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Abstract

A technique for analyzing dispersion properties of numerical schemaspoged. The
method is able to deal with both non dispersive or dispersive waves, vesviar which
the phase speed varies with wavenumber. It can be applied to unstdugrigle and to
finite domains with or without periodic boundary conditions.

We consider the discrete versi@nof a linear differential operatof. An eigenvalue
analysis ofLL gives eigenfunctions and eigenvalués )\;). The spatially resolved modes
are found out using a standaadposteriorierror estimation procedure applied to eigen-
modes. Resolved eigenfunctioh% are used to determine numerical wavenumbgis
Eigenvalues’ imaginary parts are the wave frequengcjemnd a discrete dispersion relation
w; = f(k;) is constructed and compared with the exact dispersion relation of the contin-
uous operatoL. Real parts of eigenvalueg’s allow to compute dissipation errors of the
scheme for each given class of wave.

The method is applied to the discontinuous Galerkin discretization of shallow wate
equations in a rotating framework with a variable Coriolis force. Such a mmdebits
three families of dispersive waves, including the slow Rossby waves ithatsaally dif-
ficult to analyze. In this paper, we present dissipation and dispersiorsdor Rossby,
Poincaré and Kelvin waves. We exhibit the strong superconvergdnueneerical wave
numbers issued of discontinuous Galerkin discretizations for all familiesaweésy In par-
ticular, the theoretical superconvergent rates, demonstrated for ditmegasional linear
transport equation, for dissipation and dispersion errors are obtaintkds two dimen-
sional model with a variable Coriolis parameter for the Kelvin and Poincavésva
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1 Introduction

Ocean phenomena exhibits a wide range of time and spaces skllst types of motion are
unsteady and some of them lead occasionally to quasi-discities. Complex bathymetry
and topology have to be considered since they generate soadls features containing
a significant part of the ocean energy. Those constraintgyjuke shift from traditional
structured grids models to unstructured meshes using @hataents or finite volumes [e.g.
Hanert et al., 2004, Pietrzak et al., 2005].

It is necessary for an ocean model to propagate waves indagatiry way. This is why
propagation properties of the numerical schemes used ianogc®delling have been in-
vestigated in details in many studies. For regular strectgrids, a space Fourier mode is
generally introduced into the discretized dispersionti@ha leading after some analytical
calculations to the dispersion relation, that is a relabetween the wavenumber and the
frequency, depending on the grid and on the numerical schjergeBeckers and Deleer-
snijder, 1993, Gavrilov and Tosic, 1998, Mesinger and Anakal976]. Such a method is
unlikely to be applicable to unstructured mesh models. &wghy an alternative approach
is presented herein, which is valid for any type of spacerdisation and allows for dis-
crete dispersion relations to be established and for theesgp@pendency of every mode to
be determined.

High-order methods such as high-order continuous finiteetds [e.g. Ihlenburg and Babuska,
1997, Thompson and Pinsky, 1994] or spectral elementsipkgndarani et al., 1995, Got-
tlieb and Hesthaven, 2001] have been developed and appliseveral domains that are
considered to be of high relevance. The Discontinuous &al¢DG) method has been re-
cently applied to many fields of practical engineering siebamputational fluid dynamics,
aeroacoustics or electromagnetics [e.g. Bassi and Rebayal@hevaugeon et al., 2005,
Remacle et al., 2005, Warburton and Karniadakis, 1999], ascblecome a very attractive
method especially for advection-dominated problems [€axkburn et al., 2000, Adjerid
etal., 2002, Bassi and Rebay, 1997b]. The use of high-orderesits, especially when cou-
pled with a quadrature-free formulation, makes the DG natthwery competitive method
in terms of computational efficiency. One of the advantageseoDG method is its super-
convergence properties and its ability to propagate wavdsut excessive dissipation or
dispersion. Hu and Atkins studied the dispersion propediehe DG method applied to a
one-dimensional scalar advection equation [e.g. Hu anthAtiR002]. By using a compu-
tational approach it has been shown that the DG method ohpatjal orderp exhibits for
this simple problem a superconvergence of orgjer- 3 for the dispersion errors, and of
order2p+ 2 for the dissipation ones. Those superconvergence ratsmpby Ainsworth in
[e.g. Ainsworth, 2004], exceed the orders of accuracy abthfor the traditional continuous
finite element methods [e.g. Thompson and Pinsky, 1994].



