rapidly at points further away from the discontinuity x = 0.
Furthermore, the decay rate clearly depends on the order, L, of the denominator.



PADÉ-LEGENDRE INTERPOLANTS FOR GIBBS RECONSTRUCTION 11

TABLE 1

The error max
−1≤x≤1

| (R(ui) − ui) (x)| is computed on a uniform grid of 200.

function N M L ‖Error‖∞
u1(x) = 8x7 − 5.33 x6 + 14 x4 + x3 − 9 7 7 0 1.9380(−12)

u2(x) =
4x5 − x4 + x − 1

x2 − x + 3
7 6 1 4.7787(−02)

7 5 2 2.4758(−13)

u3(x) = ex sin(2πx) 15 15 0 2.1239(−05)

15 14 1 3.3930(−05)

15 13 2 8.1673(−06)

31 31 0 2.0828(−13)

31 30 1 5.4599(−13)

31 29 2 2.0473(−13)

u4(x) = |x| 31 31 0 2.5993(−02)

31 29 2 2.0027(−02)

31 27 4 1.7713(−02)

63 63 0 1.0879(−02)

63 61 2 7.9755(−03)

63 59 4 6.8363(−03)

u5(x) = sign(x) 31 31 0 8.7800(−01)

31 29 2 8.1496(−01)

63 63 0 7.6095(−01)

63 61 2 6.4178(−01)

127 127 0 5.3290(−01)

127 125 2 3.5419(−01)

u6(x) =

�����
����

1 for x ∈ [−1,−0.7[

1 + x + sin(2πex) for x ∈ ] − 0.7,−0.2[

x + sin(2πex) for x ∈ ] − 0.2, 0.7[

0 for x ∈ ]0.7, 1]

127 127 0 5.7962(−01)

127 123 4 2.1880(+00)

127 121 6 4.1894(−01)

This is fully consistent with the analysis in [17] where it is shown that the maximal
overshoot is 0.8% of the jumpsize, i.e., an order of magnitude less than for the pure
polynomial approximation. Furthermore, it is conjectured in [8] for the continuous
Padé approximation that the order of approximation away from the shock is M−L,
which is very similar to what is observed here. Finally, the analysis in [17] shows
that if L ∝ M then the maximal gradient at x = 0 grows like M3/2 which is a
significant improvement over the classic polynomial result in which the gradient
grows only linearly in M . The analysis leading to these results is given in detail in
[17].
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FIG. 1. Polynomial interpolation (+) and rational interpolation (o) of u4. Left we use
(N, M, L) = (31, 29, 2). On the right, (N, M, L) = (63, 61, 2).
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FIG. 2. Logarithm of the pointwise error: |u4 − IN (u4)| (top) and |u−RM,L(u4)| N = 63,
L = 2 (center) and L = 4 (bottom).

In the last example, we consider a discontinuous function with a more complicated
shape

u6(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 for x ∈ [−1,−0.7[
1 + x+ sin(2πex) for x ∈ ] − 0.7,−0.2[
x+ sin(2πex) for x ∈ ] − 0.2, 0.7[
0 for x ∈ ]0.7, 1].

The polynomial interpolation of u6, based on N + 1 = 128 Gauss-Legendre points,
is displayed in Fig. 5 which also shows the rational approximation with L = 4.
The improvement is clear and smoothness is regained except in a narrow region
close to the discontinuities. This is expected as we cannot expect to improve the
accuracy of the expansion at points of discontinuity. Increasing L to 6, however,
produces a very accurate solution even in the neighborhood of the discontinuities
as displayed in Fig. 5. The pointwise error in log scale is also shown in Fig. 5,
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FIG. 3. Interpolation of u5. In the left column is pure polynomial interpolation with
N = 31, N = 63, and N = 127, respectively. The right column represents the Padé-Legendre
interpolation with (N, M, L) = (31, 29, 2), (N, M, L) = (63, 61, 2), and (N, M, L) = (127, 125, 2),
respectively.

illustrating the clear advantage of even a low order denominator as compared to
the pure polynomial interpolation.

