Skip to main content
Log in

Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In recent years the concept of fully adaptive multiscale finite volume schemes for conservation laws has been developed and analytically investigated. Here the grid adaptation is performed by means of a multiscale analysis. So far, all cells are evolved in time using the same time step size. In the present work this concept is extended incorporating locally varying time stepping. A general strategy is presented for explicit as well as implicit time discretization. The efficiency and the accuracy of the proposed concept is verified numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abgrall R. (1997). Multiresolution analysis on unstructured meshes: applications to CFD. In: Chetverushkin B. et al. (eds) Experimentation, Modelling and Computation in Flow, Turbulence and Combustion. Wiley, New York

    Google Scholar 

  2. Andreae S., Ballmann J., Müller S. (2005). Wave processes at interfaces. In: Warnecke G. (eds) Analysis and Numerics for Conservation Laws. Springer, Berlin, pp. 1–26

    Chapter  Google Scholar 

  3. Andreae S., Ballmann J., Müller S., Voß A. (2003). Dynamics of collapsing bubbles near walls. In: Hou T., Tadmor E. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer Verlag, Berlin, pp. 265–272

    Google Scholar 

  4. Arandiga F., Donat R., Harten A. (1998). Multiresolution based on weighted averages of the hat function I: linear reconstruction techniques. SIAM J. Numer. Anal. 36(1):160–203

    Article  MATH  MathSciNet  Google Scholar 

  5. Arandiga F., Donat R., Harten A. (1999). Multiresolution based on weighted averages of the hat function II: non-linear reconstruction techniques. SIAM J. Sci. Comput. 20(3):1053–1093

    Article  MATH  MathSciNet  Google Scholar 

  6. Bell J., Berger M., Saltzman J., Welcome M. (1994). Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15(1):127–138

    Article  MATH  MathSciNet  Google Scholar 

  7. Berger M. (1985). Stability of interfaces with mesh refinement. Math. Comp. 45:301–318

    Article  MATH  MathSciNet  Google Scholar 

  8. Berger M. (1987). On conservation at grid interfaces. SIAM J. Numer. Anal. 24:967–984

    Article  MATH  MathSciNet  Google Scholar 

  9. Berger M., Colella P. (1989). Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys. 82:64–84

    Article  MATH  Google Scholar 

  10. Berger M., and LeVeque R. (1998). Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35(6):2298–2316

    Article  MATH  MathSciNet  Google Scholar 

  11. Berger M., and Oliger J. (1984). Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Phys. 53:484–512

    Article  MATH  MathSciNet  Google Scholar 

  12. Bihari B., and Harten A. (1995). Application of generalized wavelets: An adaptive multiresolution scheme. J. Comp. Appl. Math. 61:275–321

    Article  MATH  MathSciNet  Google Scholar 

  13. Bihari B., and Harten A. (1997). Multiresolution schemes for the numerical solution of 2–D conservation laws I. SIAM J. Sci. Comput. 18(2):315–354

    Article  MATH  MathSciNet  Google Scholar 

  14. Bihari B., Ota D., Liu Z., Ramakrishnan S. (2002). The multiresolution method on general unstructured meshes. AIAA J. 40(7):1323–1330

    Article  Google Scholar 

  15. Bramkamp F., Gottschlich-Müller B., Hesse M., Lamby P., Müller S., Ballmann J., Brakhage K.H., Dahmen W. (2003). H-adaptive multiscale schemes for the compressible Navier–Stokes equations – polyhedral discretization, data compression and mesh generation. In: Ballmann J. (eds) Flow Modulation and Fluid-Structure-Interaction at Airplane Wings. Numerical Notes on Fluid Mechanics, Vol. 84, Springer, Berlin, pp. 125–204

    Google Scholar 

  16. Bramkamp F., Lamby P., and Müller S. (2004). An adaptive multiscale finite volume solver for unsteady an steady state flow computations. J. Comp. Phys. 197(2):460–490

    Article  MATH  Google Scholar 

  17. Carnicer J., Dahmen W., Peña J. (1996). Local decomposition of refinable spaces and wavelets. Appl. Comput. Harmon. Anal. 3:127–153

    Article  MATH  MathSciNet  Google Scholar 

  18. Chiavassa G., Donat R. (2001). Point value multiresolution for 2D compressible flows. SIAM J. Sci. Comput. 23(3):805–823

    Article  MATH  MathSciNet  Google Scholar 

  19. Chiavassa G., Donat, R., and Marquina, A. (2002). Fine–mesh numerical simulations for 2D riemann problems with a multilevel scheme. In Warnecke, G., Freistühler, H. (eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkhäuser, pp. 247–256

  20. Cohen A., Dyn N., Kaber S., Postel M. (2000). Multiresolution finite volume schemes on triangles. J. Comp. Phys. 161:264–286

    Article  MATH  MathSciNet  Google Scholar 

  21. Cohen A., Kaber S., Müller S., Postel M. (2003). Fully Adaptive Multiresolution Finite Volume Schemes for Conservation Laws. Math. Comp. 72(241):183–225

    Article  MATH  MathSciNet  Google Scholar 

  22. Cohen, A., Kaber, S., and Postel, M. (2002). Multiresolution analysis on triangles: application to gas dynamics. In Warnecke, G., Freistühler, H. (eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkhäuser, pp. 257–266.