In this paper we investigate the superconvergence pregesfithe DG method applied to
the linearized shallow water equations. In a first step, wayae the different waves in
this model and derive a reference numerical dispersiotioalavith a variable Coriolis pa-
rameter. Then we discretize the equations with the DG medimoidfind discrete dispersion
relations by developing a general grid-independent maatlyais. We finally compare this
discrete dispersion relation with the reference solutioth @nalyze the dispersion and dissi-
pation errors.

2 Waves in the shallow water equations

The shallow water equations describe the flow of a thin lay@mapmpressible fluid under
the influence of a gravitational force without stratificatid hose equations can be consid-
ered as the long wave limit of Euler’'s equations of invisciddldynamics where the wave
lengths are much larger than the water depth. They form asyst quasi-linear hyperbolic
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Fig. 1. Definition of the water deptH, bathymetryH, and elevation

equations which reads:
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wheret is time, f is the Coriolis parametey; is the depth-averaged horizontal velociy,

is the gravitational acceleratiom? andr° denote the surface and bottom stresses, respec-
tively. The depth of the fluid layer is denoted by = H, + n, where H, andn are the
bathymetry and the relative surface elevation respegtiaal shown in Figure 1. If the non
linear transport terms and all dissipation mechanisms egéented and if the bathymetry
H, is assumed to be constant, the shallow water equations d1i(Paneads:



on ou Ov
01&+H0(8:):+8y>_0’ (3)

ou on B
o g, =0 )
ov on B

where the classical-plane approximatiorf = f, + Sy is used. Note that such an assump-
tion does not limit the generality of this paper. Extensiothte general Coriolis expression
is straightforward.

In order to analyze the performances of a numerical teclenigterms of dispersion errors,
we derive continuous dispersion relationships in a singalifjeometry for all the typical
waves of the shallow water equations and compare it to theenuoal relationships obtained
from a modal analysis of the numerical scheme. To observevélves in the shallow water
equations (3), (4) and (5), we consider the simplified sqdaneain of sizel. at midlatitudes
as depicted in Figure 2. Reflecting boundary conditions asaraed on the northern and
southern parts of this local domain while periodic boundamyditions are used in the east-
west direction:

n(0,y)=n(L,y),

u(0,y) =u(L,y),

v(0,y) =v(L,y),
v(x,—L/2)=0=wv(z,L/2)

The linearized shallow water model in a rotating framewdriallatitudes exhibits several
kinds of waves, mainly the Poincaré, Kelvin and Rossby waves:

— the Poincaré waves are long and slow gravity waves becodispgrsive because of the
Earth rotation.

— the Rossby waves are very slow waves created by the vatyatfithe Coriolis parameter
in they direction. Those waves are very important in ocean dynasmce they propagate
only westward in the northern hemisphere, intensifyingwlestern boundary currents.
Those currents are responsible for huge heat and energfdraiven a minor shift in
the location of those currents may affect the climate andhezaver large areas of the
globe. In the case of a constant Coriolis parameter and a flayto@try, the potential
vorticity becomes zero and we observe steady geostrophiesagharacterized by a zero
frequency.

— the Kelvin waves are created by the tides and the wind. Theyagate only along the
coasts or along the equator and exhibit an exponential deway from those coast-
lines. Kelvin waves move at gravity wave speed along thettinaswhile they exhibit a



Fig. 2. Definition of the local cartesian domain of sizat midlatitudes. The northern and southern
boundaries are assumed closed while periodicity is used in the east-veesioar

geostrophic balance in the other direction. In order to nkessuch waves in the simpli-

fied geometry, it was mandatory to introduce reflecting bampdonditions as shown in
Figure 2.

Geostrophic and Kelvin waves are called non dispersive siageause the speed of the
waves is independent of the wave number. An analytical Gsrildilependent expression
is then available, which is not the case for the dispersivessBypand Poincare waves.

Analytical dispersion analysis

As proposed by [Longuet-Higgins, 1965], we derive a thirdesrequation inv for the

shallow water equations. By substituting mass equationn{®) the momentum equations
(4) and (5), we obtain:
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Then we differentiate both those equations in a tricky way &e deduce the third order
equation:
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Finally, regrouping the terms, we obtain:

