Skip to main content
Log in

Finite Element Approximation of a Three Dimensional Phase Field Model for Void Electromigration

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a finite element approximation of a phase field model for the evolution of voids by surface diffusion in an electrically conducting solid. The phase field equations are given by the nonlinear degenerate parabolic system

$$\gamma\frac{\partial u}{\partial t}-\nabla.(b(u)\nabla[w+\alpha\phi])=0,\qquad w=-\gamma\Delta u+\gamma^{-1}\Psi'(u),\qquad\nabla.(c(u)\nabla\phi)=0$$

subject to an initial condition u 0(⋅)∈[−1,1] on u and flux boundary conditions on all three equations. Here γ∈ℝ>0, α∈ℝ≥0, Ψ is a non-smooth double well potential, and c(u):=1+u, b(u):=1−u 2 are degenerate coefficients. On extending existing results for the simplified two dimensional phase field model, we show stability bounds for our approximation and prove convergence, and hence existence of a solution to this nonlinear degenerate parabolic system in three space dimensions. Furthermore, a new iterative scheme for solving the resulting nonlinear discrete system is introduced and some numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baňas L, Nürnberg R: A multigrid method for the Cahn–Hilliard equation with obstacle potential (2008, submitted)

  2. Baňas L, Nürnberg R: Phase field computations for surface diffusion and void electromigration in ℝ3. Comput. Vis. Sci. (2008). doi:10.1007/s00791-008-0114-0

    Google Scholar 

  3. Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203, 321–343 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barrett, J.W., Blowey, J.F.: Finite element approximation of a degenerate Allen–Cahn/Cahn–Hilliard system. SIAM J. Numer. Anal. 39, 1598–1624 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80, 525–556 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37, 286–318 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barrett, J.W., Blowey, J.F., Garcke, H.: On fully practical finite element approximations of degenerate Cahn–Hilliard systems. M2AN Math. Model. Numer. Anal. 35, 713–748 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barrett, J.W., Langdon, S., Nürnberg, R.: Finite element approximation of a sixth order nonlinear degenerate parabolic equation. Numer. Math. 96, 401–434 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Barrett, J.W., Nürnberg, R., Styles, V.: Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 42, 738–772 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Barrett, J.W., Nürnberg, R., Warner, M.R.E.: Finite element approximation of soluble surfactant spreading on a thin film. SIAM J. Numer. Anal. 44, 1218–1247 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Barrett, J.W., Garcke, H., Nürnberg, R.: On the parametric finite element approximation of evolving hypersurfaces in ℝ3. J. Comput. Phys. 227, 4281–4307 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis. Eur. J. Appl. Math. 3, 147–179 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23, 489–505 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287–301 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chopp, D.L., Sethian, J.A.: Motion by intrinsic Laplacian of curvature. Interfaces Free Bound. 1, 107–123 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404–423 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Feng, X., Prohl, A.: Numerical analysis of the Cahn–Hilliard equation and approximation of the Hele–Shaw problem. Interfaces Free Bound. 7, 1–28 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    MATH  Google Scholar 

  20. Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities. Studies in Mathematics and its Applications, vol. 8. North-Holland, Amsterdam (1981). Translated from the French

    Book  MATH  Google Scholar 

  21. Gräser, C., Kornhuber, R.: On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints. In: Domain Decomposition Methods in Science and Engineering XVI. Lect. Notes Comput. Sci. Eng., vol. 55, pp. 91–102. Springer, Berlin (2007)

    Chapter  Google Scholar 

  22. Grün, G.: On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions. Math. Comput. 72, 1251–1279 (2003)

    Article  MATH  Google Scholar 

  23. Kornhuber, R.: Monotone multigrid methods for elliptic variational inequalities I. Numer. Math. 69, 167–184 (1994)

    MATH  MathSciNet  Google Scholar 

  24. Li, Z., Zhao, H., Gao, H.: A numerical study of electro-migration voiding by evolving level set functions on a fixed cartesian grid. J. Comput. Phys. 152, 281–304 (1999)

    Article  MATH  Google Scholar 

  25. Manservisi, S.: Numerical analysis of Vanka-type solvers for steady stokes and Navier–Stokes flows. SIAM J. Numer. Anal. 44, 2025–2056 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mayer, U.F.: A numerical scheme for moving boundary problems that are gradient flows for the area functional. Eur. J. Appl. Math. 11, 61–80 (2000)

    Article  MATH  Google Scholar 

  27. Mayer, U.F.: Numerical solutions for the surface diffusion flow in three space dimensions. Comput. Appl. Math. 20, 361–379 (2001)

    MATH  MathSciNet  Google Scholar 

  28. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)

    Article  Google Scholar 

  29. Nürnberg, R.: Finite element approximation of some degenerate nonlinear parabolic systems. PhD thesis, University of London, London (2003)

  30. Schmidt, A., Siebert, K.G.: ALBERT—software for scientific computations and applications. Acta Math. Univ. Comen. (N.S.) 70, 105–122 (2000)

    MathSciNet  Google Scholar 

  31. Schoberl, J., Zulehner, W.: On Schwarz-type smoothers for saddle point problems. Numer. Math. 95, 377–399 (2003)

    Article  MathSciNet  Google Scholar 

  32. Simon, J.: Compact sets in the space L p(0,T;B). Ann. Math. Pura. Appl. 146, 65–96 (1987)

    MATH  Google Scholar 

  33. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19, 439–456 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhang, Y.W., Bower, A.F., Xia, L., Shih, C.F.: Three dimensional finite element analysis of the evolution of voids and thin films by strain and electromigration induced surface diffusion. J. Mech. Phys. Solids 47, 173–199 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Nürnberg.

Additional information

L. Baňas was supported by the EPSRC grant EP/C548973/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baňas, Ľ., Nürnberg, R. Finite Element Approximation of a Three Dimensional Phase Field Model for Void Electromigration. J Sci Comput 37, 202–232 (2008). https://doi.org/10.1007/s10915-008-9203-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9203-y

Keywords

Navigation