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Abstract For various applications, it is well-known that a multi-level, in particular two-
level, preconditioned CG (PCG) method is an efficient method for solving large and sparse
linear systems with a coefficient matrix that is symmetric positive definite. The correspond-
ing two-level preconditioner combines traditional and projection-type preconditioners to get
rid of the effect of both small and large eigenvalues of the coefficient matrix. In the literature,
various two-level PCG methods are known, coming from the fields of deflation, domain de-
composition and multigrid. Even though these two-level methods differ a lot in their specific
components, it can be shown that from an abstract point of view they are closely related to
each other. We investigate their equivalences, robustness, spectral and convergence proper-
ties, by accounting for their implementation, the effect of roundoff errors and their sensitivity
to inexact coarse solves, severe termination criteria and perturbed starting vectors.
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1 Introduction

The Conjugate Gradient (CG) method [17] is a very popular iterative method for solving
large linear systems of equations,

Ax = b, A = [aij ] ∈ R
n×n, (1)

whose coefficient matrix, A, is sparse and symmetric positive definite (SPD). The conver-
gence rate of CG is bounded in terms of the condition number of A, i.e., after j iterations of
CG, we have

‖x − xj‖A ≤ 2‖x − x0‖A

(√
κ − 1√
κ + 1

)j

, (2)

where x0 is the starting vector, κ = κ(A) denotes the spectral condition number of A (which
in this case is the ratio of the largest to the smallest eigenvalue), and ‖x‖A is the A-norm of
x, defined as ‖x‖A = √

xT Ax. If κ is large, it is more favorable to solve a preconditioned
system instead of (1), where the preconditioned system is defined as Âx̂ = b̂, with Â =
M−1/2AM−1/2, x̂ = M1/2x, b̂ = M−1/2b and M−1 ∈ R

n×n is an SPD matrix. This system
can be transformed into the system

M−1Ax = M−1b,

see e.g. [14, Sect. 10.3.1]. The preconditioner, M , should be chosen such that M−1A has a
more clustered spectrum than A. Furthermore, systems of the form My = z must be cheap
to solve, relative to the improvement that they provide in the convergence rate. The resulting
method is called the preconditioned CG (PCG) method.

Since so far there exists no universal preconditioner, which works for any type of prob-
lems, the design and analysis of preconditioners for CG remain of great interest. The diago-
nal scaling methods, basic iterative methods, approximate inverse and incomplete Cholesky
preconditioners are examples of traditional preconditioners. In many cases, a traditional
preconditioner is often combined with a two-level component or a second level correction,
which leads to a two-level PCG method. This two-level correction is also known as a coarse-
grid correction or subspace correction. Examples of the two-level preconditioners are multi-
grid methods (MG), domain decomposition methods (DDM), and deflated or augmented
Krylov subspace methods. For an overview paper we refer to [48].

Two-grid or multigrid preconditioning has been known for a long time, dating back at
least to the 1930s. Its potential was first exploited by Fedorenko and Bakhalov in the 1960s,
and later by Brandt [3] and Hackbusch [16], which paved the way to the birth of multigrid
methods. We refer to [44, 47] and references therein for more details. Also for domain
decomposition methods it was shown in [2] that adding a coarse-grid correction or a second
level correction can lead to a significant improvement in the convergence rate. We refer to
[36, 43] for more details. In MG and DDM, there exist several ways of incorporating the
coarse-grid correction to the traditional preconditioner, which include the additive coarse-
grid correction [2, 5, 6] and the multiplicative or balancing version of DDM as proposed in
[21].
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Another example of two-level preconditioners for Krylov methods is deflation. First used
by Nicolaides to accelerate the convergence of CG [31], several contributions have been
made since then, including [8, 19, 34, 45]. Following [31], the convergence of CG can be
improved if the components of the residual or error associated with the smallest eigenval-
ues are no longer present during the iteration. To achieve this, these smallest eigenvalues
need to be deflated explicitly (shift to zero) by augmenting the Krylov subspace with the
corresponding eigenvectors. It can be shown that the convergence of CG is then bounded in
terms of the effective condition number of the deflated linear system, which is the ratio of
the largest eigenvalue to the smallest, nonzero eigenvalue.