0 0? 1 [ 02 5 0 0 0Y\) v
(z%( a2 g, <8t2+f>>_6<ﬁ axat>>at_0' @
Since the Coriolis parameter is assumed to be a linear funofig, we cannot assume a

plane wave solution. The solution exhibits a gengrdependence and has to be written as
the real part of the following expression:

v(w,y,t) =Y (y) exp (i(k,x — wt)) (8)

with the unknown functiorY (y) and the wave number in thedirectionk,.
By substituting equation (8) in equation (7), we then obtaippacal Sturm-Liouville rela-

tion:
d2 2f05 ﬁ2 2 1 2 2 ﬂkoc

g(y) Ky

For each value of,, we obtain a one-dimensional eigenvalue problem which @niub
merically solved withY'(—L/2) = 0 = Y(L/2) as boundary conditions. The eigenvalues
arek§ while the eigenvectors are the modes in ¢héirectionY (y). For each given couple
(ks k), the frequencies are obtained as the roots of the third eqieation:

m]yzo. (9)

W — (gH0k2 + fg) w—gHyBk, =0 (20)

with k? = k§+k§. The smallest root in norm is the Rossby frequency assodiatbé given
couple(k,, k,), while the two others are the Poincaré frequencies reptiegghe westward
and the eastward Poincaré waves. This approach yields dispeirsion relations with a
variable Coriolis parameter for the Poincaré and Rossby waga#iustrated in Figure 3.
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Fig. 3. Dispersion relations of the Poincaré and Rossby waves computiedy = 1000 m,

g =10ms™2, fo = 107* s~ andB = 1.05 1072 m~!s~!. Continuous lines are the exact fre-
guencies from the Sturm-Louvilleapproach while the dashed lines are moabapproximations
of a constant Coriolis parameter for Poincaré waves and the WKB aippatign for Rossby waves.
Those relations are computed on a large domain of Eize 10° m. Only the first mode in the
direction was considered; = 7 /L.

The Wentzel-Kramers-Brillouin approximation

Our results are in good agreement with the Wentzel-KrarBeitksuin (WKB) approxi-
mation [e.g. Wentzel, 1926] widely used to obtain an anedytexpression for the Rossby
waves. This approximation consists in neglecting smathsaunder the assumption of slowly
varying coefficients, as in thg-plane approximation. By neglecting the third order time
derivative in equation (6), we obtain the WKB dispersiontiela
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Note that the terms depending grare usually neglected as well with the WKB approxima-
tion, which leads to a different definition of thg’s in (11) than in (10) : the eigenfunctions
become sinesy, = sin(nw(z — L/2)), and the wave numbers reag, = nr/L in the
simplified cartesian domain.

In Figure 3, we clearly observe that such an approximatiarotsaccurate enough to per-
form a convergence study, since the errors are beyond thenmahscheme accuracy. We
then need to use the Sturm-Liouville formulation (9) and) (tbOobtain reference solutions



for such a study.

Constant Coriolis coefficientf = f,

Let us now assume the Coriolis coefficient to be constant. dappoximation leads to a
simple analytical expression for the dispersion relatiédgh 5 = 0, the Sturm-Liouville
relation (9) and the frequencies relation (10) become ds@dy:

Y 1,y )
dyQ+[gHo(w ~f3) k| Y =0 (12)
2
ky
and
w? = gHok* + f7 . (13)

Note that the Sturm-Liouville relation (9), with = 0, becomes a classical wave equation,
the modesY (y) becoming sines functions, while the frequencies relativesggthe usual

Poincaré dispersion relation:
w=+\/gHok?*+ f¢ . (14)

A second consequence of tlie= 0 approximation is the transformation of the Rossby
waves into steady-state geostrophic waves, which can b®dmred as a degenerated solu-
tion of the Rossby waves with a zero potential vorticity. Theady-state solution consists
in an equilibrium state between the Coriolis effect and tlesgure forcefv = ge, x Vn.
The streamlines of the velocity coincide with the isobaththe relative elevation. Those
steady waves exhibit a null frequeney= 0, only valid for a constant Coriolis parameter.

The case of a null velocity component = 0

For a coastline oriented along the east-west directiomdetssume the velocity component
v to be zero. The shallow water equations (3), (4) and (5) reads

on ou
a5t + HO% =0, (15)
ou on
ot + 95, = 0, (16)
0
ga—n:—fu. (17)
Y

The v component of the momentum equation yields the geostropdlanbe in they di-
rection. By cross differentiation, the first two equations &g written as a simple wave



equation:
0*u 0*u

gz~ 9Mogz =0

The solution is the real part of:
u(z,y,t) =Y (y)exp (i(kpx — wt))
with the general-dependenc®(y) and the dispersion relation for the Kelvin waves reads:
w = *++\/gHok, . (18)

Frequencies are independent of the functiofy): this expression corresponds to a non-
dispersive wave and is therefore a valid analytical retafar any value of the Coriolis
parametelf. Moreover, the general solution can be written as:

w(z,y,t) = exp (—\/% ( fot §y>> exp (i(kz — wt)) (19)

