Skip to main content
Log in

A Hybrid Fourier–Chebyshev Method for Partial Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a pseudospectral hybrid algorithm to approximate the solution of partial differential equations (PDEs) with non-periodic boundary conditions. Most of the approximations are computed using Fourier expansions that can be efficiently obtained by fast Fourier transforms. To avoid the Gibbs phenomenon, super-Gaussian window functions are used in physical space. Near the boundaries, we use local polynomial approximations to correct the solution. We analyze the accuracy and eigenvalue stability of the method for several PDEs. The method compares favorably to traditional spectral methods, and numerical results indicate that for hyperbolic problems a time step restriction of O(1/N) is sufficient for stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aydin, O., Ünal, A., Ayhan, T.: Natural convection in rectangular enclosures heated from one side and cooled from the ceiling. Int. J. Heat Mass Transfer 42(13), 2345–2355 (1999)

    Article  MATH  Google Scholar 

  2. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, Mineola (2001)

    MATH  Google Scholar 

  3. Boyd, J.P.: Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms. J. Comput. Phys. 199(2), 688–716 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyd, J.P.: Fourier embedded domain methods: extending a function defined on an irregular region to a rectangle so that the extension is spatially periodic and C . Appl. Math. Comput. 161(2), 591–597 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyd, J.P.: Asymptotic Fourier coefficients for a C bell (smoothed-“top-hat”) & the Fourier extension problem. J. Sci. Comput. 29(1), 1–24 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyd, J.P.: Exponentially accurate Runge–Free approximation of non-periodic functions from samples on an evenly–spaced grid. Appl. Math. Lett. 20(9), 971–975 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyd, J.P., Ong, J.R.: Exponentially–convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions, part I: single-interval schemes. Commun. Comput. Phys. 5(2–4), 484–497 (2009)

    Google Scholar 

  8. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  9. Farhangnia, M., Biringen, S., Peltier, L.J.: Numerical simulation of two-dimensional buoyancy-driven turbulence in a tall rectangular cavity. Int. J. Numer. Methods Fluids 23(12), 1311–1326 (1996)

    Article  MATH  Google Scholar 

  10. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  11. Gelb, A.: Reconstruction of piecewise smooth functions from non-uniform grid point data. J. Sci. Comput. 30(3), 409–440 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gelb, A., Platte, R.B., Rosenthal, W.S.: The discrete orthogonal polynomial least squares method for approximation and solving partial differential equations. Commun. Comput. Phys. 3(3), 734–758 (2008)

    MathSciNet  Google Scholar 

  13. Gelb, A., Tanner, J.: Robust reprojection methods for the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. 20(1), 3–25 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)

    MATH  Google Scholar 

  15. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)

    MATH  Google Scholar 

  16. Hale, N., Trefethen, L.N.: New quadrature methods from conformal maps. SIAM J. Numer. Anal. 46(2), 930–948 (2008)

    Article  MathSciNet  Google Scholar 

  17. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  18. Kosloff, D., Tal-Ezer, H.: A modified Chebyshev pseudospectral method with an O(N −1) time step restriction. J. Comput. Phys. 104(2), 457–469 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Platte, R.B., Driscoll, T.A.: Polynomials and potential theory for Gaussian radial basis function interpolation. SIAM J. Numer. Anal. 43(2), 750–766 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Reddy, S.C., Trefethen, L.N.: Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues. Comput. Methods Appl. Mech. Eng. 80(1-3), 147–164 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sarris, I.E., Lekakis, I., Vlachos, N.S.: Natural convection in rectangular tanks heated locally from below. Int. J. Heat Mass Transfer 47(14-16), 3549–3563 (2004)

    Article  MATH  Google Scholar 

  22. Tadmor, E.: The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23(1), 1–10 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tadmor, E., Tanner, J.: Adaptive filters for piecewise smooth spectral data. IMA J. Numer. Anal. 25(4), 635–647 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  25. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50(1), 67–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  27. Weideman, J.A.C., Trefethen, L.N.: The eigenvalues of second-order spectral differentiation matrices. SIAM J. Numer. Anal. 25(6), 1279–1298 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Xia, C., Murthy, J.Y.: Buoyancy–driven flow transitions in deep cavities heated from below. J. Heat Transfer 124(4), 650–659 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo B. Platte.

Additional information

R.B. Platte’s address after December 2009: Arizona State University, Department of Mathematics and Statistics, Tempe, AZ, 85287-1804.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platte, R.B., Gelb, A. A Hybrid Fourier–Chebyshev Method for Partial Differential Equations. J Sci Comput 39, 244–264 (2009). https://doi.org/10.1007/s10915-008-9264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9264-y

Keywords

Navigation