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Abstract Different time-stepping methods for a nodal high-order discontinuous Galerkin
discretisation of the Maxwell equations are discussed. A comparison between the most pop-
ular choices of Runge-Kutta (RK) methods is made from the point of view of accuracy and
computational work. By choosing the strong-stability-preserving Runge-Kutta (SSP-RK)
time-integration method of order consistent with the polynomial order of the spatial dis-
cretisation, better accuracy can be attained compared with fixed-order schemes. Moreover,
this comes without a significant increase in the computational work. A numerical Fourier
analysis is performed for this Runge-Kutta discontinuous Galerkin (RKDG) discretisation
to gain insight into the dispersion and dissipation properties of the fully discrete scheme.
The analysis is carried out on both the one-dimensional and the two-dimensional fully dis-
crete schemes and, in the latter case, on uniform as well as on non-uniform meshes. It also
provides practical information on the convergence of the dissipation and dispersion error up
to polynomial order 10 for the one-dimensional fully discrete scheme.

Keywords High-order nodal discontinuous Galerkin methods · Maxwell equations ·
Numerical dispersion and dissipation · Strong-stability-preserving Runge-Kutta methods

1 Introduction

As pointed out in an extensive review on the state of the art of computational electro-
magnetics [16], in many cases finite-difference time-domain (FDTD) schemes [33, 37] are
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undoubtedly the most popular methods among physicists and engineers to solve the time-
domain Maxwell equations numerically. This popularity is mainly due to their simplicity and
efficiency in discretising simple-domain problems. However, their inability to effectively
handle complex geometries prompted some scientists to search for alternatives long ago.
Finite-element (FE) methods are an obvious alternative, but early efforts were marred by
the fact that standard continuous Galerkin finite-element schemes give rise to non-physical
solutions. Most apparent of these are the spurious modes in the numerical solution of the
frequency-domain Maxwell equations (see [24] and references therein). The revolutionary
solution to this problem was to realise that by using a particular set of vector basis functions
(vector elements such as Nédélec or Whitney elements [20, 29]), it is possible to mimic many
of the special properties of the Maxwell equations at the discrete level. See [3] and [4]. Ever
since, vector elements have been a viable alternative to FDTD and standard FE methods
in computational electrodynamics, especially for frequency-domain problems with complex
geometries. The practical considerations of both standard and vector finite elements in com-
putational electromagnetics are covered in [24]. For the more theoretical aspects of Nédélec
elements we refer to [27].

The need to model electromagnetic wave propagation in large and complex domains and
over a relatively long time span has increased the demand for high-order methods. How-
ever, neither high-order FDTD methods nor high-order vector FE methods are devoid of
practical drawbacks. High-order FDTD methods fail to effectively handle complex geome-
tries whereas high-order vector FE methods (based on high-order Nédélec elements [29]
for example) lead to global mass matrices with relatively large bandwidths (after optimal
reordering). The time-integration schemes to solve such systems are in turn computation-
ally rather expensive. These difficulties have motivated the development of discontinuous
Galerkin (DG) finite-element methods [9, 11], together with spectral element methods [25].
In both the frequency-domain formulation [19, 21, 30, 31, 35] and the time-domain for-
mulation [6, 10, 18, 28] significant progress has been made. One of the most promising
methods for complicated geometries is the high-order nodal DG method of Hesthaven and
Warburton [18], which proved both accurate and efficient for the spatial discretisation. In
time integration, however, the low-storage Runge-Kutta (RK) method the authors applied
poses a comparatively stringent time-step constraint, which may turn out to be the bottle-
neck for long-time integration. Furthermore, fixed-order time-integration schemes may spoil
the high-order convergence of the global scheme. In the meantime, for discontinuous for-
mulations of convection-dominated problems [9] it has been shown in [14] and in [6] that
the time-step restriction may be loosened if we use Strong-Stability-Preserving Runge-Kutta
(SSP-RK) methods of one order higher than the polynomial order of the spatial discretisa-
tion.

In this work, we study the behaviour of the high-order nodal scheme when several of
the best-suited time-integration methods are used. In particular, we have a closer look at the
dispersion and dissipation properties of the Runge-Kutta discontinuous Galerkin (RKDG)
method comprising the nodal high-order DG method and the SSP-RK method. The main
motivation for using this particular time-integration scheme is its relatively weak time-step
restriction. This property implies that we can retain high-order accuracy without losing much
on the computational work measured as the number of operations.

The literature on the dispersion and dissipation properties of the DG method has in recent
years become abundant. A thorough analysis of the dispersion and dissipation behaviour of
the DG method for the transport equation (scalar linear conservation law) was given in [1],
which also provided a proof for earlier conjectures, especially from [22]. The semi-discrete
system for the wave equation has also been extensively studied [2, 23, 32]. In particular, the



J Sci Comput (2007) 33: 47–74 49

authors in [2] provided two different dispersion analyses for the semi-discrete wave equation
on tensor product elements. One for the interior penalty DG method (IP-DG) of the second-
order wave equation and another for the general DG method for a first order system.

The novelty of this work with regards to the dispersion and dissipation behaviour of DG
methods lies in including the time integration in the analysis. We consider the discretisation
of the first-order system related to the Maxwell equations, so our scheme falls in the category
of what the authors call the ‘general DG method’ in [2]. Throughout this article we apply a
fully upwinding numerical flux, since it has proved superior—due to stabilisation and lack
of spurious modes—to the centered or mixed fluxes for time-dependent problems [19]. In
wave-propagation problems it is often more advantageous to know the convergence rate of
the dispersion and dissipation errors than that of the error in the L2-norm. These convergence
rates have been established in [1] for the semi-discrete transport equation. For the general
DG scheme, to which the nodal DG method discussed here belongs, it has been shown in [2]
that using first-order polynomials in the spatial discretisation results in a dispersion error of
order O(h4) and a dissipation error of order O(h3) for the semi-discrete system. In this work
we show, through numerical examples, how the dispersion and dissipation errors converge in
the fully discrete high-order RKDG scheme for the linear autonomous form of the Maxwell
equations.

The remaining part of this article is outlined as follows. In Sect. 2 we recall the system
of time-domain Maxwell equations and reduce it to the linear autonomous form. The spatial
discretisation is briefly reviewed in Sect. 3 and the RK schemes for the temporal discreti-
sation in Sect. 4. One-dimensional and two-dimensional Fourier analysis is carried out in
Sect. 5, and the associated numerical results, along with some other numerical tests, are pre-
sented in Sect. 6. Here we examine the behaviour of the dispersion and dissipation errors in
terms of the mesh size per wave length and the size of the time step. Finally, we sum up our
conclusions in Sect. 7.