From an implementation point of view, two-level PCG methods from deflation, DDM
and MG seem to be different. For example, in deflation, eigenvectors or eigenvector ap-
proximations associated with unfavorable eigenvalues are often used as projection vectors.
These projection vectors then form the operator that is acting between the subspace and the
original space. In contrast, MG or DDM use interpolation operators between the fine-grid
(original) and coarse-grid subspace. Generally speaking, each field has developed not only
specific components but also some specific ways and implementations for combining the
traditional preconditioner with the second level correction. Interestingly, however, from al-
gebraic or abstract point of view, the two-level PCG methods from the three fields are quite
comparable or even equivalent, as we will see throughout our discussion. This observation
motivates us to compare these two-level methods and their implementations in detail. In this
paper, we try to bridge the gap between these different fields by theoretically comparing
them and investigating some specific variants and implementations of these methods.

Different from [20], where a comparison between the original deflation, MG and DDM
methods (using their specific ingredients) is given, in this paper, we approach the two-level
PCG methods from an abstract point of view. We will generally consider the methods from
their algebraic components, and will not particularly focus on their specific components.
This means that we do not use, e.g., the fact that the deflation method uses specific eigen-
vectors or approximate eigenvectors and the fact that the MG and DDM methods use specific
interpolation matrices, since either choice leads to algebraically the same component. To es-
tablish this algebraic comparison, we will introduce a generalized formulation for deflation,
MG and DDM, which allows us to derive a unified theory. The comparison given here, has
led to a new method introduced in [9]. There, two of the authors combined advantages of
these three types of methods.

We note that in [28–30], theoretical comparisons have been given for the deflation, ab-
stract balancing and additive coarse-grid correction methods. It has been proven, using spec-
tral analysis among other techniques, that the deflation method is expected to yield faster
convergence compared to the other two methods, provided that the second level correction
is solved very accurately. It is not uncommon, however, that such a solve is impractical due
to the large size of the problem. This implementation aspect among others was not partic-
ularly discussed in those papers. In this paper, in addition to theoretical comparisons, we
will also investigate some important aspects related to numerical implementations. We will
see via numerical experiments, e.g., that two algebraically equivalent methods do not nec-
essarily lead to the same convergence behavior. In particular, we will address the following
issues:

• what are the relations and equivalences between the two-level PCG methods?
• which two-level PCG methods can be applied, if one uses inaccurate coarse solvers, severe

termination criteria or perturbed starting vectors?
• is there a two-level preconditioner, that is robust and cheap, or in other words, is there a

way to add the coarse grid correction, that is robust and cheap?
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This paper is organized as follows. In Sect. 2, we introduce and discuss two-level PCG
methods in a unified way. Section 3 is devoted to the theoretical comparison of these meth-
ods. Subsequently, the numerical comparison of the two-level PCG methods is carried out
in Sect. 4. Finally, conclusions are given in Sect. 5.

2 Two-Level PCG methods

In this section, two-level PCG methods will be defined and justified, but we start with some
terminology and a preliminary result, which are commonly used in the analysis of two-level
preconditioners.

Definition 2.1 Suppose that an SPD coefficient matrix, A ∈ R
n×n, and a projection subspace

matrix, Z ∈ R
n×k , with full rank and k < n are given. Then, we define the invertible matrix

E ∈ R
k×k , the matrix Q ∈ R

n×n, and the projection matrix, P ∈ R
n×n, as follows:

P := I − AQ, Q := ZE−1ZT , E := ZT AZ,

where I is the n × n identity matrix. In addition, M ∈ R
n×n is an SPD matrix that is called

the preconditioner.

Lemma 2.1 Let A,Z,Q and P be as in Definition 2.1. Then, the following equalities hold:

(a) P = P 2;
(b) PA = AP T ;
(c) P T Z = 0, P T Q = 0;
(d) PAZ = 0, PAQ = 0;
(e) QA = I − P T , QAZ = Z, QAQ = Q;
(f) QT = Q.

Proof The proof of these standard results can be found in, e.g., [37, 45]. �

Note that E is SPD for any full-rank Z, since A is SPD. If k � n holds, then E is a
matrix with small dimensions, so that it can be easily computed and factored. Moreover,
PA always has k zero eigenvalues according to Lemma 2.1(d).

