Skip to main content
Log in

On the Stability and Accuracy of the Spectral Difference Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, it is shown that under certain conditions, the spectral difference (SD) method is independent of the position of the solution points. This greatly simplifies the design of such schemes, and it also offers the possibility of a significant increase in the efficiency of the method. Furthermore, an accuracy and stability study, based on wave propagation analysis, is presented for several 1D and 2D SD schemes. It was found that higher than second-order 1D SD schemes using the Chebyshev–Gauss–Lobatto nodes as the flux points have a weak instability. New flux points were identified which produce accurate and stable SD schemes. In addition, a weak instability was also found in 2D third- and fourth-order SD schemes on triangular grids. Several numerical tests were performed to verify the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cockburn, B., Hou, S., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54, 545–581 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comput. 52, 411–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Costa, B., Don, W.S., Gottlieb, D., Sendersky, R.: Two-dimensional multi-domain hybrid spectral-WENO methods for conservation laws. Commun. Comput. Phys. 1, 548–574 (2006)

    Google Scholar 

  6. Hu, F.Q., Hussaini, M., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999)

    Article  MATH  Google Scholar 

  7. Huang, P.G., Wang, Z.J., Liu, Y.: An implicit space-time spectral difference method for discontinuity capturing using adaptive polynomials. AIAA paper, pp. 2005–5255 (2005)

  8. Kopriva, D.A.: A conservative stagered-grid Chebyshev multidomain method for compressible flows. II semi-structured method. J. Comput. Phys. 128(2), 475–488 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kopriva, D.A., Kolias, J.H.: A conservative stagered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1), 244–261 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids I: Basic formulation. J. Comput. Phys. 216, 780–801 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu, Y., Vinokur, M., Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids V: Extension to three-dimensional systems. J. Comput. Phys. 212, 454–472 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. May, G., Jameson, A.: A spectral difference method for the Euler and Navier-Stokes equations. AIAA paper, pp. 2006–2304 (2006)

  13. Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. SIAM J. Sci. Stat. Comp. 9, 1079–1084 (1988)

    Google Scholar 

  14. Sun, Y., Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow. J. Comput. Phys. 215, 41–58 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sun, Y., Wang, Z.J., Liu, Y.: High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2(2), 310–333 (2007)

    MathSciNet  Google Scholar 

  16. Van den Abeele, K., Broeckhoven, T., Lacor, C.: Dispersion and dissipation properties of the 1D spectral volume method and application to a p-multigrid algorithm. J. Comput. Phys. 224(2), 616–636 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Van den Abeele, K., Lacor, C.: An accuracy and stability study of the 2D spectral volume method. J. Comput. Phys. 226(1), 1007–1026 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Van den Abeele, K., Lacor, C., Wang, Z.J.: On the connection between the spectral volume and the spectral difference method. J. Comput. Phys. 227(2), 877–876 (2007)

    Article  MATH  Google Scholar 

  19. Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation. J. Comput. Phys. 178, 210–251 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids II: Extension to two-dimensional scalar equation. J. Comput. Phys. 179, 665–697 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids III: One dimensional systems and partition optimization. J. Sci. Comput. 20, 137–157 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang, Z.J., Liu, Y., May, G., Jameson, A.: Spectral difference method for unstructured grids II: Extension to the Euler equations. J. Sci. Comput. 32(1), 45–71 (2006)

    Article  MathSciNet  Google Scholar 

  23. Wang, Z.J., Zhang, L., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids IV: Extension to two-dimensional Euler equations. J. Comput. Phys. 194(2), 716–741 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Van den Abeele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van den Abeele, K., Lacor, C. & Wang, Z.J. On the Stability and Accuracy of the Spectral Difference Method. J Sci Comput 37, 162–188 (2008). https://doi.org/10.1007/s10915-008-9201-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9201-0

Keywords

Navigation