Skip to main content
Log in

Fourth-Order Semi-Compact Scheme for Flow Past a Rotating and Translating Cylinder

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In the present investigation, the newly developed Higher Order Semi-Compact (HOSC) finite difference scheme has been tested for its capability in capturing the very complex flow phenomenon of unsteady flow past a rotating and translating circular cylinder. The physical problem has been modeled in stream function and vorticity formulation and the obtained governing equations are transformed into curvilinear coordinates using body fitted coordinate system to enable the developed scheme to handle the non-rectangular geometry of the problem. Qualitative and quantitative comparisons have been done at low-rotation parameters and found that the results obtained are in excellent agreement with the existing literature. Then simulations have been carried out at high-rotation parameters and noticed that the HOSC scheme is able to simulate some of the flow features known experimentally but not simulated numerically to the present date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dennis S.C.R., and Hudson J.D. (1989). Compact h 4 finite difference approximations to operators of Navier–Stokes type. J. Comput. Phys. 85:390–416

    Article  MATH  MathSciNet  Google Scholar 

  2. Gupta M.M. (1991). High accuracy solutions of incompressible Navier–Stokes equations. J. Comput. Phys. 93:343–359

    Article  MATH  MathSciNet  Google Scholar 

  3. Li M., Tang T., and Fornberg B. (1995). A compact fourth-order finite difference scheme for the steady incompressible Navier–Stokes equations. Int. J. for Num. Methods in Fluids 20:1137–1151

    Article  MATH  MathSciNet  Google Scholar 

  4. Spotz W.F., and Carey G.F. (1995). Higher order compact scheme for stream-function vorticity equation. Int. J. Num. Methods Fluids 38:3497–3512

    MATH  MathSciNet  Google Scholar 

  5. Noye B.J. (1990). New third-order finite difference method for transient advection-diffusion. Commun. Appl. Numer. Method. 6(4):279–288

    Article  MATH  MathSciNet  Google Scholar 

  6. Noye B.J. (1991). Compact unconditionally stable finite difference method for transient one-dimensional advection-diffusion. Commun. Appl. Numer. Method. 7(7):501–512

    Article  MATH  MathSciNet  Google Scholar 

  7. Abarbanel S., and Kumar A. (1988). Compact higher-order schemes for the Euler equations, J. Sci. Comput. 3:275–288

    Article  MATH  MathSciNet  Google Scholar 

  8. Spotz W.F., and Carey G.F. (2001). Extension of high-order compact schemes to time dependent problems. Numer. Method Partial Diff. Eq. 17:657–672

    Article  MATH  MathSciNet  Google Scholar 

  9. Weinan E., and Liu J.G. (1996). Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126:122–138

    Article  MATH  MathSciNet  Google Scholar 

  10. Sanyasiraju Y.V.S.S., and Manjula V. (2005). Higher order semi compact scheme to solve transient incompressible Navier–Stokes equations. Comput. Mech. 35(6):441–448

    Article  MATH  MathSciNet  Google Scholar 

  11. Sanyasiraju Y.V.S.S., and Manjula V. (2005). Study of flow past an impulsively started circular cylinder using higher order semi compact scheme. Phys. Rev.(E) 72(1):016709

    Google Scholar 

  12. Koromilas C.A., and Telionis D.P. (1980). Unsteady laminar seperation: an experimental study. J. Fluid Mech. 97:347–384

    Article  Google Scholar 

  13. Coutanceau M., and Menard C. (1985). Influence of rotation on the near-wake development behind an impulsively started circular cylinder. J. Fluid Mech. 158:399–446

    Article  Google Scholar 

  14. Loc T.P. (1975). Etude numerique de l’écoulement d’un fluide visqueux incompressible autour d’un cylindre fixe ou en rotation, Effet Magnus. J. Méch 14:109–133

    MATH  Google Scholar 

  15. Townshed P. (1980). A numerical simulation of newtonian and visco-elastic flow past stationary and rotating cylinders. J. Non-Newtonian Fluid Mech. 6:219–243

    Article  Google Scholar 

  16. Ingham D.B. (1983). Steady flow past a rotating cylinder. Comput. Fluids 11:351–366

    Article  MATH  Google Scholar 

  17. Badr H.M., and Dennis S.C.R. (1985). Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder. J. Fluid Mech. 158:447–488

    Article  MATH  MathSciNet  Google Scholar 

  18. Tang T., and Ingham D.B. (1991). On steady flow past a rotating circular cylinder at Reynolds numbers 60 and 100. Comput. Fluids 17:579

    Google Scholar 

  19. Ingham D.B., and Tang T. (1990). A numerical investigation into the steady flow past a rotating circular cylinder at low and intermediate Reynolds numbers. J. Comput. Phys. 87:91

    Article  MATH  Google Scholar 

  20. Badr H.M., Dennis S.C.R., and Young P.J.S. (1989). Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers. Comput. Fluids 17:579

    Article  MATH  Google Scholar 

  21. Thompson J.F., Warsi Z.U.A. and Mastin C.W. (1985) Numerical Grid Generation-Foundation and Applications. North Holland publishers, Amsterdam

    Google Scholar 

  22. Charles H. (1989). Numerical Computation of Internal and External Flows, Vol 1. Wiley, New York

    Google Scholar 

  23. Spotz W.F. (1998). Accuracy and performance of numerical wall boundary conditions for steady, 2D, incompressible streamfunction vorticity. J. Numer. Method Fluids. 28:737

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. S. S. Sanyasiraju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanyasiraju, Y.V.S.S., Manjula, V. Fourth-Order Semi-Compact Scheme for Flow Past a Rotating and Translating Cylinder. J Sci Comput 30, 389–407 (2007). https://doi.org/10.1007/s10915-006-9098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9098-4

Keywords

Navigation