Skip to main content
Log in

Finite Element Analysis for Wave Propagation in Double Negative Metamaterials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In this paper, we develop both semi-discrete and fully-discrete mixed finite element methods for modeling wave propagation in three-dimensional double negative metamaterials. Here the model is formed as a time-dependent linear system involving four dependent vector variables: the electric and magnetic fields, and the induced electric and magnetic currents. Optimal error estimates for all four variables are proved for Nédélec tetrahedral elements. To our best knowledge, this is the first error analysis obtained for Maxwell’s equations when metamaterials are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth M., Davies P., Duncan D., Martin P., Rynne B. (2003). Topics in Computational Wave Propagation, Lecture Notes in Computational Science and Engineering 31. Springer-Verlag, Berlin

    Google Scholar 

  2. Amrouche C., Bernardi C., Dauge M., Girault V. (1998). Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21: 823–864

    Article  MATH  MathSciNet  Google Scholar 

  3. Bossavit A. (1998) Computational Electromagnetism. Academic Press, San Diego, CA

    MATH  Google Scholar 

  4. Caloz C., Itoh T. (2006). Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Wiley-Interscience, New york

    Google Scholar 

  5. Carstensen C., Funken S., Hackbusch W., Hoppe R.H.W., Monk P. (eds) (2003) Computational Electromagnetics, Lecture Notes in Computational Science and Engineering 28. Springer-Verlag, Berlin

    Google Scholar 

  6. Chen M.-H., Cockburn B., Reitich F. (2005) High-order RKDG methods for computational electromagnetics. J. Sci. Comp. 22/23: 205–226

    Article  MathSciNet  Google Scholar 

  7. Chen Z., Du Q., Zou J. (2000). Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37: 1542–1570

    Article  MATH  MathSciNet  Google Scholar 

  8. Ciarlet P. Jr., Zou J. (1999). Fully discrete finite element approaches for time-dependent Maxwell’s equations. Numer. Math. 82: 193–219

    Article  MATH  MathSciNet  Google Scholar 

  9. Cockburn B., Li F., Shu C.-W. (2004). Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comp. Phys. 194: 588–610

    Article  MATH  MathSciNet  Google Scholar 

  10. Cohen G.C., Heikkola E., Joly P., Neittaanmäki P. (eds) (2003) Mathematical and Numerical Aspects of Wave Propagation—WAVES 2003. Springer-Verlag, Berlin

    MATH  Google Scholar 

  11. Cummer S.A. (2003). Dynamics of causal beam refraction in negative refractive index materials. Appl. Phys. Lett. 82: 2008–2010

    Article  Google Scholar 

  12. Demkowicz L. (2005) Fully automatic hp-adaptivity for Maxwell’s equations. Comput. Methods Appl. Mech. Eng. 194: 605–624

    Article  MATH  MathSciNet  Google Scholar 

  13. Eleftheriades G.V., Balmain K.G. (eds) (2005) Negative Refraction Metamaterials: Fundamental Properties and Applications. Wiley-Interscience, New york

    Google Scholar 

  14. Engheta N., Ziolkowski R.W. (2005) A positive future for double-negative metamaterials. IEEE Trans. Microw. Theory Techn. 53: 1535–1556

    Article  Google Scholar 

  15. Greegor R.B., Parazzoli C.G., Li K., Koltenbah B.E.C., Tanielian M. (2003). Experimental determination and numerical simulation of the properties of negative index of refraction materials. Opt. Expr. 11: 688–695

    Google Scholar 

  16. Hiptmair R. (2002). Finite elements in computational electromagnetism. Acta Numerica 11: 237–339

    Article  MATH  MathSciNet  Google Scholar 

  17. Holden A.J. (2005). Towards some real applications for negative materials. Photonic and Nanostruct. Fundam. Appl. 3: 96–99

    Article  Google Scholar 

  18. Houston P., Perugia I., Schötzau D. (2004) Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42: 434–459

    Article  MATH  Google Scholar 

  19. IEEE Trans. Antennas Propag. (Special Issue), 51(10), (2003).

  20. IEEE Trans. Microw. Theory Tech. (Special Issue), 53(4), (2005).

  21. Kolinko P., Smith D.R. (2003) Numerical study of electromagnetic waves interacting with negative index materials. Opt. Expr. 11: 640–648

    Google Scholar 

  22. Li, J. (2005). Error analysis of fully discrete mixed finite element schemes for 3-D Maxwell’s equations in dispersive media. (preprint).

  23. Li J. (2006) Error analysis of finite element methods for 3-D Maxwell’s equations in dispersive media. J. Comp. Appl. Math. 188: 107–120

    Article  MATH  Google Scholar 

  24. Li J., Chen Y. (2006) Analysis of a time-domain finite element method for 3-D Maxwell’s equations in dispersive media. Comput. Methods Appl. Mech. Eng. 195: 4220–4229

    Article  MATH  Google Scholar 

  25. Lin, Q., and Li, J. (2006). Superconvergence analysis for Maxwell’s equations in dispersive media. Math. Comp. (in press).

  26. Monk P. (1991). A mixed method for approximating Maxwell’s equations. SIAM J. Numer. Anal. 28: 1610–1634

    Article  MATH  MathSciNet  Google Scholar 

  27. Monk P. (2003) Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford

    MATH  Google Scholar 

  28. Monk P., Süli E. (1994). A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 31: 393–412

    Article  MATH  MathSciNet  Google Scholar 

  29. Nédélec J.-C. (1980) Mixed finite elements in R 3. Numer. Math. 35: 315–341

    Article  MATH  MathSciNet  Google Scholar 

  30. Opt. Exp. (Focus Issue), 11(7), 639–760.

  31. Quarteroni A., Valli A. (1994) Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin

    MATH  Google Scholar 

  32. Shelby A., Smith D.R., Schultz S. (2001). Experimental verification of a negative index of refraction. Science 292: 489–491

    Article  Google Scholar 

  33. Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C., Schultz S. (2000) Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84: 4184–4187

    Article  Google Scholar 

  34. Tri Van and Wood A. (2003) A time-marching finite element method for an electromagnetic scattering problem. Math. Methods Appl. Sci. 26, 1025–1045.

    Google Scholar 

  35. Veselago V.G. (1968). The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 47: 509–514

    Article  Google Scholar 

  36. Ziolkowski R.W. (2003). Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. Opt. Exp. 11: 662–681

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Wood, A. Finite Element Analysis for Wave Propagation in Double Negative Metamaterials. J Sci Comput 32, 263–286 (2007). https://doi.org/10.1007/s10915-007-9131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9131-2

Keywords

Mathematics Subject Classification (2000)

Navigation