According to [Majda, 2003], in mid-latitudes, a good appnoation is to takef = f,. In
this case, the structure of thds of the form:

u(e,y,0) = exp (=yo/\/gHo) exp (i(ke = wt) (20)

characterized by the Rossby radilg = fy/v/gH,. Near the equator, the Coriolis force
may be approximated bf = Gy and the equatorial Kelvin modes are of the form:

u(z,y,t) = exp (—y2 2\/%)) exp (i(kyx — wt)) (21)

characterized by the equatorial deformation radipis= /g H, /3. Westward Kelvin waves
cannot exist in the northern hemisphere because this eoluiblates finite energy principle
with an exponential growth ig.

3 Discontinuous Galerkin Method for the linearized shallow vater equations

To solve the boundary value problem defined by (3)-(4)-(® use the DG method in order
to analyze its numerical dispersion and dissipation pitgggerThe two-dimensional domain
is defined a$? with its boundary denoted by(). We seek to determine the vector of un-
knownsU = (7, u, v) as the solution of a system of conservation laws:

%Ij+v.F(U)+S(U) =0 (22)



where the flux matrix and the source vector are defined respbcas:

Hou HO’U 0
F=|gn 0 and S=| —fv|. (23)
0 gn fu

To obtain the weak formulation, we multiply (22) by a testdtian w and integrate on the
domains2:
8U

(S dQ+/V]?)vWM—A§ﬂDWMQ:0 (24)
To derive the discrete equations, the computational domalivided into a set of elements
Q. called a mesh. The unknown fields in the DG method are appedrunby piecewise
discontinuous polynomials: in elemeny, the fieldsU are approximated using the space of
polynomials of order at mogt The size of this space is equal({o+ 1) (p+2)/2. Noa priori
inter-element continuity is required. The total numberegkes of freedom for a triangular
mesh ofn elements is therefore equalia(p+1)(p+2)/2. By selecting discontinuous test
functions and integrating by parts, the elementwise weakdtation is directly obtained:

Qem wdS), / VWﬂL+AmFﬂD1LW®—/?$UyWﬂL:0.Q&

A numerical flux function has to be supplied to this formwatbecause unknowris are
multi-valued at element interfacés).. Two neighboring elements in the continuous finite
element method share common nodes that ensure the coptoiulte finite element ap-
proximation. With the DG method, fields are discontinuoustigh element edges. Jumps
at element interfaces have to be controlled by a numericalffinction. For meshes of tri-
angles, the boundar§2. of an element). is composed of three edgés).,, of2., and
02.,. The flux function is computed on those edges using a combmat the fields on
both sides of each edge, i.e. using the unknown fiéldsside elemenf). and using the
unknown fieldsU* in the neighboring triangle across each edge:

/aQF(U HWCZS—Z/ 2(U,U%) - wds.

Though producing no spatial dissipation, the use of a cedtecheme for computing,,
may cause oscillations when the discretization is not abtedolve a certain range of wave
numbers [e.g. Marchandise et al., 2006] because nothingvsded to dissipate unresolved
oscillatory modes. Upwind schemes allow to filter unresglvedes and remove unaccept-
able oscillations. Moreover, upwind schemes provide a raoceirate numerical dispersion
relation than centered schemes.

In order to obtain an efficient upwinding scheme, the systeegoations (22) has to be de-
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coupled by projecting the system (22) without source tertthemormal directiom = (n,, n,):

ou ou
o + A@n =0, (26)
where
0 Honx Hony
OF,
A= 50 — | 9= O 0
gny 0 0

is the jacobian matrix of the flux vector in this normal ditentF,,. The Jacobian matrix
A has 3 eigenvaluesy; = (0, ¢, —c) with ¢ = \/gH, the speed of gravity waves and the
eigenvector matrix whose columns are made up of the cornefspg eigenvectors is:

0 ¢/g—clyg
R = Ny Ny Ny

Ng TNy Ny

Note that we do not consider the source teSnsince they have no influence on the sign
of the eigenvalues. Writing equations in the directionsing characteristic variabld$ =
R~!U allows us to obtain a set of uncoupled equations:

ou ou
—+A—=0

on " Nom O

with A the diagonal matrix of the eigenvalues and the charadteviatiables are given by:

Ut
U= gn/(20)+v, |-
—gn/(2¢c) + vy,

with the normal and tangential components of the veloejty= un, + vn, andv, =
—un,, + vn, respectively.