2 Maxwell Equations

We begin with deriving the dimensionless time-domain form of the Maxwell equations in the
three-dimensional domain � ⊂ R

3. Boldface symbols here refer to vector fields, i.e. fields
in R

3 → R
3. With these notations the Maxwell equations read

∂D

∂t
= ∇ × H − J ,

∂B

∂t
= −∇ × E, (1)

∇ · D = �, ∇ · B = 0, (2)

with charge distribution �(x, t), position vector x = (x, y, z) ∈ �, the nabla operator ∇ =
( ∂

∂x
, ∂

∂y
, ∂

∂z
) and time t . The vector valued quantities are the electric field E(x, t), the electric

flux density D(x, t), the magnetic field H (x, t), the magnetic flux density B(x, t) and the
electric current J (x, t). For many applications it is reasonable to assume that the materials
are isotropic, linear and time-invariant. Thus the system of equations is closed with the linear
constitutive relations

D = εrE, B = μrH , (3)

where the scalar quantities εr(x) and μr(x) are the permittivity and permeability, respec-
tively. Furthermore, Ohm’s law

J = σE

also holds with electric conductivity σ(x, t).
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To obtain the non-dimensional form of the Maxwell equations (1–2), we first introduce
tilded variables to represent the dimensional fields. The special notations ε̃0 and μ̃0 stand
for the dimensional permittivity and permeability of vacuum. By using the normalised space
and time variables

x = x̃

L̃
, t = t̃

L̃/c̃0

,

with reference length L̃ and dimensional speed of light in vacuum c̃0 = 1/
√

ε̃0μ̃0, the phys-
ical fields are made non-dimensional through the relations

E = Ẽ

Z̃0H̃0

, H = H̃

H̃0

, J = J̃

H̃0/L̃
.

Here Z̃0 = √
μ̃0/ε̃0 and H̃0 are the free-space intrinsic impedance and reference magnetic

field strength, respectively.
With the constitutive relations (3), (2) are just the consistency conditions for (1). To

see that point, we only need to take the divergence of (1), apply (2) and (3) and realise
that the resultant equation represents nothing else but charge conservation, which should
always hold. Consequently, as long as the initial conditions satisfy (2) and the fields evolve
according to (1), the solution at any time will also satisfy (2). It is therefore enough to
consider only

εr
∂E

∂t
= ∇ × H − J , μr

∂H

∂t
= −∇ × E, (4)

in which the constitutive relations (3) are also included. As for the boundary conditions, one
important special case is that of perfect electric conductors (PEC). These read

n̂ × E = 0, n̂ × H = 0, (5)

with outward pointing normal vector n̂. Between material interfaces, in the absence of sur-
face currents and surface charge, the following conditions are valid

n̂ × [[E]] = 0, n̂ · [[εrE]] = 0, (6)

n̂ × [[H ]] = 0, n̂ · [[μrH ]] = 0,

where

[[u]] = u+ − u−

denotes the jump in the field value u. The expressions (6) represent the physical property that
the tangential components of both fields are continuous across different materials, whereas
the normal components may be discontinuous.

3 Discontinuous Galerkin Discretisation in Space

We approximate the solutions to the Maxwell equations in space using the high-order nodal
discontinuous Galerkin method introduced in [18] and further studied in [19] and [35]. In
the following we briefly review the main features of this discretisation.
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We consider the Maxwell equations in the general domain � ⊂ R
3 filled with non-

conductive materials (σ = 0) and rewrite (4) in the flux form

Q(x)
∂q

∂t
+ ∇ · F (q) = 0, (7)

where Q(x) represents the material properties, q is the vector of the field values and F (q) =
[F1(q),F2(q),F3(q)]T denotes the flux. Namely,

Q(x) = diag(εr, εr, εr,μr,μr,μr), q =
[

E

H

]
, Fi(q) =

[−ei × H

ei × E

]
,

where ei is the corresponding Cartesian unit vector. We seek the numerical solution in the
computational domain �K tessellated into K non-overlapping elements, i.e.

� ≈ �K =
K⋃

k=1

�k.

Here �K represents a tetrahedral tessellation in three dimensions and a triangular tessella-
tion in two dimensions.

Before formulating the discontinuous Galerkin discretisation, we introduce the standard
(or reference) element �st = T d for different spatial dimensions d . These are defined as
T 1 = {ξ :−1 ≤ ξ ≤ 1} in one dimension, T 2 = {ξ = (ξ, η) :−1 ≤ ξ, η, ξ +η ≤ 0} in two di-
mensions and T 3 = {ξ = (ξ, η, ζ ) :−1 ≤ ξ, η, ζ, ξ +η+ ζ ≤ −1} in three dimensions. Each
element �k is constructed by the invertible mapping X k(ξ) :�st → �k , which is unique for
any given element. For details see the extensive book [25]. We now define the finite element
space as

Vh = {
qk

N ∈ (L2(�))2d :qk
N (X k(ξ)) ∈ Pd

p(�st), k = 1, . . . ,K
}
, (8)

where L2(�) is the space of square integrable functions on � and Pd
p(�st) denotes the space

of d-dimensional polynomials of maximum order p on the reference element �st. Since this
polynomial space is associated with

N = (n + d)!
n!d!

nodal points ξ i ∈ �st, we can now introduce the multidimensional Lagrange polynomials
Li(ξ) passing through these nodes:

Li(ξ j ) = δij , with δij =
{

1 if i = j,

0 if i �= j .

Taking the Lagrange polynomials as trial functions and using the mapping X k(ξ), we ap-
proximate the solution at the N nodal points within each element as

qk(x, t) ≈ qk
N (x, t) =

N∑

i=1

qk
i (t)(Li(x))2d ∈ Pd

p(�k),

where qk
N (x, t) is the finite element approximation, and qk

i (t) represents the solution at
nodal point xj ∈ �k .
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The distribution of the nodes is a key issue for the properties of the interpolation, espe-
cially for very high-order approximations. It is best measured by the Lebesgue constant asso-
ciated with the Lagrange polynomials going through a particular set of nodes. The Lebesgue
constant shows just how close a given polynomial approximation is to the best polynomial
approximation. The most popular choices for nodes in spectral/hp element methods are the
Fekete points [34] and the electrostatic points [15, 17]. It should be noted that although the
Fekete points have the best interpolation properties (lowest Lebesgue constant) in a triangle
for orders p ≥ 9, no distribution for a tetrahedron has so far been provided. An (almost)
optimal distribution of the electrostatic nodes, however, is given for a triangle in [15] and
for a tetrahedron in [17]. Moreover, the electrostatic points also perform slightly better for
orders p ≤ 8 in triangles. The distribution of these nodes in the standard triangle is shown
in Fig. 1 for orders p = 2,4,6,10. We also note that the nodal distributions in a triangle and
tetrahedron with an L2-norm optimal Lebesgue constant were determined in [7] and [8].
However, these nodes, in contrast with the Fekete and electrostatic points, do not have an

Fig. 1 Electrostatic points for orders p = 2,4,6,10
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edge distribution which can be identified with Gauss-Lobatto-Jacobi points. We refer to [25]
for further overview on nodal (and modal) spectral/hp methods.

