Skip to main content
Log in

Overlapping Yee FDTD Method on Nonorthogonal Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a new overlapping Yee (OY) method for solving time-domain Maxwell’s equations on nonorthogonal grids. The proposed method is a direct extension of the Finite-Difference Time-Domain (FDTD) method to irregular grids. The OY algorithm is stable and maintains second-order accuracy of the original FDTD method, and it overcomes the late-time instability of the previous FDTD algorithms on nonorthogonal grids. Numerical examples are presented to illustrate the accuracy, stability, convergence and efficiency of the OY method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barber, P.W., Hill, S.C.: Light Scattering by Particles: Computational Methods. World Scientific, Singapore (1990)

    Google Scholar 

  2. Bern, M.W., Eppstein, D.: Quadrilateral meshing by circle packing. Int. J. Comput. Geom. Appl. 10(4), 347–360 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)

    Google Scholar 

  4. Cai, W., Deng, S.: An upwinding embedded boundary method for Maxwell’s equations in media with material interfaces: 2D case. J. Comput. Phys. 190, 159–183 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cangellaris, A.C., Wright, D.B.: Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena. IEEE Trans. Antennas Propag. 39, 1518–1525 (1991)

    Article  Google Scholar 

  6. Chew, L.P.: Guaranteed-quality mesh generation for curved surfaces. In: SCG ’93: Proceedings of the Ninth Annual Symposium on Computational Geometry, pp. 274–280. ACM, New York (1993)

    Chapter  Google Scholar 

  7. Gedney, S., Lansing, F., Rascoe, D.: Full wave analysis of microwave monolithic circuit devices using a generalized Yee-algorithm based on an unstructured grid. IEEE Trans. Microw. Theory Tech. 44(2), 1393–1400 (1996)

    Article  Google Scholar 

  8. Gedney, S., Roden, J.A.: Numerical stability of nonorthogonal FDTD methods. IEEE Trans. Antennas Propag. 48, 231–239 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lee, J.-F., Palandech, R., Mittra, R.: Modeling three-dimensional discontinuities in waveguide using nonorthogonal FDTD algorithm. IEEE Trans. Microw. Theory Tech. 40(2), 346–352 (1992)

    Article  Google Scholar 

  10. Liu, J., Brio, M., Moloney, J.V.: Computation of optical forces on nanoparticles using FDTD technique. Preprint (2008)

  11. Liu, Y.: Central schemes on overlapping cells. J. Comput. Phys. 209, 82–104 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45, 2442–2467 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: Non-oscillatory hierarchical reconstruction for central and finite volume schemes. Commun. Comput. Phys. 2(5), 933–963 (2007)

    MATH  MathSciNet  Google Scholar 

  14. Madsen, N.: Divergence preserving discrete surface integral methods for Maxwell’s curl equations using non-orthogonal unstructured grids. J. Comput. Phys. 119, 34–45 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Madsen, N., Ziolkowski, R.: Numerical solution of Maxwell’s equations in the time domain using irregular nonorthogonal grids. Wave Motion 10, 583–596 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Madsen, N., Ziolkowski, R.: A 3-dimensional modified finite volume technique for Maxwell equations. Electromagnetics 10, 147–161 (1990)

    Article  Google Scholar 

  17. Schuhmann, R., Weiland, T.: Stability of the FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme. IEEE Trans. Magn. 3, 2751–2754 (1998)

    Article  Google Scholar 

  18. Si, H.: On refinement of constrained Delaunay tetrahedralizations. In: Proceedings of the 15th International Meshing Roundtable, pp. 509–528. Springer, Berlin/Heidelberg (2006)

    Chapter  Google Scholar 

  19. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  20. Taflove, A.: Numerical-solution of steady-state electromagnetic scattering problems using time-dependent Maxwell’s equations. Electromagnetics 23, 623–630 (1975)

    Google Scholar 

  21. Taflove, A.: Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems. IEEE Trans. Electromagn. Comput. 22, 191–202 (1980)

    Article  Google Scholar 

  22. Taflove, A.: A perspective on the 40-year history of FDTD computational electrodynamics. J. Appl. Comput. Electromagn. Soc. 22, 1–21 (2007)

    Google Scholar 

  23. Taflove, A., Hagness, S.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Norwood (2005)

    Google Scholar 

  24. Thoma, P., Weiland, T.: Numerical stability of finite difference time domain methods. IEEE Trans. Magn. 34(5), 2740–2743 (1998)

    Article  Google Scholar 

  25. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

  26. Zakharian, A.R., Brio, M., Dineen, C., Moloney, J.V.: FDTD based local mesh refinement method for Maxwell’s equations in two space dimensions. Commun. Math. Sci. 2(3), 497–513 (2004)

    MATH  MathSciNet  Google Scholar 

  27. Zakharian, A.R., Brio, M., Dineen, C., Moloney, J.V.: Second-order accurate FDTD space and time grid refinement method in three space dimensions. IEEE Photonics Technol. Lett. 18(11), 1237–1239 (2006)

    Article  Google Scholar 

  28. Zakharian, A.R., Brio, M., Dineen, C., Moloney, J.V.: Stability of 2D FDTD algorithms with local mesh refinement for Maxwell’s equations. Commun. Math. Sci. 4(2), 345–374 (2006)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjie Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Brio, M. & Moloney, J.V. Overlapping Yee FDTD Method on Nonorthogonal Grids. J Sci Comput 39, 129–143 (2009). https://doi.org/10.1007/s10915-008-9253-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9253-1

Keywords

Navigation