To obtain the less dissipative flux function stabilizing tdvection scheme, a Riemann
solver is then applied. The Riemann problem consists in fqthe self similar solution of

an hyperbolic problem with discontinuous initial data. \sider an interface that sep-
arates two constant stat&€y = (1, vy, vy) and U, = (0., v, vy). If we impulsively
remove the interface at time= 0, the Riemann solution can be written as a superposition
of 3 waves, the first one moving at positive spegdne moving at negative speed and the
last one moving at zero speed. The solufidh= (n*, u*,v*) for all timest at—ct < x < ct

can be obtained by the superposition of the characteriatiaies:

11
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The solution of the Riemann problem finally reads:

{n} + 2[vn] 0 2¢/gn, 2¢/gn,
U = | {v.} + £ | ={U} + | (2¢/g) "0 0O 0 |[U]
{v:} (2¢/g)"*n, O 0
D

where{} and[] denote the mean value and the jump between the left and regts fie-
spectively. Therefore, the flux between elements is:

F(U)-n:A<{U}+DﬂU]]).

Finally, we have to define a spatial piecewise discontinymlgnomial approximation of
U, denoted byU", in the weak formulation (25). The semi-discrete DG forntiola can
then be summarized by the expression:

h
a; =LU" (27)

whereL is the DG discretization of the linear shallow water spaceraforsC for the square
domain with semi-periodic boundary conditions.

4 Discrete modal analysis of the shallow water waves
To compare the numerical dispersion relation with the esalations obtained in Sectiah
we perform a discrete modal analysis of the DG soluiith
Let us assume the discrete solutions to be the real part of:

U (z,y,t) = X"(z,y) exp (iwt) . (28)
Incorporating (28) into (27) leads to the following eigelnaaproblem:

[L — MI]X" = 0. (29)

12
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Fig. 4. Spectrum of eigenvalues[s—!] of the DG discretizatiofl. of the spatial operator§. The
wave frequency is the imaginary part and is used to compute the dispersion error while the real
part is the dissipation error of the numerical scheme.

To each eigenvectaX;, we can associate an elevation mager, y) and a velocity mode
(u;(z,y),v;(x,y)) corresponding to the real part of this eigenvector. On tleehamd, by ap-
plying a two dimensional Fast Fourier Transform to the eievemoder),, the Fourier power
spectrum of the mode is obtained and the associated wavemumabtork; = (k, ;. k, ;)
can be derived. This Fourier analysis is only applied toé&selved modes of the discrete op-
erator. The distinction between resolved and unresolvetenical modes is done by means
of thea posteriorierror estimation procedure described in [Bernard et al.6R0@pically,

a mode is considered to be resolved if the relative spatiaf & below a threshold, e.§%.
The Fourier spectrum of the elevation moges given by:

Lok . pT QY
A,y = /0 /0 nj(x,y) exp (2Z7T(L + L)> dxdy .

The L? norm of the field can then be obtained by taking advantageed®liseval’s theorem:

L rL
Iy 2= [ [ ot p)dady = 125 57 | Ayl
P q

This analysis gives us, as result, a single numerical wawgbeu vectork,;. Because of the
periodicity of the domain, only even wavenumbégs—= 2pr/L have to be considered and
we can writek, ; = 2pr/L, k,; = gr/L wherep andg are the values corresponding to the
dominant wave number. The spatial error of this mode, deroye ;, can then be identified

13



as the remainder in the Fourier spectrum, i.e. fRenorm of the difference between the
exact mode and the numerical mode:

632‘ =7 ZZ |qu|2 :

P#D a#£q

On the other hand, the numerical frequencigsare defined as the imaginary part of the
complex eigenvalues; while the real part of the eigenvalues are denoteg by

Aj = 1+ iw;

Since the spatial operators were computed with a Riemanersatroducing some dissi-
pation in the numerical scheme, the eigenvalue spectrumstddpn Figure 4 exhibits a real
part different from zero. The dissipation error of mgde then given by the absolute value
of 1; while the dispersion error of modecan be defined as:

Kj = |w; — w(k;)]

wherek; = \/k2 ; + k7 ;. The discrete dispersion analysis finally consists in aiadythe
numerical relationv;(k;), and comparing it to the exact, or reference, dispersicatiosl
C«J(kj) .

