Skip to main content
Log in

A Numerical Comparison of the Lax–Wendroff Discontinuous Galerkin Method Based on Different Numerical Fluxes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Discontinuous Galerkin (DG) method is a spatial discretization procedure, employing useful features from high-resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters. In [(2005). Comput. Methods Appl. Mech. Eng. 194, 4528], we developed a Lax–Wendroff time discretization procedure for the DG method (LWDG), an alternative method for time discretization to the popular total variation diminishing (TVD) Runge–Kutta time discretizations. In most of the DG papers in the literature, the Lax–Friedrichs numerical flux is used due to its simplicity, although there are many other numerical fluxes, which could also be used. In this paper, we systematically investigate the performance of the LWDG method based on different numerical fluxes, including the first-order monotone fluxes such as the Godunov flux, the Engquist–Osher flux, etc., the second-order TVD fluxes and generalized Riemann solver, with the objective of obtaining better performance by choosing suitable numerical fluxes. The detailed numerical study is mainly performed for the one-dimensional system case, addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Artzi M., Falcovitz J. (1984). A second-order Godunov-type scheme for compressible fluid dynamics. J. Comput. Phys. 55, 1–32

    Article  MATH  MathSciNet  Google Scholar 

  2. Cockburn B., Hou S., Shu C.-W. (1990). The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581

    Article  MATH  MathSciNet  Google Scholar 

  3. Cockburn B., Lin S.-Y., Shu C.-W. (1989). TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn B., Shu C.-W. (1989). TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435

    Article  MATH  MathSciNet  Google Scholar 

  5. Cockburn B., Shu C.-W. (1991). The Runge–Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. (M 2 AN), 25, 337–361

  6. Cockburn B., Shu C.-W. (1998). The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224

    Article  MATH  MathSciNet  Google Scholar 

  7. Dumbser M., Munz C.D. (2005). Arbitrary high-order discontinuous Galerkin schemes. In: Cordier S., Goudon T., Sonnendrcker E. (eds), Numerical Methods for Hyperbolic and Kinetic Problems EMS Publishing House. Zurich, Switzerland, pp. 295–333

    Google Scholar 

  8. Engquist B., Osher S. (1981). One sided difference approximation for nonlinear conservation laws. Math. Comp. 36, 321–351

    Article  MATH  MathSciNet  Google Scholar 

  9. Godunov S.K. (1959). Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics. Math. Sbornik, 47, 271–306

    MathSciNet  Google Scholar 

  10. Harten A., Engquist B., Osher S., Chakravathy S. (1987). Uniformly high-order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303

    Article  MATH  MathSciNet  Google Scholar 

  11. Harten A., Lax P.D., van Leer B. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61

    Article  MATH  MathSciNet  Google Scholar 

  12. Jiang G., Shu C.W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228

    Article  MATH  MathSciNet  Google Scholar 

  13. Krivodonova L., Xin J., Remacle J.-F., Chevaugeon N., Flaherty J.E. (2004). Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338

    Article  MATH  MathSciNet  Google Scholar 

  14. Lax P.D., Wendroff B. (1960). Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237

    MATH  MathSciNet  Google Scholar 

  15. Osher S., Solomon F. (1982). Upwind difference schemes for hyperbolic conservation laws. Math. Comput. 38 (1982), 339–374.

    Google Scholar 

  16. Qiu J., Dumbser M., Shu C.-W. (2005). The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194, 4528–4543

    Article  MATH  MathSciNet  Google Scholar 

  17. Qiu J., Khoo B.C., Shu C.-W. (2006). A Numerical study for the performance of the Runge–Kutta discontinuous Galerkin method based on different numerical fluxes. J. Comput. Phys. 212, 540–565

    Article  MATH  MathSciNet  Google Scholar 

  18. Qiu J., Shu C.-W. (2003). Finite difference WENO schemes with Lax–Wendroff-type time discretizations. SIAM J. Sci. Comput. 24, 2185–2198

    Article  MATH  MathSciNet  Google Scholar 

  19. Qiu J., Shu C.-W., (2005). Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929

    Article  MATH  MathSciNet  Google Scholar 

  20. Qiu J., Shu C.-W. (2005). A comparison of troubled-cell indicators for Runge– discontinuous Galerkin methods using WENO limiters. SIAM J. Sci. Comput. 27, 995–1013

    Article  MATH  MathSciNet  Google Scholar 

  21. Shu C.-W. (1988). Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9: 1073–1084

    Article  MATH  Google Scholar 

  22. Shu C.-W. (1987). TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121

    Article  MATH  Google Scholar 

  23. Shu C.-W., Osher S., (1989). Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78

    Article  MATH  MathSciNet  Google Scholar 

  24. Taylor M.E. (1996). Partial Differential Equation I: Basic Theory, Applied Mathematical Sciences, Vol 115. Springer, Berlin

    Google Scholar 

  25. Titarev V.A., Toro E.F. (2002). ADER: arbitrary high-order Godunov approach. J. Sci. Comput. 17, 609–618

    Article  MATH  MathSciNet  Google Scholar 

  26. Toro E.F. (1997). Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction. Springer, Berlin

    MATH  Google Scholar 

  27. Toro E.F., Spruce M., Speares W. (1994). Restoration of the contact surface in the Harten-Lax-van Leer Riemann solver. J. Shock Waves 4, 25–34

    Article  MATH  Google Scholar 

  28. Woodward P., Colella P. (1984). The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J. A Numerical Comparison of the Lax–Wendroff Discontinuous Galerkin Method Based on Different Numerical Fluxes. J Sci Comput 30, 345–367 (2007). https://doi.org/10.1007/s10915-006-9109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9109-5

Keywords

AMS (MOS) SUBJECT CLASSIFICATION

Navigation