5.2. Postprocessing of Computational data
In this section results of using Padé-Legendre reconstruction as a postprocessor on

computational data are shown. All data sets were computed using spectral methods
and since both examples involve the time evolution of a shock, some filtering is used
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FIG. 4. Function u5: logarithm of the pointwise error. N = 63, L = 0 (top), 1, 2, 3 and
L = 4 (bottom).
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FIG. 5. Interpolation of u6. Top left is the polynomial interpolation with N = 127.
Top right is Padé-Legendre interpolation with (N, M, L) = (127, 123, 4) and bottom left with
(N, M, L) = (127, 121, 6). On the bottom right is shown the logarithm of the pointwise error for
N = 127, L = 0 (top), L = 4 (middle) and L = 6 (bottom).

as a method of stabilization [15]. The focus of these examples, however, is not on
how the data was obtained, but is to show that Padé-Legendre interpolants can
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be used as postprocessors of any data given at the desired quadrature points. The
general setting of the simulations are

• The parameters N , M , and L no longer satisfy condition (15). Choices of
parameters that do satisfy condition (15) no longer remove Gibb’s oscillations.
Instead parameters satisfy the looser condition

M + L < N. (20)

This is done since for computational data, a significant fraction of the high modes
are potentially severely polluted (50% or more) and emphasizing these in the re-
construction leads to poor reconstructions as also observed in [5].
• All the computations have been done using the Legendre basis ϕm(x) = Pm

in the computation of the matrix A in (19). Interpolation of computational data
often requires a higher order denominator, in which case the canonical basis is no
longer a suitable choice as D becomes severely illconditioned.
• The system Aq(L) = 0 is solved using the method detailed below.

– If A1 denotes the first column of A, A = [A1|B1],

Aq(L) = 0 ⇐⇒ B1

⎛
⎜⎝
q1
...
qL

⎞
⎟⎠ = −q0A1

with the normalization q0 = 1, we have to solve a square system. If B1 is regular,
then A has full rank. Conversely, if A has a full rank, one can eliminate a column
of A (say column j) to get an invertible matrix Bj . In this case, we have to fix qj .

This method may be preferable to the nullspace method from the previous section
as it is quicker by a factor of at least ten. This is due to the fact that fixing one
coefficient q0 (or qj) results in a square linear system which is computationally more
efficient to solve than finding the null space of the matrixA which requires a singular
value decomposition and this is quite expensive. Since our parameters are now
defined by the less constraining condition (20), there are many more combinations
of the parameters to explore and speed becomes important.

We first consider the use of the Padé-Legendre interpolant as a post-processor
for data from the solution to Burgers’ equation

ut + (u2)x = 0, x ∈ [−1, 1] (21)

u(x, 0) = 0.5 + sin(πx) (22)

solved using a stabilized Legendre spectral method [4, 15]. The interpolant is
computed using data given at 256 Legendre-Gauss-Lobatto points at time T = π/2.
All graphics are plotted on a uniform grid of 400 points. The raw data provided
is shown in Fig. 6 where we also show a good reconstruction. In Fig. 7 we show
the pointwise error for N = 256, M = 20, and increasing values of L, confirming
the observations of enhanced convergence rate for the simpler test in the previous
section. Increasing L further does not appear to improve the results.
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FIG. 6. On the left is shown the purely polynomial solution of Burgers equation with
N = 256 while the right shows the Padé-Legendre reconstructed solution with M = 20 and L = 8.
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FIG. 7. Pointwise error for the reconstructed solution to Burgers equation. We use N = 256
and M = 20 for the numerator while the three curves represent from top L = 0, L = 4, and L = 8,
respectively.
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As a final example, we explore the use of the Padé-Legendre interpolant as a post-
processor for the 1-D Shock entropy equations described in [4]. The polynomial
interpolant is computed using data given at 256 Legendre-Gauss-Lobatto points.
As a comparison for the postprocessed solution, we use a reference solution that was
obtained using a ENO scheme on 1200 points [4]. All reconstructions are plotted
on a uniform grid of 500 points.

In Fig. 8 we show both the reference solution and the computed polynomial
solution, which exhibits Gibb’s oscillations to the right of the shock, as well as
small inaccuracies in the peaks to the left of the shock. We also show the visually
best global reconstruction ((N,M,L) = (256, 20, 98)) which effectively removes
many of the oscillations to the right of the shock. However, it also introduces some
oscillations to the left of the shock that were not present in the original data. This
is due entirely to the inexactness of the computed data which makes it difficult
to find a global reconstruction which is effective on both sides of the shock. The
reconstruction shown in Fig. 8 is the best found among a large ensemble of cases,
yet this reconstruction remains unsatisfactory.