To formulate the discontinuous Galerkin scheme, we first introduce the local inner prod-
uct and its associated norm on �k as

(u,v)�k =
∫

�k

u · v dx, ‖u‖2
�k = (u,u)�k

and on its boundary ∂�k as

(u,v)∂�k =
∫

∂�k

u · v ds.

We multiply (7) with the local test function φ ∈ Pd
p(�k), chosen to be the same interpolat-

ing Lagrange polynomials Li(x) as for the trial basis functions, drop the superscript k and
integrate by parts over element �k to obtain the continuous weak formulation

(
Q

∂q

∂t
,φ

)

�k

− (F ,∇φ)�k = −(n̂ · F , φ)∂�k , ∀�k ⊂ �K. (9)

We then replace the continuous variable q with its discrete counterpart qN , and the exact flux
F with the numerical flux F̂ to account for the multi-valued traces at the element boundary.
Finally, integration by parts for the second time results in the discrete formulation

(
Q

∂qN

∂t
+ ∇FN,φ

)

�k

= (n̂ · [F − F̂ ], φ)∂�k . (10)

The right-hand side of (10) is responsible for the communication between the elements
through the numerical flux F̂ . The role of the numerical flux in the present spatial discreti-
sation is discussed in [19] in the light of the Maxwell eigenvalue problem. Throughout this
work, we use the upwind flux [26], where information travels along local wave directions.

In order to formulate the upwind flux, we first introduce the impedance Z and the con-
ductance Y defined as

Z = Y −1 = √
μr/εr.

We also introduce the associated quantities

Z± = 1

Y ± =
√

μ±
r

ε±
r

, Z̄ = Z− + Z+

2
, Ȳ = Y − + Y +

2
.

The upwind flux at dielectric interfaces then reads as

n̂ · F̂ = 1

2

[
Z̄−1(−n̂ × Z−H−

N − n̂ × Z+H+
N + n̂ × n̂ × [[EN ]])

Ȳ −1(n̂ × Y −E−
N + n̂ × Y +E+

N + n̂ × n̂ × [[HN ]])
]

, (11)

where (E−
N,H−

N) and (E+
N,H+

N) denote the local and neighbouring solution at the boundary
of �k , respectively. We emphasise that the cross product is defined between vectors at each
node of the element. For a detailed derivation of the upwind flux we refer to [26]. We should
also recognise that

n̂ · FN =
[−n̂ × H−

N

n̂ × E−
N

]
,
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and combining this with (11), the penalising boundary term will now read

n̂ · (FN − F̂ ) = 1

2

[
Z̄−1(Z+n̂ × [[HN ]] − n̂ × n̂ × [[EN ]])

Ȳ −1(−Y +n̂ × [[EN ]] − n̂ × n̂ × [[HN ]])
]

.

To obtain the semi-discrete system we introduce the N -by-N local mass and stiffness ma-
trices as

Mij = (Li(x),Lj (x))�k , Sx
ij = (Li(x), ∂xLj (x))�k , (12)

Sy

ij = (Li(x), ∂yLj (x))�k , Sz
ij = (Li(x), ∂zLj (x))�k ,

and the face-based mass matrices

Fil = (Li(x),Ll(x))∂�k , (13)

where the second index is limited to the boundaries of �k .
We can now express the semi-discrete scheme as the following system of ordinary dif-

ferential equations

dEx
N

dt
= (εrM)−1(SyH z

N − SzH
y

N) + (εrM)−1F
(

n̂ × Z+[[HN ]] − n̂ × [[EN ]]
Z+ + Z−

)x∣∣∣∣
∂�k

,

dE
y

N

dt
= (εrM)−1(SzHx

N − SxH z
N) + (εrM)−1F

(
n̂ × Z+[[HN ]] − n̂ × [[EN ]]

Z+ + Z−

)y∣∣∣∣
∂�k

, (14)

dEz
N

dt
= (εrM)−1(SxH

y

N − SyHx
N) + (εrM)−1F

(
n̂ × Z+[[HN ]] − n̂ × [[EN ]]

Z+ + Z−

)z∣∣∣∣
∂�k

,

dHx
N

dt
= (εrM)−1(SzE

y

N − SyEz
N) + (εrM)−1F

(
n̂ × Y +[[EN ]] + n̂ × [[HN ]]

Y + + Y −

)x∣∣∣∣
∂�k

,

dH
y

N

dt
= (εrM)−1(SxEz

N − SzEx
N) + (εrM)−1F

(
n̂ × Y +[[EN ]] + n̂ × [[HN ]]

Y + + Y −

)y∣∣∣∣
∂�k

, (15)

dHz
N

dt
= (εrM)−1(SyEx

N − SxE
y

N) + (εrM)−1F
(

n̂ × Y +[[EN ]] + n̂ × [[HN ]]
Y + + Y −

)z∣∣∣∣
∂�k

.

Here the fields Ex
N , E

y

N , Ez
N , Hx

N , H
y

N , and Hz
N represent the discrete counterparts of scalar

fields. That is the reason they are not typeset boldface, despite now being in fact vectors as
a result of the discretisation. In contrast, we evaluate the numerical flux in the right-hand
side of (14–15) at each node at the boundary of the element using the discrete counterparts
of vector fields. Then at each node the corresponding component of the resulting vector is
taken.

The advantages of the above described discretisation are discussed in detail in [18] and
[35], where a number of numerical examples are also provided. Here it suffices to men-
tion its optimal flexibility for mesh refinement, the possibility of independent adjustment
of polynomial orders in each element (hp-adaptation), its excellent performance on parallel
computers and that only matrix-matrix multiplications are needed during the time integra-
tion. In this article, however, our aim is to analyse the properties of time-integration methods
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suitable for this spatial DG discretisation, therefore we assemble the local semi-discrete sys-
tem (14–15) into a global matrix and consider the ‘abstract’ semi-discrete system

dqh

dt
= Aqh, (16)

where A is the global matrix and qh = [Eh,H h]T represents the numerical approximation
to the fields in the complete domain. The matrix assembly is somewhat lengthy but straight-
forward, and it follows the standard procedure. See [25] for example.