2.1 Background of the Matrices in Domain Decomposition, Multigrid and Deflation

While Definition 2.1 seems to be very specific to deflation, algebraic/abstract formulation
of two-level PCG methods will require the matrices as defined there, in one form or another.
From an abstract point of view, all two-level preconditioners of the methods will consist
of an arbitrary M , combined with one or more matrices P and Q. Below, we will give an
explanation of the choices for these matrices in the different fields. Nevertheless, from our
point of view, matrices M and Z are arbitrary (but fixed) for each two-level PCG method.
In this way, the abstract setting allows us to compare the methods in terms of operators,
although they have their roots in different fields.

A standard CG method based on deflation is obtained if CG is applied to the coeffi-
cient matrix PA. The matrix Z consists of so-called projection vectors, whose columns
span the projection subspace. It often consists of eigenvectors, approximations of eigen-
vectors, or piecewise-constant vectors, which are strongly related to DDM. If one chooses
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eigenvectors, the corresponding eigenvalues would be shifted to zero in the spectrum of the
deflated matrix. This fact has motivated the name ‘deflation method’. Usually, systems with
E are solved directly, using, e.g., a Cholesky decomposition. Moreover, in the actual im-
plementation, a traditional preconditioner, M , is often incorporated to further improve the
convergence. In this case, CG should solve the system based on M−1PA or P T M−1A. We
will detail this is Sect. 2.3.2. For deflation, M can be of the form, e.g., of an incomplete
factorization of A. In the literature, the deflation two-level preconditioner is also known as
the spectral preconditioner, see, e.g., [13].

In the two-level PCG methods used in DDM, such as the balancing Neumann-Neumann
and (two-level) additive Schwarz methods, the preconditioner, M , consists of the local exact
or inexact solves on subdomains. Moreover, Z describes a prolongation (or interpolation)
operator, while ZT is a restriction operator based on the subdomains. In this case, E is called
the coarse-grid (or Galerkin) matrix. In order to speed up the convergence of the additive
Schwarz method, a coarse-grid correction matrix, Q, can be added, which is a so-called
additive coarse-grid correction. Finally, P can be interpreted as a subspace correction, in
which each subdomain is agglomerated into a single cell. More details can be found in [36,
43].

In the MG approach, Z and ZT are also the prolongation and restriction operators, re-
spectively, where typical MG grid-transfer operators allow interpolation between neighbor-
ing subdomains. E and Q are again the coarse-grid (or Galerkin) and coarse-grid correction
matrices, respectively, corresponding to the Galerkin approach. The matrix P can be inter-
preted as the algebraic form of the coarse-grid correction step in MG, where linear systems
with E are usually solved recursively. In the context of MG, M−1 should work as a smoother
that eliminates the high-frequency errors in the residuals and often corresponds to Jacobi or
Gauss-Seidel iterations. Before or after the smoothing step(s), a coarse-grid correction, P ,
is applied to remove the slow-frequencies in the residuals. We refer to [16, 44, 47] for more
details.

2.2 General Linear Systems

The general linear system, that is the basis for two-level PCG methods, is

P Ax = b, P, A ∈ R
n×n. (3)

In the standard preconditioned CG method, x = x is the solution of the original linear sys-
tem, Ax = b, A = A is the SPD coefficient matrix, P = M−1

PREC represents a traditional SPD
preconditioner, and b = M−1

PRECb is the right-hand side. We will call this method ‘Traditional
Preconditioned CG’ (PREC), see also [14, 26].

Next, A may also be a combination of A and P , such that A is symmetric positive
(semi-) definite (SP(S)D), while P remains a traditional preconditioner. Note that this does
not cause difficulties for CG, since it is robust for SPSD matrices, as long as the linear
system is consistent [18]. Furthermore, instead of choosing one traditional preconditioner
for P , we can combine different traditional preconditioners and projection matrices, P and
Q, in an additive or multiplicative way, which will be illustrated below.

