Skip to main content
Log in

Local Discontinuous Galerkin Method for Surface Diffusion and Willmore Flow of Graphs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a local discontinuous Galerkin (LDG) finite element method for surface diffusion and Willmore flow of graphs. We prove L 2 stability for the equation of surface diffusion of graphs and energy stability for the equation of Willmore flow of graphs. We provide numerical simulation results for different types of solutions of these two types of the equations to illustrate the accuracy and capability of the LDG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bänsch, E., Morin, P., Nochetto, R.H.: Surface diffusion of graphs: variational formulation, error analysis, and simulation. SIAM J. Numer. Anal. 42, 773–799 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beneš, M.: Numerical solution for surface diffusion on graphs. In: Proceedings of Czech-Japanese Seminar in Applied Mathematics 2005, COE Lect. Note, 3, pp. 9–25. Kyushu Univ. The 21 Century COE Program, Fukuoka (2006)

  4. Cockburn, B.: Discontinuous Galerkin methods for methods for convection-dominated problems. In: Barth, T.J., Deconinck, H. (eds.) High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9, pp. 69–224. Springer, Berlin (1999)

    Google Scholar 

  5. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: Foreword for the special issue on discontinuous Galerkin method. J. Sci. Comput. 22–23, 1–3 (2005)

    MathSciNet  Google Scholar 

  10. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Coleman, B., Falk, R., Moakher, M.: Space-time finite element methods for surface diffusion with applications to the theory of the stability of cylinders. SIAM J. Sci. Comput. 17, 1434–1448 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dawson, C.: Foreword for the special issue on discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 195, 3183 (2006)

    Article  Google Scholar 

  14. Deckelnick, K., Dziuk, G.: Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound. 8, 21–46 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Droske, M., Rumpf, M.: A level set formulation for Willmore flow. Interfaces Free Bound. 6, 361–378 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Du, Q., Liu, C., Ryham, R., Wang, X.: A phase field formulation of the Willmore problem. Nonlinearity 18, 1249–1267 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dziuk, G., Kuwert, E., Schätzle, R.: Evolution of elastic curves in \(\Bbb{R}\sp n\) : existence and computation. SIAM J. Math. Anal. 33, 1228–1245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Elliott, C.M., Maier-Paape, S.: Losing a graph with surface diffusion. Hokkaido Math. J. 30, 297–305 (2001)

    MATH  MathSciNet  Google Scholar 

  21. Escher, J., Mayer, U.F., Simonett, G.: The surface diffusion flow for immersed hypersurfaces. SIAM J. Math. Anal. 29, 1419–1433 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Oberhuber, T.: Numerical solution for the Willmore flow of graphs. In: Proceedings of Czech-Japanese Seminar in Applied Mathematics 2005, COE Lect. Note, 3, pp. 126–138. Kyushu Univ. The 21 Century COE Program, Fukuoka (2006)

  23. Reed, W.H., Hill, T.R.: Triangular mesh method for the neutron transport equation. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM (1973)

  24. Simonett, G.: The Willmore flow near spheres. Differ. Integral Equs. 14, 1005–1014 (2001)

    MATH  MathSciNet  Google Scholar 

  25. Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn-Hilliard type equations. J. Comput. Phys. 227, 472–491 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Xia, Y., Xu, Y., Shu, C.-W.: Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. Commun. Comput. Phys. 5, 821–835 (2009)

    MathSciNet  Google Scholar 

  27. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for two classes of two dimensional nonlinear wave equations. Physica D 208, 21–58 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Additional information

Y. Xu research supported by NSFC grant 10601055 and Foundation for Authors of Excellent Doctoral Dissertations of the Chinese Academy of Sciences.

C.-W. Shu research supported in part by NSFC grant 10671190 during his visit to the Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China. Additional support is provided by NSF grants DMS-0510345 and DMS-0809086 and by DOE grant DE-FG02-08ER25863.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Shu, CW. Local Discontinuous Galerkin Method for Surface Diffusion and Willmore Flow of Graphs. J Sci Comput 40, 375–390 (2009). https://doi.org/10.1007/s10915-008-9262-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9262-0

Keywords

Navigation