Skip to main content
Log in

Characterizing Strong Stability Preserving Additive Runge-Kutta Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Space discretization of some time dependent partial differential equations give rise to ordinary differential equations containing additive terms with different stiffness properties. In these situations, additive Runge-Kutta (additive RK) methods are used.

For additive RK methods the curve of absolute monotonicity gives stepsize restrictions for monotonicity. Necessary conditions for nontrivial curves of absolute monotonicity are the nonnegativity of the additive RK coefficients and some inequalities on some incidence matrices. In this paper we characterize strong stability preserving additive Runge-Kutta methods giving some order barriers and structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Spiteri, R.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Constantinescu, E.M., Sandu, A.: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33, 239–278 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dekker, K., Verwer, J.G.: Stability of Runge-Kutta methods for stiff nonlinear differential equations. CWI Monographs 2. Amsterdam (1984)

  4. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge-Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  6. Gerisch, A., Griffiths, D.F., Weiner, R., Chaplain, M.A.J.: A positive splitting method for mixed hyperbolic-parabolic systems. Numer. Methods Partial Diff. Equ. 17, 152–168 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gottlieb, S.: On high order strong stability-preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25, 105–128 (2005)

    MathSciNet  Google Scholar 

  8. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Higueras, I.: Representations of Runge-Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Higueras, I.: Strong stability for additive Runge-Kutta methods. SIAM J. Numer. Anal. 44, 1735–1758 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. NASA Technical Memorandum NASA/TM-2001-211038. Langley Research Center, Hampton, VA, 2001 (2003)

  14. Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ketcheson, D.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30, 2113–2136 (2008)

    Article  MathSciNet  Google Scholar 

  16. Ketcheson, D., MacDonald, C.B., Gottlieb, S.: Optimal implict strong stability preserving Runge–Kutta methods. Appl. Numer. Math. (2008). doi:10.1016/j.apnum.2008.03.034

    Google Scholar 

  17. Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT 31, 482–528 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Martin, R.H.: Nonlinear Operators and Differential Equations in Banach Spaces. Wiley, New York (1976)

    MATH  Google Scholar 

  19. Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. In: Brugnano, L., Trigiante, D. (eds.) Recent Trends in Numerical Analysis, vol. 3, pp. 269–289 (2000)

  20. Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    MathSciNet  Google Scholar 

  21. Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge-Kutta methods. Math. Comput. 75, 183–207 (2006)

    MATH  MathSciNet  Google Scholar 

  22. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong stability preserving time discretization methods. J. Sci. Comput. 17, 211–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ruuth, S.J., Spiteri, R.J.: High-order strong-stability-preserving Runge-Kutta methods with downwind-biased spatial discretizations. SIAM J. Numer. Anal. 42, 974–996 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shu, C.W.: Total variation diminishing time discretizations. SIAM J. Sci. Comput. 9, 1073–1084 (1988)

    Article  MATH  Google Scholar 

  25. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high order strong stability preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhong, X.: Additive semi-implicit Runge-Kutta methods for computing high speed nonequilibrium reactive flows J. Comput. Phys. 128, 19–31 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inmaculada Higueras.

Additional information

Research supported by the Ministerio de Educación y Ciencia, Project MTM2005-03894.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higueras, I. Characterizing Strong Stability Preserving Additive Runge-Kutta Methods. J Sci Comput 39, 115–128 (2009). https://doi.org/10.1007/s10915-008-9252-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9252-2

Keywords

Navigation