4 Runge-Kutta Time-Stepping Methods

From the point of view of time integration, one of the main difficulties in high-order
spectral/hp element methods is the restriction on the time step of explicit time-integration
schemes. For hyperbolic systems in general, and for the advection equation in particular, it
is known (see [25], for example) that the maximum eigenvalue of the semi-discrete global
matrix grows as O(p2) with polynomial order p, hence the time step is usually bounded by
O(1/p2). The time-step restriction then can generally be taken as

�t ≤ �tmax = CFL(p)
hk

ck

, (17)

where hk is the minimum edge length of all elements and ck is the maximum wave speed in
the domain. Here the parameter CFL depends on the degree of the polynomials used in the
spatial discretisation. If we apply any given time-integration scheme with fixed order (i.e.
independent of the polynomial order p) to the semi-discrete system (16), we have

CFL(p) = C
1

p2
, (18)

where C is a constant, typically of order one. This condition may turn out to be rather re-
strictive as we go to higher and higher order approximations, even with a slightly increasing
value for C (see Sect. 6).

The low-storage Runge-Kutta schemes introduced in [5] are among the most popular
choices for time integration of the DG space-discretised Maxwell equations. Storage can
be essential for large-scale computations and low-storage schemes require only two storage
units per ODE variable. If we consider the ODE system

du

dt
= L(u), (19)

the general m-stage low-storage Runge-Kutta scheme [5, 36] can be written in the form

u(0) = un, v(0) = 0,

v(i) = aiv
(i−1) + �tL(u(i−1)), i = 1, . . . ,m,

u(i) = u(i−1) + biv
(i), i = 1, . . . ,m,

un+1 = u(m),

(20)

where only u and an auxiliary variable v must be stored. The coefficients ai and bi have been
determined for a number of different low-storage Runge-Kutta schemes. See [5] and [13] for
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Table 1 Coefficients of the
fourth-order five-stage
low-storage Runge-Kutta method

i ai bi

1 0 0.14965902199923

2 −0.41789047449985 0.37921031299963

3 −1.19215169464268 0.82295502938698

4 −1.69778469247153 0.69945045594912

5 −1.51418344425716 0.15305724796815

more details. In this article we consider the fourth-order five-stage low-storage scheme also
applied in [18]. The coefficients we use are listed in Table 1.

One possible way to achieve a weaker time-step restriction is the application of SSP-
RK schemes. In [14] it was shown that for the linear autonomous system (19) the class of
m-stage linear SSP-RK schemes, given recursively by

u(0) = un,

u(i) = u(i−1) + �tLu(i−1), i = 1, . . . ,m − 1, (21)

u(m) =
m−2∑

k=0

αm,ku
(k) + αm,m−1(u

(m−1) + �tLu(m−1)),

un+1 = u(m),

where α1,0 = 1 and

αm,k = 1

k
αm−1,k−1, k = 1, . . . ,m − 2,

αm,m−1 = 1

m! , αm,0 = 1 −
m−1∑

k=1

αm,k,

are mth-order accurate. This was extended to linear non-autonomous systems by Chen et al.
[6]. In that work the authors demonstrated that when applied together with the classical dis-
continuous Galerkin method [9, 11], the SSP-RK scheme gives (p +1)st-order convergence
with the stability bound

CFL(p) = C
1

2p + 1
(22)

with C = 1, as long as for a given spatial discretisation of polynomial order p, the corre-
sponding SSP-RK method has order p+1. The stability regions of several SSP-RK methods
and the low-storage five-stage fourth-order Runge-Kutta method are displayed in Fig. 2.

5 Analysis of the Dispersion and Dissipation Error

A critical factor in the numerical simulation of wave-propagation is the artificial dissipation
and/or dispersion inflicted on the waves due to numerical discretisation errors. In order to
analyse these properties of the different schemes, we resort to the one-dimensional and two-
dimensional forms of the Maxwell equations with periodic boundary conditions. First, these
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Fig. 2 Stability regions for the five-stage fourth-order Runge-Kutta method (top left) and for five different
SSP-RK methods of order m = 3,4,5,6,7
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reduced models are formulated and then we perform a numerical Fourier analysis of the
fully discrete schemes to investigate the dispersion and dissipation errors as a function of
mesh size per wave length and time step. This analysis provides important information on
the accuracy of the schemes regarding wave motion and the relation between time step, mesh
size and polynomial order.

5.1 Wave Equation in One and Two Dimensions

The Maxwell equations in one dimension read

εr
∂E

∂t
= −∂H

∂x
, μr

∂H

∂t
= −∂E

∂x
, (23)

or they can be expressed by the wave equation

∂2E

∂t2
− 1

εrμr

∂2E

∂x2
= 0,

in the domain � ⊂ R. In conservative form (7), this reads

Q
∂q

∂t
+ ∇ · F (q) = 0 (24)

with

Q = diag(εr,μr), q =
[

E

H

]
, F (q) =

[
H

E

]
.

For the two-dimensional analysis we take the transverse magnetic (TM) polarisation of the
Maxwell equations

μr
∂Hx

∂t
= −∂Ez

∂y
,

μr
∂Hy

∂t
= ∂Ez

∂x
,

εr
∂Ez

∂t
= ∂Hy

∂x
− ∂Hx

∂y
,

which is again equivalent to the second-order wave equation,

∂2Ez

∂t2
− 1

εrμr
∇2Ez = 0.

Thus we arrive at the first-order system (7)

Q
∂q

∂t
+ ∇ · F (q) = 0, (25)

with

Q = diag(μr,μr, εr), q =
[

Hx

Hy

Ez

]

, F (q) =
[ 0 −Ez

Ez 0
Hy −Hx

]

.
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5.2 Dispersion and Dissipation Analysis of the Global Scheme

For the analysis of the fully discrete schemes, we consider (24) and (25) in the domains � =
[−1,1] and � = [−1,1]2, respectively. Furthermore, we use uniform meshes and assume
that the boundaries are periodic.