  23. Dahmen W., Gottschlich–Müller B., Müller S. (2000). Multiresolution schemes for conservation laws. Numer. Math. 88(3):399–443

    Article  Google Scholar 

  24. Dahmen W., Müller S., Voß A. (2005). Riemann problem for the Euler equations with non-convex equation of state including phase transitions. In: Warnecke G. (eds) Analysis and Numerics for Conservation Laws. Springer, Berlin, pp. 137–162

    Chapter  Google Scholar 

  25. Dawson C., Kirby R. (2001). High resolution schemes for conservation laws with locally varying time steps. SIAM J. Sci. Comput. 22(6):2256–2281

    Article  MATH  MathSciNet  Google Scholar 

  26. Engquist B., Osher S. (1981). One-sided difference approximations for nonlinear conservation laws. Math. Comp. 36:321–352

    Article  MATH  MathSciNet  Google Scholar 

  27. Gottschlich–Müller, B., and Müller, S. (1999). Adaptive finite volume schemes for conservation laws based on local multiresolution techniques. In Fey, M., and Jeltsch R. (eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkhäuser, pp. 385–394.

  28. Harten A. (1995). Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math. 48(12):1305–1342

    Article  MATH  MathSciNet  Google Scholar 

  29. Harten A. (1996). Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3):1205–1256

    Article  MATH  MathSciNet  Google Scholar 

  30. Harten A., Engquist B., Osher S., Chakravarthy S. (1987). Uniformly high order accurate essentially non–oscillatory schemes III. J. Comp. Phys. 71:231–303

    Article  MATH  MathSciNet  Google Scholar 

  31. Houston P., Mackenzie J., Süli E., Warnecke G. (1999). A posteriori error analysis for numerical approximations of Friedrichs systems. Numer. Math. 82:433–470

    Article  MATH  MathSciNet  Google Scholar 

  32. Jameson L. (2003). AMR vs high order schemes. J. Sci. Comput. 18(1):1–24

    Article  MATH  MathSciNet  Google Scholar 

  33. Kröner D., Ohlberger M. (1999). A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Math. Comp. 69(229):25–39

    Article  Google Scholar 

  34. Lamby, P., Massjung, R., Müller, S., and Stiriba, Y. (2005). Inviscid flow on moving grids with multiscale space and time adaptivity (2005). Submitted for publication in Proceedings of 6th European Conference on Numerical Methods and Advanced Mathematics, July, 18–22, Santiago de Compostela, Spain.

  35. Lamby P., Müller S., Stiriba Y. (2005). Solution of shallow water equations using fully adaptive multiscale schemes. Int. J. Numer. Methods Fluids 49(4):417–437

    Article  MATH  Google Scholar 

  36. Müller S. (2002). Adaptive multiresolution schemes. In: Herbin B., Kröner D. (eds) Finite Volumes for Complex Applications. Hermes Science, Paris

    Google Scholar 

  37. Müller, S. (2002). Adaptive multiscale schemes for conservation laws. Lecture Notes on Computational Science and Engineering, vol. 27, Springer, Berlin.

  38. Müller, S., and Stiriba, Y. (2004). Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. IGPM–Report 238, RWTH Aachen.

  39. Osher S., Sanders R. (1983). Numerical approximations to nonlinear conservation laws with locally varying time and space grids. Math. Comp. 41:321–336

    Article  MATH  MathSciNet  Google Scholar 

  40. Rault A., Chiavassa G., Donat R. (2003). Shock-vortex interactions at high Mach numbers. J. Sci. Comput. 19:347–371

    Article  MATH  MathSciNet  Google Scholar 

  41. Roussel O., Schneider K., Tsigulin A., Bockhorn H. (2003). A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188(2):493–523

    Article  MATH  MathSciNet  Google Scholar 

  42. Sonar T.V., and Hannemann D.H. (1994). Dynamic adaptivity and residual control in unsteady compressible flow computation. Math. Comput. Model. 20:201–213

    Article  MATH  MathSciNet  Google Scholar 

  43. Sonar T.E.S. (1998). A dual graph–norm refinement indicator for finite volume approximations of the Euler equations. Numer. Math. 78:619–658

    Google Scholar 

  44. Tang H., and Warnecke G. (2006). A class of high resolution schemes for hyperbolic conservation laws and convection-diffusion equations with varying time and space grids. J. Comp. Math. 24(2):121–140

    MATH  MathSciNet  Google Scholar 

  45. Trompert R., and Verwer J. (1993). Analysis of the implicit Euler local uniform grid refinement method. SIAM J. Sci. Comput. 14(2):259–278

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, S., Stiriba, Y. Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping. J Sci Comput 30, 493–531 (2007). https://doi.org/10.1007/s10915-006-9102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9102-z

Keywords

Navigation