Skip to main content
Log in

Application of Discontinuous Galerkin Methods for Reaction-Diffusion Systems in Developmental Biology

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Nonlinear reaction-diffusion systems which are often employed in mathematical modeling in developmental biology are usually highly stiff in both diffusion and reaction terms. Moreover, they are typically considered on multidimensional complex geometrical domains because of complex shapes of embryos. We overcome these computational challenges by combining discontinuous Galerkin (DG) finite element methods with Strang type symmetrical operator splitting technique, on triangular meshes. This allows us to avoid directly solving a coupled nonlinear system, as is necessary with the standard implicit schemes. Numerical solutions of two reaction-diffusion systems, the well-studied Schnakenberg model, which has been applied to several problems in developmental biology, and a new biologically based system for skeletal pattern formation in the vertebrate limb, are presented to demonstrate effects of various domain geometries on the resulting biological patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adjerid, S., Temimi, H.: A discontinuous Galerkin method for higher-order ordinary differential equations. Comput. Methods Appl. Mech. Eng. (2008, to appear)

  2. Alber, M., Hentschel, H.G.E., Kazmierczak, B., Newman, S.A.: Existence of solutions to a new model of biological pattern formation. J. Math. Anal. Appl. 308, 175–194 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alber, M., Glimm, T., Hentschel, H.G.E., Kazmierczak, B., Zhang, Y.-T., Zhu, J., Newman, S.A.: The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb. Bull. Math. Biol. 70, 460–483 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aragón, J.L., Torres, M., Gil, D., Barrio, R.A., Maini, P.K.: Turing patterns with pentagonal symmetry. Phys. Rev. E 65, 1–9 (2002)

    Article  Google Scholar 

  5. Aragón, J.L., Varea, C., Barrio, R.A., Maini, P.K.: Spatial patterning in modified Turing systems: application to pigmentation patterns on Marine fish. Forma 13, 213–221 (1998)

    Google Scholar 

  6. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barrio, R.A., Varea, C., Aragón, J.L., Maini, P.K.: A two-dimensional numerical study of spatial pattern formation in interacting systems. Bull. Math. Biol. 61, 483–505 (1999)

    Article  Google Scholar 

  8. Barrio, R.A., Maini, P.K., Aragón, J.L., Torres, M.: Size-dependent symmetry breaking in models for morphogenesis. Physica D 2920, 1–12 (2002)

    Google Scholar 

  9. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Butcher, J.C.: High order A-stable numerical methods for stiff problems. J. Sci. Comput. 25(1–2), 51–66 (2005)

    MathSciNet  Google Scholar 

  12. Biswas, R., Devine, K.D., Flaherty, J.: Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255–283 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Canosa, J.: On a nonlinear diffusion equation describing population growth. IBM J. Res. Develop. 17(4), 307–313 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2008)

    MATH  MathSciNet  Google Scholar 

  15. Childress, S., Percus, J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems. In: Barth, T.J., Deconinck, H. (eds.) High-Order Methods for Comput. Phys. Lecture Notes in Computational Science and Engineering, vol. 9, pp. 69–224. Springer, Berlin (1999)

    Google Scholar 

  17. Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3–50. Springer, Berlin (2000), Part I: Overview

    Google Scholar 

  18. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P 1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)

    MATH  MathSciNet  Google Scholar 

  24. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Crampin, E.J., Hackborn, W.W., Maini, P.K.: Pattern formation in reaction-diffusion models with nonuniform domain growth. Bull. Math. Biol. 64, 747–769 (2002)

    Article  Google Scholar 

  26. Eriksson, K., Johnson, C., Logg, A.: Explicit time-stepping for stiff ODEs. SIAM J. Sci. Comput. 25(4), 1142–1157 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B.Z., Barkai, N.: Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304–308 (2002)

    Article  Google Scholar 

  28. Eldar, A., Rosin, D., Shilo, B.Z., Barkai, N.: Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev. Cell 5, 635–646 (2003)

    Article  Google Scholar 

  29. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugenics 7, 353–369 (1937)

    Google Scholar 

  30. Gassner, G., Lorcher, F., Munz, C.-D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224, 1049–1063 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38(1), 29–43 (1983)

    Article  Google Scholar 

  32. Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and the instabilities in the system A+2B→3B, BX. Chem. Eng. Sci. 39(6), 1087–1097 (1984)