5.2.1 One-Dimensional Fourier Analysis

We are primarily interested in wave propagation and in the associated dispersion and dissipa-
tion error of the RKDG scheme. We consider the one-dimensional semi-discrete scheme (16)

dqh

dt
= Aqh

in the domain � = [−1,1] filled with vacuum (or air) and assume a monochromatic plane
wave (which is also a Fourier mode)

qh(0) = q0
h = [eikxh , eikxh ]T

as initial condition. Here, xh represents the vector of the nodes used for the spatial discreti-
sation. We denote the angular wave frequency with ω. The exact wave number k is given by
the dispersion relation k2 = ω2/c2, with c being the speed of light. The time-exact discrete
Fourier mode at time level tn = n�t will read

qh(n�t) = νnqh(0) = e−iωn�t [eikxh , eikxh ]T (26)

with exact amplification factor νn = e−iωn�t and i2 = −1. To see the effect of the time-
stepping method, we replace the exact amplification factor νn with its discrete counterpart
νn

h and take the fully discrete Fourier mode as

qn
h = νn

hq0
h = νn

h [eikxh , eikxh ]T . (27)

In addition, we write the SSP-RK scheme as a two-level explicit scheme. Thus

qn+1
h = Bqn

h (28)

holds with amplification matrix

B =
m∑

l=0

1

l! (�tA)l (29)

and with m being the order of the SSP-RK time-stepping scheme. Substituting (27) into (28)
results in the equation

νn+1
h [eikxh , eikxh ]T = Bνn

h [eikxh , eikxh ]T ,

which, after division with νn
h , reduce to the eigenvalue problem

νhq
0
h = Bq0

h. (30)
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Solving this eigenvalue equation will produce p + 1 different values for νh,j (and as many
corresponding eigenvectors q0

h,j ). Bearing in mind that

νh,j = e−iω̃h,j �t ,

with complex numerical frequencies ω̃h,j , we can establish the dispersion and dissipation
properties of the scheme. For that, we consider the real (for dispersion) and imaginary (for
dissipation) parts of the complex numerical frequencies ω̃h,j = (i/�t) lnνh,j , that is

ωh,j = Re[ω̃h,j ] = Re[(i/�t) lnνh,j ], ρh,j = Im[ω̃h,j ] = Im[(i/�t) lnνh,j ],

with real numerical frequency ωh,j and numerical dissipation ρh,j , both corresponding to
the eigenvalue νh,j . One of the computed modes will be close to the frequency of the phys-
ical mode. This represents the approximation properties of our scheme. The other modes
are spurious. To decide which eigenvalue should be considered, we define the dissipation
error as errdiss

h,j = |ρh,j | − 1 and the dispersion error as the absolute value of dispersion error

errdisp
h,j = |ω − ωh,j |. The numerical Fourier mode is now taken as the closest eigenvalue to

the physical mode

νh :=
{
νh,j : min

j

√
(errdisp

h,j )2 + (errdiss
h,j )2

}
. (31)

In the numerical dispersion and dissipation analysis of the fully discrete schemes, we con-
sider a wide range of values for �t and hk . The eigenvalues of (30) are computed in Mat-
lab.

It is also important to consider the convergence of the numerical dispersion and dissipa-
tion error. In [1] a complete dispersion and dissipation analysis of the semi-discrete advec-
tion equation was carried out for discontinuous Galerkin methods with high-order tensor-
product elements. In that article it was proven that in the asymptotic region hk = 2πh

λ
→ 0

(with λ being the wave length) the dispersion relation for a pth-order method is accurate to
order 2p + 3 for the dispersion error and order 2p + 2 for the dissipation error. See [22]
and [1] for more details. In a more recent work [2] the dispersion and dissipation analysis of
the semi-discrete wave equation was provided for some low-order schemes (linear elements
for the general DG and up to third order elements for the IP-DG) and the authors also con-
jectured on how the results would extend to arbitrary order elements. For the fully discrete
system we consider here, the rate of convergence is also influenced by the time-stepping
method. However, for most polynomial orders p, the convergence of the dispersion and dis-
sipation error still by far supersedes that of the error measured in the l2-norm. The numerical
results are discussed in Sect. 6.

5.2.2 Two-Dimensional Fourier Analysis

As in one dimension, we assemble our right-hand side into a global matrix and consider the
abstract Cauchy problem (16)

dqh

dt
= Aqh,

where now q = [Hx
h ,H

y

h ,Ez
h]T and the matrix A represents the semi-discrete system re-

sulting from the discretisation of (25). The only difference in the mathematical formulation
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Table 2 Convergence of the global error for the one-dimensional metallic cavity filled with two different
materials. In each case the (p + 1)st-order SSP-RK scheme is applied

p = 1 p = 2 p = 3

l2-error Order l2-error Order l2-error Order

Nel = 2 1.7557E-00 2.5843e+00 1.3544E-00

Nel = 4 1.5732E-00 1.5840 7.9723E-01 1.6967 2.0100E-01 2.7524

Nel = 8 8.4106E-01 9.0339 1.0048E-01 2.9880 1.7313E-02 3.5372

Nel = 16 1.9518E-01 2.1074 1.4226E-02 2.8204 1.1295E-03 3.9382

Nel = 32 3.8904E-02 2.3268 1.8855E-03 2.9155 6.8300E-05 4.0476

Nel = 64 9.0807E-03 2.0990 2.3897E-04 2.9800 4.3243E-06 3.9813

Nel = 128 2.2310E-03 2.0251 2.9985E-05 2.9945 2.7049E-07 3.9988

Nel = 256 5.5755E-04 2.0005 3.7547E-06 2.9975 1.6909E-08 3.9997

Nel = 512 1.3944E-04 1.9995 4.6972E-07 2.9988 1.0568E-09 4.0000

p = 4 p = 5 p = 6

l2-error Order l2-error Order l2-error Order

Nel = 2 7.7746E-01 2.7975E-01 1.6624E-01

Nel = 4 5.7034E-02 3.7689 1.0551E-02 4.7286 1.8202E-03 6.5130

Nel = 8 1.9711E-03 4.8548 2.0173E-04 5.7089 1.6440E-05 6.7907

Nel = 16 6.5391E-05 4.9138 3.1504E-06 6.0007 1.3514E-07 6.9267

Nel = 32 2.0736E-06 4.9789 4.9661E-08 5.9873 1.0574E-09 6.9978

Nel = 64 6.4733E-08 5.0015 7.7594E-10 6.0000 8.3515E-12 6.9843

Nel = 128 1.9895E-09 5.0240 1.2161E-11 5.9956

Nel = 256 6.2218E-11 4.9989 2.7547E-13 5.4642

p = 7 p = 8 p = 9

l2-error Order l2-error Order l2-error Order

Nel = 2 1.4124E-02 1.5533E-02 7.3602E-04

Nel = 4 2.7117E-04 5.7028 3.7314E-05 8.7014 4.4752E-06 7.3616

Nel = 8 1.2568E-06 7.7533 8.2859E-08 8.8149 4.9118E-09 9.8315

Nel = 16 5.0129E-09 7.9699 1.6508E-10 8.9714 4.9240E-12 9.9622

Nel = 32 1.9730E-11 7.9891 3.2760E-13 8.9770

to the one-dimensional case is that the dispersion relation now reads k2
x + k2

y = ω2/c2. The
time-exact discrete Fourier mode satisfying (25) is equal to

qn
h = νn[(ky/ω)eikxxh+ikyyh , (−kx/ω)eikxxh+ikyyh , eikxxh+ikyyh ]T (32)