However, in attempting to find a global reconstruction one realizes that it is
very easy to find reconstructions which work very well on either side of the shock,
including the shock itself. This leads to a simple improved algorithm.
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FIG. 8. On the left is shown the purely polynomial solution of the Euler equations for
the shock entropy problem with N = 256. On the right we show the best obtainable global
Padé-Legendre reconstructed solution with M = 24 and L = 98.

• Seek Padé-Legendre interpolants that resolve either side of the shock well.
Examples of these reconstructions are shown in Fig 9.
• Identify the approximate shock location. This does not need to be done ac-

curately, i.e., a 1st order cell location suffices. Any existing method for locating
shocks can be used such as [11, 12, 18] as it does not affect the Padé-Legendre
reconstruction.
• Patch the two (– or several) reconstructed solutions together across the cell

with the shock.

In Fig. 9 we show the pure polynomial polynomial solution with the Gibbs os-
cillations as well as a patched reconstructed solution, and the two reconstructions
used to construct the patched solution. As expected, the patched solution is an
excellent approximation to the reference solutions obtained at high computational
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cost. In this example, the left reconstruction uses M = 120, L = 16 and the right
side M = 82, L = 20 and these were ”glued” around the computed shock location.
The location of the shock was reconstructed using the method detailed in [18].

5.3. Observations on choosing parameters M and L

While computing a Padé interpolant is straightforward and fast, choosing the
degree of the numerator M and the denominator L is far from simple. In fact,
the relationship amongst the parameters M,L, and N is nonlinear which explains
the difficulty in predicting good choices for the parameters (M,L). This is true
even for simple exact functions. However, a few conclusions can be drawn from the
examples presented here that may serve as guidelines for finding a good reconstruc-
tion. Without an exact solution it is hard to define what a good reconstruction is.
However, one advantage of the Padé method is that when it does fail to produce a
good reconstruction, it is obvious. The reconstruction either does not remove any
oscillations present in the original data, or may smooth out some of the oscillations
but add others not present in the data itself- a phenomenon which can be seen in
the bottom right figure in Fig. 9.

• For exact point values, a simple strategy is to increase the order of the de-
nominator L while satisfying Eq.(15). In general, the rule of thumb is that a more
complicated function requires a higher-degree denominator.
• While reconstructing computational data also requires a higher-degree denom-

inator when the data has greater structure, the less restrictive condition, Eq. (20)
allows for many more possible choices of (M,L). We choose this condition since
computational data is often polluted by numerical damping and insufficient resolu-
tion and will require using less modes than the function expansion.
• For all reconstructions, especially those involving computational results, one

should exploit the fact that the Padé reconstruction as formulated in sections 4 and
5 is very quick. A good strategy is to compute many reconstructions with various
combinations of M and L and then disregard the bad reconstructions, i.e. the
reconstructions that have no effect or add extraneous oscillations to the solution.
These bad reconstructions can be identified by examining the zeros or minimum
values of the denominator, which will lie within or very close to the computational
domain.

Further work in understanding the choice of parameters M and L as well as identi-
fying successful approximations is still needed and will increase the ease with which
the Padé reconstruction can be used.

6. CONCLUSION
In this work we have defined a rational interpolant method based on the knowl-

edge of a function at the Legendre quadrature points and shown a few basic proper-
ties of this interpolant. The computation of the interpolant is done very efficiently
using the Legendre quadratures and several numerical tests have been done to show
the ability of the method to significantly reduce the Gibbs phenomenon.

For data obtained from computations, i.e., data with noise, we found that a direct
extension of these techniques is less successful. However, a multi-domain approach,
with domains broken by the approximate location of the shocks, is shown to work
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FIG. 9. On the top left is shown the purely polynomial solution of the Euler equations
for the shock entropy problem with N = 256. On the top right we show the reconstructed
solution obtained by two reconstructions patched across the shock. The bottom row of pictures
show the reconstructions used in the patching. On the bottom left is the reconstruction with
M = 120, L = 16 and on the bottom right is the reconstruction corresponding to M = 82, L = 20.

very well. The need to only know the shock position approximately is a major
advantage over some other reconstruction techniques where the exact location is
needed [13].

Another potential advantage of the approach discussed here is its potential gen-
eralization to genuine multi-dimensional problems, e.g., on simplices with the grid
points being cubature points. We shall explore this in the near future as well as the
formulation of a more mathematical description of the encouraging observations
made in this work, and further work on the choice of parameters M,L.
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