    Article  Google Scholar 

  33. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  34. Goodwin, B.C., Trainor, L.E.H.: Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields. J. Theor. Biol. 117, 79–106 (1985)

    Article  Google Scholar 

  35. Gurdon, J.B., Bourillot, P.Y.: Morphogen gradient interpretation. Nature 413, 797–803 (2001)

    Article  Google Scholar 

  36. Hanhart, A.L., Gobbert, M.K., Izu, L.T.: A memory-efficient finite element method for systems of reaction-diffusion equations with non-smooth forcing. J. Comput. Appl. Math. 169, 431–458 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hairer, E., Wanner, G.: Stiff differential equations solved by Radau methods. J. Comput. Appl. Math. 111, 93–111 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hentschel, H.G.E., Glimm, T., Glazier, J.A., Newman, S.A.: Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. B 271, 1713–1722 (2004)

    Article  Google Scholar 

  39. Hundsdorfer, W.: Trapezoidal and midpoint splittings for initial-boundary value problems. Math. Comput. 67, 1047–1062 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin (2003)

    MATH  Google Scholar 

  41. Huang, W., Ma, J., Russell, R.D.: A study of moving mesh PDE methods for numerical simulation of blowup in reaction diffusion equations. J. Comput. Phys. 227, 6532–6552 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge

  43. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  Google Scholar 

  44. Lander, A., Nie, Q., Wan, F.: Do morphogen gradients arise by diffusion? Dev. Cell 2(6), 785–796 (2002)

    Article  Google Scholar 

  45. Levy, D., Shu, C.-W., Yan, J.: Local discontinuous Galerkin methods for nonlinear dispersive equations. J. Comput. Phys. 196, 751–772 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  46. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. Math. Comput. (2008, submitted)

  47. Lowrie, R.B.: A comparison of implicit time integration methods for nonlinear relaxation and diffusion. J. Comput. Phys. 196, 566 (2004)

    Article  MATH  Google Scholar 

  48. Lyons, M.J., Harrison, L.G.: Stripe selection: an intrinsic property of some pattern-forming models with nonlinear dynamics. Dev. Dyn. 195, 201–215 (1992)

    Google Scholar 

  49. Madzvamuse, A., Wathen, A.J., Maini, P.K.: A moving grid finite element method applied to a model biological pattern generator. J. Comput. Phys. 190, 478–500 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  50. Madzvamuse, A., Maini, P.K., Wathen, A.J.: A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. J. Sci. Comput. 24(2), 247–262 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  51. Madzvamuse, A.: Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J. Comput. Phys. 214, 239–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  52. Maini, P.K., McElwain, D.L.S., Leavesley, D.: Travelling waves in a wound healing assay. Appl. Math. Lett. 17, 575–580 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  53. Mizutani, C.M., Nie, Q., Wan, F., Zhang, Y.-T., Vilmos, P., Sousa-Neves, R., Bier, E., Marsh, J.L., Lander, A.D.: Formation of the BMP activity gradient in the Drosophila embryo. Dev. Cell 8(6), 915–924 (2005)

    Article  Google Scholar 

  54. Murray, J.D.: Mathematical Biology, vol. II, 3rd edn. Springer, Berlin (2003)

    Google Scholar 

  55. Myerscough, M.R., Maini, P.K., Painter, K.J.: Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60, 1–26 (1998)

    Article  MATH  Google Scholar 

  56. Newman, S.A., Müller, G.B.: Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. J. Exp. Zoolog. B Mol. Dev. Evol. 304, 593–609 (2005)

    Article  Google Scholar 

  57. Newman, S.A., Bhat, R.: Activator-inhibitor dynamics of vertebrate limb pattern formation. Birth Defects Res. C Embryo Today 81, 305–319 (2007)

    Article  Google Scholar 

  58. Newman, S.A., Christley, S., Glimm, T., Hentschel, H.G.E., Kazmierczak, B., Zhang, Y.-T., Zhu, J., Alber, M.: Multiscale models for vertebrate limb development. Curr. Top. Dev. Biol. 81, 311–340 (2008)