in the two-dimensional domain � = [−1,1]2. From here we follow exactly the same line as
in the one-dimensional case. As initial condition we take a monochromatic plane wave with
different wave numbers ky and kx between which the relation ky = 2kx always holds. This
represents a monochromatic plane wave travelling at an angle of about 26.565◦ against the
x axis. As in one dimension, a range of values of �t and hk are considered. We note that for
computing the matrix exponential in (29) the simple Horner’s rule is applied (see [12] for
example).
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Table 3 Errors and computational work when different time-stepping schemes are applied to the cavity
problem with polynomial order p, number of elements Nel and degrees of freedom DoF after integrating
over T = 1000 time periods

p = 3, Nel = 40 (DoF = 160) �t = �tmax ops l∞-error l2-error

SSP-RK4 7.1428E-03 560004 4.2370E-04 2.1220E-04

Carpenter&Kennedy 5.5555E-03 900005 6.2719E-05 3.1442E-05

Standard RK4 5.5555E-03 720004 1.5559E-04 7.7676E-05

p = 3, Nel = 20 (DoF = 80) �t = �tmax ops l∞-error l2-error

SSP-RK4 1.4286E-02 280004 6.6828E-03 3.3938E-03

Carpenter&Kennedy 1.1111E-02 450005 9.5898E-04 5.2903E-04

Standard RK4 1.1111E-02 360004 2.4328E-03 1.2492E-03

p = 6, Nel = 12 (DoF = 84) �t = �tmax ops l∞-error l2-error

SSP-RK7 1.2820E-02 546007 1.5364E-07 6.4372E-08

Carpenter&Kennedy 9.2592E-03 540005 4.7966E-04 2.3993E-04

Standard RK4 9.2592E-03 432004 1.1982E-03 5.9976E-04

p = 6, Nel = 6 (DoF = 42) �t = �tmax ops l∞-error l2-error

SSP-RK7 2.5640E-02 273007 1.7646E-05 8.0618E-06

Carpenter&Kennedy 1.8518E-02 270005 7.6505E-03 3.8385E-03

Standard RK4 1.8518E-02 216004 1.9066E-02 9.5896E-03

p = 10, Nel = 4 (DoF = 44) �t = �tmax ops l∞-error l2-error

SSP-RK11 2.3810E-02 462000 1.9624E-08 9.7129E-09

Carpenter&Kennedy 1.0000E-02 500000 6.5246E-04 2.6565E-04

Standard RK4 1.0000E-02 400000 1.6297E-03 6.6450E-04

p = 10, Nel = 2 (DoF = 22) �t = �tmax ops l∞-error l2-error

SSP-RK11 4.7619E-02 231000 3.3137E-06 3.2341E-06

Carpenter&Kennedy 2.0000E-02 250000 1.0199E-02 4.5032E-03

Standard RK4 2.0000E-02 200000 2.5387E-02 1.1272E-02

6 Numerical Results

6.1 One-Dimensional Cavity

In order to investigate if the SSP-RK scheme retains the high-order convergence of the
spatial discretisation [18], we consider the one-dimensional cavity problem in the domain
x ∈ [−1,1], with two different non-magnetic (μr,1 = μr,2 = 1) materials. The material inter-
face is situated at x = 0 and the two different materials have a relative permittivity of εr,1 = 1
and εr,2 = 2.25, respectively. The error is measured against the exact solution, which is in-
cluded in the Appendix. We set the frequency of the wave at ω = 2π , the same throughout
the whole domain, which entails the corresponding wave numbers k1 = 2π and k2 = 3π ,
respectively. In Table 2 we show the l2-error ‖qN − qexact‖ at final time T = 1 for different
orders of the local polynomials. For the time integration, we use the (p+1)st-order SSP-RK
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Table 4 Computational work needed to achieve at least l2err = 10−5 accuracy when different time-stepping
schemes are applied to the cavity problem with polynomial order p, number of elements Nel and degrees of
freedom DoF after integrating over T = 1000 time periods

p = 3, Nel = 54 (DoF = 216) �t ops l2-error

SSP-RK4 3.2922E-03 1215004 9.7349E-06

Carpenter&Kennedy 4.1152E-03 1215005 9.4976E-06

Standard RK4 3.2922E-03 1215004 9.7349E-06

p = 6, Nel = 6 (DoF = 42) �t ops l2-error

SSP-RK7 2.5640E-02 273007 8.0618E-06

Carpenter&Kennedy 3.7037E-03 1350005 9.5547E-06

Standard RK4 2.7778E-03 1440004 8.9196E-06

p = 10, Nel = 2 (DoF = 22) �t ops l2-error

SSP-RK11 4.7619E-02 231000 3.2341E-06

Carpenter&Kennedy 4.0000E-03 1250000 7.7825E-06

Standard RK4 3.0000E-03 1333336 6.4107E-06

method (21) with corresponding maximum time step (22). We can see that in the asymptotic
region hk � 1, (p+1)st-order convergence is achieved for polynomial orders p in the range
of 1 ≤ p ≤ 9.

In the next example we compare the performance of the two different time-integration
schemes defined in Sect. 4. We also include the ubiquitous standard fourth-order RK scheme
as a reference. The constant in the time-step restriction (22) of the SSP-RK schemes is set
to C = 1 for all values of polynomial order p. For the low-storage Runge-Kutta scheme
and the standard Runge-Kutta scheme, we use the value C = 1 in (18) for p ≤ 5, and the
value C = 2 when 5 < p ≤ 10. We consider the same cavity, but now filled with vacuum
(or air) and integrate for a relatively long time, until T = 1000 time periods. The results
are shown in Table 3 for different orders and different number of elements. We measure the
computational work as the number of operations, which is simply computed as

ops= NTm,

where NT is the number of time steps needed until final time T , and m represents the number
of stages in a given RK scheme. For each RK scheme we use the corresponding maximum
time step defined in Sect. 4. The test was carried out for orders p = 3, p = 6 and p = 10.
Significant differences in accuracy, up to O(4), occur between the schemes for orders p = 6
and p = 10. For each order, we include two subtables, one for a relatively fine spatial grid
and one for a comparatively coarse one. The most favourable characteristic of the SSP-RK
schemes is that the better accuracy occurs without significant—or indeed, any—increase in
the number of operations.