5 Results

In a first step, we consider structured meshes using the DGaaetith a Riemann solver
for the flux computation and a constant Coriolis parametecptapare the analytical and
numerical dispersion relations and to observe steady iggatst modes. The dissipation and
dispersion errors and their convergence rates are andiyzselveral polynomial orders. In a
second step, the same computation is then performed ghiphene, where the Coriolis fac-
toris a linear function of, i.e. f = fo+ By. The reference solutions for comparison are then
provided by the Sturm-Liouville approach. Finally, the samethod is applied to unstruc-
tured meshes with the same numerical techniques. For apatations, the geometrical and
physical parameters afe = 10° m, g = 10 ms=2, Hy = 10> mand f, = 3 10~* s~ 1. For
those values, the typical non dimensional numbers are djiyen

1 pL
3 Jo

Moreover, in order to obtain a better numerical accuraay,rtbn dimensional version of
the shallow water equations is solved and the results wiliregeented in a non dimensional
form: all frequencies are presented.ds= w 10* and the prime upperscript will be omitted

for sake of simplicity. The structured and unstructuredimessised in our computations are
defined in Figure 5.

Ro = 1.

14



Structured meshes with constant Coriolis parameter

p=2,h=1LJ/12 p=3,h=1L/10 p=4,h=1L/8

p=2 p=3 p=4

Fig. 5. Definition of the structured and unstructured meshes used forutmpliscrete dispersion
relations with the DG method. The size fields of the unstructured grids havedoenputed to reach
approximately the same number of degrees of freedom than for the sedigiuds.

Let us consider structured grids afd= 0. As an example, the total number of degrees of
freedom for the mesh af28 fourth order elements is given A8 x 3 x 15 = 5760. With

the help oMMATLARB the computation of the whole spectrumlgfinvolving 5760 eigenval-
ues and eigenfunctions, lasts approximagélyninutes on a desktop computer and required
about500 MB of RAM. In order to observe the convergent behavior, theesaomputation

is also performed with polynomial order= 3 andp = 2. The reference dispersion curves
and the numerical dispersion relations are presented ur&ig. Only the positive frequen-
cies are considered. Figures 7 and 8 are Poincaré and Kelvitesn respectively, for a
constant Coriolis coefficient. The color levels represeatdievation; while super-imposed
vectors represent the velocities. We obtain as expectatt®@ modes composed of sines
and cosines functions, while the Kelvin modes are a comioinatf sines and cosines in the
z-direction and exhibit the expected exponential decay oké&gn (19) in they-direction.
Finally, geostrophic modes are depicted in Figure 9. Thesespond to the null eigenvalues
of the discrete operator. Thus, any combination of two madegostrophic balance is in
geostrophic balance and correspond to a null eigenvalueeocbperator. Those modes are
not separated by the numerical process so that their Fapéatrum may contain a variety
of normal modes. The velocity vectors are aligned with thediof iso-elevation and the
divergence of the velocity is zero, which is clearly not thsefor Poincaré waves.
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Fig. 6. Poincaré and Kelvin numerical and analytical dispersion relatimna tonstant Coriolis
factor, with the fourth order polynomials elements and the paraméters10° m, g = 10 ms—2,

Hy = 103 m and f, = 3 10~* s~!. Analytical Poincaré and Kelvin relations correspond to the

continuous and dashed line respectively while the dots are the numerictl éwder DG results.

ky =2,k =1 ky = 4, ky =2 ke =4,k, =3 ky =8, ky =8

Fig. 7. Some Poincare modes for a constant Coriolis coefficient.

Bal adad iibid dubibid

ky =2 k, =4 k., =6 k, =8

Fig. 8. Some Kelvin modes corresponding to a Rossby radi@s 6f .

Dispersion errors for the Poincaré and Kelvin waves are shiovhe left part of Figure 10
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Fig. 10. Convergence of the dispersierand dissipation. errors for the Poincaré (top row) and
Kelvin (bottom row) waves with a constant Coriolis coefficient. The dotsesgnt the numerical
results while the lines are theil? approximation to obtain the convergence rate. The second, third
and fourth order elements correspond to the green, blue and red kpestigely. Both the dispersion
and dissipation errors exhibit the superconvergence of @der3 and2p + 2 respectively.

while we see dissipation errors on the right part. Hu andtlshowed that one of the DG
method properties is the superconvergent behaviour ofiipeision and dissipation errors
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[e.g. Hu and Atkins, 2002]. In particular, it was demon&dafe.g. Ainsworth, 2004] for
the 1D transport equation that the DG method superconvetgesate oRp + 3 for every
polynomial ordep, if a Riemann solver is used for the flux computation. This- 3 rate is
reached for centered schemes only for even polynomial sydévile a2p+1 rate is obtained
for odd orders. Same kind of results were demonstrated &digsipation introduced by a
Riemann solver, which superconverges at a ratof 2.