    Article  Google Scholar 

  59. Oden, J.T., Babuska, I., Baumann, C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  60. Reed, W.H., Hill, T.R.: Triangular mesh methods for neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  61. Riviere, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  62. Romkes, A., Prudhomme, S., Oden, J.T.: A posteriori error estimation for a new stabilized discontinuous Galerkin method. Appl. Math. Lett. 16(4), 447–452 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  63. Ropp, D.L., Shadid, J.N., Ober, C.C.: Studies of the accuracy of time integration methods for reaction-diffusion equations. J. Comput. Phys. 194, 544–574 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  64. Ruuth, S.: Implicit-explicit methods for reaction-diffusion problems in pattern-formation. J. Math. Biol. 34(2), 148–176 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  65. Salazar-Ciudad, I., Jernvall, J., Newman, S.A.: Mechanisms of pattern formation in development and evolution. Development 130, 2027–2037 (2003)

    Article  Google Scholar 

  66. Schnakenberg, J.: Simple chemical reaction systems with limit cycle behavior. J. Theor. Biol. 81, 389–400 (1979)

    Article  MathSciNet  Google Scholar 

  67. Shimmi, O., Umulis, D., Othmer, H., O’Connor, M.: Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell 120, 873–886 (2005)

    Article  Google Scholar 

  68. Soane, A.M., Gobbert, M.K., Seidman, T.I.: Numerical exploration of a system of reaction-diffusion equations with internal and transient layers. Nonlinear Anal. Real World Appl. 6, 914–934 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  69. Sportisse, B.: An analysis of operating splitting techniques in the stiff case. J. Comput. Phys. 161, 140–168 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  70. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 8(3), 506–517 (1968)

    Article  MathSciNet  Google Scholar 

  71. Sun, W., Tang, T., Ward, M.J., Wei, J.: Numerical challenges for resolving spike dynamics for two one-dimensional reaction-diffusion systems. Stud. Appl. Math. 111, 41–84 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  72. Teleman, A.A., Strigini, M., Cohen, S.M.: Shaping morphogen gradients. Cell 105, 559–562 (2001)

    Article  Google Scholar 

  73. Thomas, D.: Artificial enzyme membrane, transport, memory and oscillatory phenomena. In: Thomas, D., Kervenez, J.-P. (eds.) Analysis and Control of Immobilised Enzyme Systems, pp. 115–150. Springer, Berlin (1975)

    Google Scholar 

  74. Tickle, C.: Patterning systems—from one end of the limb to the other. Dev. Cell 4, 449–458 (2003)

    Article  Google Scholar 

  75. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  Google Scholar 

  76. van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: 17th AIAA Computational Fluid Dynamics Conference, June 6–9, 2005. AIAA, Washington (2005). AIAA paper 2005-5108

    Google Scholar 

  77. Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection-diffusion-reaction problems. J. Comput. Phys. 201, 61–79 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  78. Wang, Y.-C., Ferguson, E.L.: Spatial bistability of Dpp-receptor interactions during Drosophila dorsal-ventral patterning. Nature 434, 229–234 (2005)

    Article  Google Scholar 

  79. Wolpert, L., Beddington, R., Brockes, J., Jessel, T., Lawrence, P., Meyerowitz, E.: Principles of Development. Oxford University Press, London (2002)

    Google Scholar 

  80. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for three classes of nonlinear wave equations. J. Comput. Math. 22, 250–274 (2004)

    MATH  MathSciNet  Google Scholar 

  81. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrodinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  82. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for two classes of two dimensional nonlinear wave equations. Physica D 208, 21–58 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  83. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Eng. 195, 3430–3447 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  84. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  85. Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  86. Yanenko, N.N.: The Method of Fractional Steps. Springer, New York (1971)

    MATH  Google Scholar 

  87. Zegeling, P.A., Kok, H.P.: Adaptive moving mesh computations for reaction-diffusion systems. J. Comput. Appl. Math. 168(1–2), 519–528 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  88. Zhang, Y.-T., Lander, A., Nie, Q.: Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo. J. Theor. Biol. 248(4), 579–589 (2007)

    Article  Google Scholar 

  89. Zhang, Y.-T., Shu, C.-W.: High order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  90. Zykov, V., Engel, H.: Dynamics of spiral waves under global feedback in excitable domains of different shapes. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 016201 (2004)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Zhang, YT., Newman, S.A. et al. Application of Discontinuous Galerkin Methods for Reaction-Diffusion Systems in Developmental Biology. J Sci Comput 40, 391–418 (2009). https://doi.org/10.1007/s10915-008-9218-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9218-4

Keywords

Navigation