Perhaps even more illuminating is to see how much computational work is needed to ob-
tain a given accuracy. In Table 4 we show the number of operations necessary to achieve the
error l2

err = 10−5 at final time T = 1000. The comparisons of the different time-integration
schemes are made for fixed polynomial order and spatial mesh, so that only the time step
was lowered in order to decrease the errors.
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Table 5 Convergence of the dispersion error for the one-dimensional wave equation in a periodic domain
with wave numbers k = π for p = 1,2; k = 2π for p = 3,4; k = 4π for p = 5,6,7; and k = 8π for p =
8,9,10. In each case the (p + 1)st-order SSP-RK scheme is applied

p = 1 p = 2

Error Order Error Order

Nel = 2 1.1219E-00 5.4535E-02

Nel = 4 1.8866E-01 2.5721 1.9858E-03 4.7794

Nel = 8 3.9271E-02 2.2642 8.0576E-05 4.6232

Nel = 16 9.1970E-03 2.0942 4.2539E-06 4.2435

Nel = 32 2.2573E-03 2.0266 2.5327E-07 4.0700

Nel = 64 5.6163E-04 2.0069 1.5631E-08 4.0182

p = 3 p = 4

Error Order Error Order

Nel = 2 2.8401E-01 4.3239E-02

Nel = 4 1.8427E-03 7.2680 8.7429E-05 8.9500

Nel = 8 1.1103E-04 4.0528 9.1380E-08 9.9020

Nel = 16 8.1803E-06 3.7626 3.1783E-09 4.8456

Nel = 32 5.1772E-07 3.9819 5.1479E-11 5.9481

Nel = 64 3.2403E-08 3.9980 8.0824E-13 5.9930

p = 5 p = 6 p = 7

Error Order Error Order Error Order

Nel = 2 2.2250E-00 6.2763E-01 1.4307E-01

Nel = 4 7.5731E-03 8.1987 4.3307E-04 10.501 1.8263E-05 12.936

Nel = 8 4.8796E-06 10.600 4.9182E-08 13.104 3.2505E-10 15.778

Nel = 16 2.1995E-08 7.7934 1.5744E-11 11.609 4.6185E-13 9.4590

Nel = 32 3.2993E-10 6.0589

Nel = 64 5.1621E-12 5.9981

p = 8 p = 9 p = 10

Error Order Error Order Error Order

Nel = 2 3.8264E-00 8.3880E-01 1.5821E-00

Nel = 4 4.9854E-02 6.2621 6.5271E-03 7.0057 6.6177E-04 11.223

Nel = 8 1.1951E-06 15.348 3.1177E-08 17.676 6.6458E-10 19.925

Nel = 16 6.6187E-12 17.462

6.2 Numerical Dispersion and Dissipation Error

To conduct the dispersion and dissipation analysis described in Sect. 5, we carry out two
types of experiments. First, we consider the convergence of the dispersion and dissipation
errors in one dimension. The polynomials we apply for the spatial discretisation range from
p = 1 to p = 10, and for the time discretisation we use the corresponding (p + 1)st-order
SSP-RK scheme (21) with maximum time step (22). Because the actual errors may be rather
small for large values of p, we increase the wave number (thus decrease the wave length)
for higher-order polynomials. Consequently, the following wave numbers are used in our
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Table 6 Convergence of the dissipation error for the one-dimensional wave equation in a periodic domain
with wave numbers k = π for p = 1,2; k = 2π for p = 3,4; k = 4π for p = 5,6,7; and k = 8π for p =
8,9,10. In each case the (p + 1)st-order SSP-RK scheme is applied

p = 1 p = 2

Error Order Error Order

Nel = 2 2.5464E-01 2.1860E-02

Nel = 4 1.6710E-02 3.9297 7.5294E-04 4.8596

Nel = 8 1.1239E-03 3.8941 3.1441E-05 4.5818

Nel = 16 7.2499E-05 3.9544 1.6831E-06 4.2235

Nel = 32 4.5729E-06 3.9868 1.0063E-07 4.0640

Nel = 64 2.8649E-07 3.9966 6.2172E-09 4.0166

p = 3 p = 4

Error Order Error Order

Nel = 2 6.1234E-02 6.2971E-03

Nel = 4 6.8779E-04 6.4762 1.4252E-05 8.7873

Nel = 8 4.2695E-06 7.3318 1.8226E-08 9.6110

Nel = 16 2.8124E-08 7.2461 5.9037E-10 4.9482

Nel = 32 2.7328E-10 6.6852 9.5566E-12 5.9490

Nel = 64 3.6039E-12 6.2447 1.5099E-13 5.9840

p = 5 p = 6 p = 7

Error Order Error Order Error Order

Nel = 2 1.7209E-01 3.8318E-02 8.3102E-03

Nel = 4 5.4651E-04 8.2987 3.2754E-05 10.192 1.4167E-06 12.518

Nel = 8 2.8854E-07 10.887 4.0972E-09 12.965 3.7758E-11 15.195

Nel = 16 5.7239E-11 12.300 1.3922E-12 11.523

p = 8 p = 9 p = 10

Error Order Error Order Error Order

Nel = 2 8.7179E-02 1.1417E-01 4.0277E-02

Nel = 4 1.5076E-03 5.8536 2.0997E-04 9.0867 2.2413E-05 10.811

Nel = 8 4.6922E-08 14.972 1.2343E-09 17.376 2.6468E-11 19.692

Nel = 16 2.7467E-13 17.382

one-dimensional Fourier analysis:

k =

⎧
⎪⎪⎨

⎪⎪⎩

π if p = 1,2,
2π if p = 3,4,
4π if p = 5,6,7,
8π if p = 8,9,10.

The errors, defined in Sect. 5, and the rate of the convergence are shown in Table 5 for the
dispersion and in Table 6 for the dissipation. Although we cannot establish precise conver-
gence rates due the influence of the time discretisation on the dispersion and dissipation
properties, an order of convergence of approximately 2p is achieved for both the dissipation
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Fig. 3 Absolute value of the dispersion error as a function of wave length per mesh size (λ/h), degrees of
freedom per wavelength (DoF/λ) and relative time step (�t/�tmax) for polynomial orders p = 1,2
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Fig. 4 Dissipation error as a function of wave length per mesh size (λ/h), degrees of freedom per wavelength
(DoF/λ) and relative time step (�t/�tmax) for polynomial orders p = 1,2
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Fig. 5 Absolute value the of dispersion error as a function of wave length per mesh size (λ/h), degrees of
freedom per wavelength (DoF/λ) and relative time step (�t/�tmax) for polynomial orders p = 1,2,3,4,5,6
on a uniform mesh

and dispersion error. Comparing these results to the findings of [1] and [2] already implies
that the SSP-RK time integration has a less dominant effect on the dispersion and dissipation
errors.

