Skip to main content
Log in

An Unconditionally Stable MacCormack Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The back and forth error compensation and correction (BFECC) method advects the solution forward and then backward in time. The result is compared to the original data to estimate the error. Although inappropriate for parabolic and other non-reversible partial differential equations, it is useful for often troublesome advection terms. The error estimate is used to correct the data before advection raising the method to second order accuracy, even though each individual step is only first order accurate. In this paper, we rewrite the MacCormack method to illustrate that it estimates the error in the same exact fashion as BFECC. The difference is that the MacCormack method uses this error estimate to correct the already computed forward advected data. Thus, it does not require the third advection step in BFECC reducing the cost of the method while still obtaining second order accuracy in space and time. Recent work replaced each of the three BFECC advection steps with a simple first order accurate unconditionally stable semi-Lagrangian method yielding a second order accurate unconditionally stable BFECC scheme. We use a similar approach to create a second order accurate unconditionally stable MacCormack method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, J.D.: Computational Fluid Dynamics: The Basics With Applications. McGraw-Hill, New York (1995)

    Google Scholar 

  2. Courant, R., Issacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Math. 5, 243–255 (1952)

    Article  MATH  Google Scholar 

  3. Dupont, T., Liu, Y.: Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. J. Comput. Phys. 190(1), 311–324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dupont, T., Liu, Y.: Back and forth error compensation and correction methods for semi-Lagrangian schemes with application to level set interface computations. Math. Comp. 76, 647–668 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Enright, D., Losasso, F., Fedkiw, R.: A fast and accurate semi-Lagrangian particle level set method. Comput. Struct. 83, 479–490 (2005)

    Article  MathSciNet  Google Scholar 

  7. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21(3), 736–744 (2002)

    Google Scholar 

  8. Enright, D., Nguyen, D., Gibou, F., Fedkiw, R.: Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In: Proc. 4th ASME-JSME Joint Fluids Eng. Conf., no. FEDSM2003–45144. ASME (2003)

  9. Fedkiw, R., Stam, J., Jensen, H.: Visual simulation of smoke. In: Proc. of ACM SIGGRAPH 2001, pp. 15–22 (2001)

  10. Herrmann, M., Blanquart, G.: Flux corrected finite volume scheme for preserving scalar boundedness in reacting large-eddy simulations. AIAA J. 44(12), 2879–2886 (2006)

    Article  Google Scholar 

  11. Irving, G., Guendelman, E., Losasso, F., Fedkiw, R.: Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. (SIGGRAPH Proc.) 25(3), 805–811 (2006)

    Article  Google Scholar 

  12. Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kim, B.-M., Liu, Y., Llamas, I., Rossignac, J.: Using BFECC for fluid simulation. In: Eurographics Workshop on Natural Phenomena (2005)

  14. Kim, B.-M., Liu, Y., Llamas, I., Rossignac, J.: Advections with significantly reduced dissipation and diffusion. IEEE Trans. Vis. Comput. Graph. 13(1), 135–144 (2007)

    Article  Google Scholar 

  15. Lax, P.D.: On the stability of difference approximations to solutions of hyperbolic equations with variable coefficients. Commun. Pure Appl. Math. 14, 497–520 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  16. Losasso, F., Fedkiw, R., Osher, S.: Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35, 995–1010 (2006)

    Article  MathSciNet  Google Scholar 

  17. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457–462 (2004)

    Article  Google Scholar 

  18. MacCormack, R.: The effect of viscosity in hypervelocity impact cratering. In: AIAA Hypervelocity Impact Conference, 1969. AIAA paper, pp. 69–354 (1969)

  19. Min, C., Gibou, F.: A second order accurate projection method for the incompressible Navier-Stokes equation on non-graded adaptive grids. J. Comput. Phys. 219, 912–929 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  21. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 24(3), 910–914 (2005)

    Article  Google Scholar 

  23. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Stam, J.: Stable fluids. In: Proc. of SIGGRAPH 99, pp. 121–128 (1999)

  25. Staniforth, A., Cote, J.: Semi-Lagrangian integration schemes for atmospheric models: A review. Mon. Weather Rev. 119, 2206–2223 (1991)

    Article  Google Scholar 

  26. Steinhoff, J., Underhill, D.: Modification of the Euler equations for “vorticity confinement”: Application to the computation of interacting vortex rings. Phys. Fluids 6(8), 2738–2744 (1994)

    Article  MATH  Google Scholar 

  27. Strain, J.: Tree methods for moving interfaces. J. Comput. Phys. 151, 616–648 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  MATH  Google Scholar 

  29. Warming, R.F., Beam, R.M.: Upwind second-order difference schemes and applications in aerodynamic flows. AIAA J. 14(9), 1241–1249 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Selle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selle, A., Fedkiw, R., Kim, B. et al. An Unconditionally Stable MacCormack Method. J Sci Comput 35, 350–371 (2008). https://doi.org/10.1007/s10915-007-9166-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9166-4

Keywords

Navigation