hp =2,k =1 ky =4, ky =2 ky =4, k, =3 hy =4,k =4

Fig. 11. Shape of some Poincare modes for a variable Coriolis coeffigitnt = 3 10710 m 157!
andfy = 3 10~* s~!. Note that the shape of the modes in hdirections is now exactly the same
than for the Rossby modes.

ke =2,k, =3 ky =2,k = 4

Fig. 12. Shape of some Rossby modes with 3 107" m~'s~tandfy = 31074 s,

A least square fit of the dispersion error curves in the left paFigure 10 shows that the
error is converging at rat® (kh)?, O(kh)? andO(kh)" for p = 2, 3 and4 respectively, i.e.
a super convergence of ordar+ 3. Using the same fit, a super convergence of ozgey 2

is reached in the right part of Figure 10 for the dissipatimors. We see on those figures
that the use of upwind fluxes introduces some numericalghitisin, but the resulting error
is very low for resolved modes and superconverges to zero.

Finally, the theoretical rates of convergence for DG with arfann solver and a 1D trans-
port equation are also observed for the 2D shallow watertensawith a constant Coriolis
coefficientf.
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Fig. 13. Reference and numerical dispersion relations. The continin@ssare the exact Poincaré
dispersion relations for different values kbf, the dashed line is the analytical Kelvin dispersion
relation and the dots are the DG results. We see on the close up view thertiffiéspersion curves
for the three first wavenumbetg, n = 1,2,3, and the lack of accuracy of the constant Coriolis
parameter approximation with those parameters, compared to the Sturm-Lioupiitaab.

Structured and unstructured meshes with variable Coriolisparameter

Let us now perform the same computation with a variable Cisrparameter, i.e. with the-
plane approximation and = 3 1071 m~!s~, on both structured and unstructured meshes.
The analytical dispersion relation for the non-dispergieésin waves (18) is still valid, but
the Sturm-Liouville approach has to be used in order to al#aeference dispersion relation
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i 1 2 3 4 5 6
k,; |3.1331 6.3411 9.4651 12.5966 15.7321 18.8696
jm/L | 3.1416 6.2832 9.4248 12.5664 15.7080 18.8496

Table 1
Wavenumberg, ; of the Sturm-Liouville problem (9) compared to their approximatiaiL.

for the Rossby and Poincaré waves. In table 1, we give someedirit exact eigenvalues
k,; computed with the Sturm-Liouville approach. These are ameg with the approxi-
mated wavenumbeirr /L. The frequencies are then obtained by using the relation (10).

The dispersion relations for Rossby and Poincaré are showigime 13. Only the posi-
tive part of the frequencies is considered, even if the twiméawé waves lose their exact
symmetry because of th&effect. We see on the close up view the lack of accuracy of the
approximated analytical expression with those parametéesmay also point out that the
single dispersion curve of the constant Coriolis case has teggaced by a set of dispersion
curves, one for every,, since the wavenumbers are not the same incthady directions.

It means that modes with very similar wavenumbiersay exhibit different frequencies.

Fig. 14. Shape of the first three eigenmodes ingthirectionY (y) computed with the one dimen-
sional Sturm-Liouville problem (9) (continuous lines) and with the DG modalyais (dots) for
B=310"10m s 1,

We see in Figures 11 and 12 the Poincaré and Rossby modestiesgethe Kelvin modes
remain unchanged since they are not modified by the vatigloilithe Coriolis parameter.
As expected, the sines and cosines dependence of those maithesy-direction with a
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constant Coriolis coefficient has been replaced, leading gereeraly-dependencé’(y)
depending on the value of Note that both Rossby and Poincaré modes exhibits this same
y-dependence for a same wave numbgrin Figure 14 we see those functiohSy) for

B = 31071 m~ts~!, computed with the one dimensional Sturm-Liouville prabl€9) in
continuous lines while the dots represents the DG moday/aisal