In the second experiment, we consider a wide range of time steps �t and mesh sizes h,
and examine the dispersion and dissipation errors of the schemes as a function of wave
length per mesh size (λ/h), degrees of freedom per wave length (DoF/λ) and relative time
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Fig. 6 Dissipation error as a function of wave length per mesh size (λ/h), degrees of freedom per wavelength
(DoF/λ) and relative time step (�t/�tmax) for polynomial orders p = 1,2,3,4,5,6 on a uniform mesh

step (�t/�tmax). The value �t/�tmax = 1 indicates the size of the maximum time step,
defined as in (22) in Sect. 4. The contour plots of the dispersion error (or dispersion error)
for the one-dimensional analysis with wave number k = 2π is shown in Fig. 3 for orders
p = 1,2. The same plots for the dissipation error are displayed in Fig. 4. For this range of
values the dispersion error is generally at least one order higher than the dissipation error,
and it can be improved by both taking smaller time steps and/or refining the spatial grid.
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Fig. 7 Absolute value of the dispersion error as a function of wave length per mesh size (λ/h), degrees of
freedom per wavelength (DoF/λ) and relative time step (�t/�tmax) for polynomial orders p = 2,3,4,5 on
a non-uniform random mesh

We carry out the same experiment in two dimensions on a uniform grid with wave num-
bers kx = π and ky = 2π for orders p = 1,2,3,4,5 and kx = 2π and ky = 4π for order
p = 6. The number of elements used to construct the uniform meshes range from 200 ele-
ments to 8 elements for p = 1,2,3,4; from 128 elements to 8 elements for p = 5; and from
72 elements to 8 elements for p = 6. The contour plots of the dispersion and dissipation
errors are shown in Fig. 5 and in Fig. 6, respectively. Note that the studied range of wave
lengths per mesh size differs significantly from that of the one-dimensional case and oc-
casionally from one another. It can be deduced that the spatial discretisation dominates the
dispersion error, which is all the more relevant because the dispersion error is at least one or-
der higher than the dissipation error for all polynomial orders considered. Another important
feature—shown in Fig. 9—is the decreasing number of degrees of freedom needed to obtain
a given accuracy as we go to higher-order elements. For instance, to attain a dispersion error
of 10−3, we need about 14–15 degrees of freedom per wave length for discretisation with
second-order polynomials and about six for the discretisation with sixth-order polynomials.

One of the main advantages of DG methods is that they are relatively insensitive to the
uniformity of the mesh from the point of view of accuracy and convergence. In order to
illustrate that this is the case for the dispersion and dissipation behaviour as well, we perform
the same two-dimensional analysis on non-uniform random meshes. To construct the non-
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Fig. 8 Dissipation error as a function of wave length per mesh size (λ/h), degrees of freedom per wavelength
(DoF/λ) and relative time step (�t/�tmax) for polynomial orders p = 2,3,4,5 on a non-uniform random
mesh

Fig. 9 Degrees of freedom as a function of polynomial order for given dispersion error 10−3 and 10−4 on
uniform meshes
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uniform mesh we randomly relocate all inner (ie. not lying on the boundary) vertices of
the uniform mesh within the range [− hed

3 ,
hed
3 ] in both directions, where hed is length of

the uniformly distributed (one-dimensional) ‘boundary’ elements. Since the total number of
elements in the non-uniform mesh is the same as in the uniform mesh, the values DoF/λ

should also be the same (because this is the case ‘on average’). However, on the bottom axes
the smallest value of h is taken for computing λ/h. The results are shown in Fig. 7 for the
dispersion error and in Fig. 8 for the dissipation error. They are qualitatively the same as the
corresponding results on uniform meshes, which demonstrates the robustness of the RKDG
method.

7 Conclusion

The main purpose of this article has been to study the global dispersion and dissipation errors
of a high-order DG spectral element discretisation combined with the high-order SSP-RK
time integration. We have shown that by applying the (p + 1)st-order SSP-RK scheme to
a spatial discretisation with pth-order polynomials we can retain (p + 1)st-order conver-
gence (without preprocessing) in the l2-norm. Even when the order of the discretisation is
increased beyond the accuracy of the fixed-order schemes, the computational work for the
SSP-RK scheme is not significantly higher than that of the fixed-order ones. This favourable
property can be explained by the much looser time-step restriction. It should be noted, how-
ever, that for large systems, the SSP-RK schemes could have a major disadvantage over
low-storage RK schemes due to storage requirements. This is because an m-stage SSP-RK
scheme requires m storage units per time step, whereas a low storage scheme requires only
two storage units per time step.

Through numerical Fourier analysis, it has been demonstrated that the dispersion error of
the global scheme is generally at least one order higher than the dissipation error, irrespective
of the actual order of the discretisation. It has also turned out that within the studied range
of mesh sizes h and time steps �t we cannot gain anything on the dispersion error by
decreasing the time step, i.e. it is worth using the largest one permitted by the CFL condition.
This seemingly unusual property can be explained by the fact that the maximum time step
allowed by the CFL condition already inflicts a far smaller dispersion error than that of
the space discretisation. Using this condition it has also been shown that the convergence
rate of the dispersion and dissipation error is far higher, namely O(2p), than that of the
error measured in the l2-norm. Another important feature of the global scheme is that the
number of degrees of freedom to obtain a given accuracy also decreases as the order of the
approximation grows.
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Appendix

The exact solution to (23) in the one-dimensional metallic cavity described in Sect. 6.1—
with κ = 1,2 signifying the two regions filled with different materials—is given by

Eκ = [−Aκeinκωx + Bκe−inκωx]eiωt ,

Hκ = [Aκeinκωx + Bκe−inκωx]eiωt ,
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where

A1 = n2 cos(n2ω)

n1 cos(n1ω)
, A2 = e−iω(n1+n2),

and

B1 = A1e−i2n1ω, B2 = A2ei2n2ω.

Here nκ = √
εκ represents the local index of refraction, and the frequency takes the value

ω = 2π/n if n1 = n2 = n or is found as the solution to the equation

−n2 tan(n1ω) = n1 tan(n2ω).
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