Figures 15 presents the Poincaré Kelvin and Rossby dispeasioh dissipation errors. The
same theoretical convergence rates as forithe 0 case are obtained for the Poincaré and
Kelvin waves, for both dispersion and dissipation errorse fleference numerical dispersion
relation from the Sturm-Liouville approach was computethvei6000 points 1D continu-
ous FEM. This solution is accurate enough, compared to thdiBgrsion relation, until an
absolute error of about)~7. Below this threshold, the numerical accuracy of the refegen
solution becomes insufficient as for the dispersion rateprdgation on the Rossby waves
with p = 4. For the other Rossby rates, the dispersion and dissipattorsedo not seem
to fit as well the theoretical predictions, an ordeseems to be missing. This result can be
explained as follows: in the analytical development [Aiosth, 2004], Ainsworth has con-
sidered a 1D transport equation with constant coefficiéeasling to non dispersive waves.
The first theoretical convergence rates obtained in thidystvwere2p + 2 and2p + 1 for
the dispersion and dissipation respectively, in terms lattikee errors. Those rates are then
extended t@p + 3 and2p + 2 for the absolute errors. This extension to absolute vakiesti
valid for the Rossby waves, since those waves experienceragsdispersive behaviour. The
correspondence between relative and absolute error isitherore relevant. We observe on
Figure 17 that the theoretical convergence rates are rdanhierms of relative dispersion
and dissipation errors, even for the dispersive Rossby wil@sce that the relative dissi-
pation error was computed by dividing the absolute erromigyriorm of the corresponding
eigenvalue, since the analytical dissipation in the systemero. The theoretical conver-
gence rate is then reached for the three shallow water wak@gded that the relative error
is considered instead of the absolute one in the case ofghyrdispersive waves.

Finally, the same modal analysis provides in Figure 16 thied2oé, Kelvin and Rossby dis-
persion and dissipation errors for unstructured meshedhlole convergence plots, unstruc-
tured meshes do not affect the DG method superconvergetesaiatained on structured
grids. This general grid-independent modal analysis is gagpromising tool to compare
different numerical schemes in terms of dispersion andpdisisn.

6 Conclusions

Starting from an implementation of the two-dimensiona¢énzed shallow water with the
DG method, we developed a modal analysis of the scheme bywtorgphe eigenvalues and
eigenvectors of the discretization of the space operafomsn if used with a DG scheme,
this analysis is fully independent of the numerical schentea the mesh. It is a very use-
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full tool to compare in an accurate way different numericatinods or to investigate some
convergence properties of one scheme and thus to help gankimerical methods on the
basis of dissipation and dispersion errors.

Only periodic boundary conditions on the eastern and wedteundaries were considered
in order to simplify algebra and to reduce the computati@oesks while keeping the three
kind of waves in the system. The extension of this test cas®toperiodic conditions is
straightforward and would not affect the efficiency of thetimoel but the convergence study
would then become prohibitive in terms of computationatgcsince we would have to per-
form the convergences on several meshes instead of simp$yd=ring the wavenumbers.

The theoretical rates of convergence for the absolute digpeand dissipation errors, es-
tablished for the one dimensional transport equation, baea obtained for the two dimen-
sional non dispersive Poincaré and Kelvin waves. The coatiput of the dispersion errors
for dispersive waves required to compute a reference solwiithout the WKB approxi-
mation, by means of the numerical resolution of a Sturm-\ikeiproblem. The theoretical
rates were also obtained for the very dispersive Rossby wpvegded that the rate com-
putation is based on the relative errors. Note that in theéwaork of an ocean model which
aims to capture small scale processes, say betivard25 km, the very large Rossby wave-
lengths will always be resolved in a very accurate way. Meegcthe Rossby frequencies
are significantly different from zero and have to be resolwely for the smaller wavenum-
bers. Because of its dissipation and dispersion propeitiss;lear that the high-order DG
method is a very accurate technique to simulate wave prépagand is thus a good can-
didate for ocean applications.
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Fig. 15. Convergence of the absolute dispersiand dissipation: errors for the Poincaré, Kelvin
and Rossby waves with a variable Coriolis coefficient. The second, thaddaarth order elements
correspond to the green, blue and red lines respectively. Both thasl@mpand dissipation errors
exhibit the superconvergence of order+ 3 and2p + 2 respectively for the Poincaré and Kelvin
waves. The rate computation for the dispersive Rossby waves has &fbamyped on relative errors

to reach the expected superconvergence.
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Fig. 16. Convergence of the absolute dispersiand dissipation: errors for the Poincaré, Kelvin
and Rossby waves with a variable Coriolis coefficient on unstructuredese$he second, third and
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and dissipation errors exhibit the superconvergence of @der 3 and2p + 2 respectively for the
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Fig. 17. Comparison between convergence rates for the absolute (ldftha relative (right) dis-
persion and dissipation errors for the Rossby waves on unstructticsd §he theoretical rates of
convergence ofp + 2 and2p + 1 for the relative dispersion and dissipation errors respectively are
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