The additive combination of two SPD preconditioners, C1 and C2, leads to Pa2 , given by

Pa2 := C1 + C2, (4)

which is also SPD. Of course, the summation of the preconditioners can be done with dif-
ferent weights for C1 and C2. Moreover, (4) can be easily generalized to Pai

for more SPD
preconditioners, C1,C2, . . . ,Ci .
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The multiplicative combination of preconditioners can be explained by considering the
stationary iterative methods induced by the preconditioner. Assuming that C1 and C2 are
two SPD preconditioners, we can combine xi+ 1

2 := xi + C1(b − Axi) and xi+1 := xi+ 1
2 +

C2(b − Axi+ 1
2 ) to obtain xi+1 = xi + Pm2(b − Axi), with

Pm2 := C1 + C2 − C2AC1, (5)

which can be interpreted as the multiplicative operator consisting of two preconditioners.
Subsequently, C1 and C2 could again be combined with another SPD preconditioner, C3, in
a multiplicative way, yielding

Pm3 = C1 + C2 + C3 − C2AC1 − C3AC2 − C3AC1 + C3AC2AC1. (6)

This can also be generalized to Pmi
for C1,C2, . . . ,Ci .

2.3 Definition of the Two-Level PCG Methods

The two-level PCG methods that will be considered in this paper are given and justified
below.

2.3.1 Additive Method

If one substitutes a traditional preconditioner, C1 = M−1, and a coarse-grid correction ma-
trix, C2 = Q, into the additive combination given in (4), this gives

PAD = M−1 + Q. (7)

Using the additive Schwarz preconditioner for M , the abstract form (7) includes the
additive coarse-grid correction preconditioner [2]. The BPS preconditioner, introduced by
Bramble, Pasciak and Schatz in [2], can be written as (7). This has further been analyzed
in, e.g., [5, 6, 32]. If the multiplicative Schwarz preconditioner is taken as M , we obtain
the Hybrid-2 preconditioner [43, p. 47]. In the MG language, PAD is sometimes called an
additive multigrid preconditioner, see [1]. In this paper, the resulting method, associated
with PAD, will be called ‘Additive Coarse-Grid Correction’ (AD).

2.3.2 Deflation Methods

The deflation technique has been exploited by several authors [11, 12, 19, 24, 25, 27–29,
31, 34, 45]. Below, we first describe the deflation method following [45] and, thereafter,
[19, 31, 34].

First note that, from Lemma 2.1, Q = QT , (I − P T )x = Qb and AP T = PA hold.
Then, in order to solve Ax = b, we write x = (I − P T )x + P T x where (I − P T )x can be
computed immediately. For P T x, we solve the deflated system,

PAx̃ = Pb. (8)

Obviously, (8) is singular, and it can only be solved by CG if it is consistent, see also [18].
Since matrix A is nonsingular and Ax = b is consistent, this is certainly true for (8), where
the same projection is applied to both sides of the nonsingular system. If A was singular,
this projection could also be applied in many cases, see [39–42]. Then, because P T x̃ = P T x,
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the unique solution, x, can be obtained via (8), by premultiplying x̃ by P T , and adding it
to Qb, i.e., x = Qb + P T x̃. Subsequently, the deflated system can also be solved, using a
preconditioner, M , which gives

M−1PAx̃ = M−1Pb, (9)

see [45] for details. Linear system (9) can also be written in the form of (3), by taking
P = M−1, A = PA and b = M−1Pb. Note that this is well-defined, since PA is an SPSD
matrix. The resulting method will be called ‘Deflation Variant 1’ (DEF1).

An alternative way to describe the deflation technique is to start with an arbitrary vector,
x̄, and choose x0 := Qb + P T x̄. Then, the solution of Ax = b can be constructed from the
deflated system

AP T y = r0, r0 := b − Ax0. (10)

The non-unique solution, y, is then used to obtain ȳ = P T y. It can be shown that x = x0 + ȳ

is the unique solution of Ax = b. Similarly, the deflated system (10) can also be solved with
preconditioner M , leading to

M−1AP T y = M−1r0, r0 := b − Ax0. (11)

Similar to the procedure for the unpreconditioned case, x can be found from the non-
uniquely determined solution, y, of (11). This leads to an algorithm that is based on the
projection operator P T M−1, rather than M−1P as obtained in the first deflation variant
above, see also [19, 31, 34] for more details. Hence, we solve

P T M−1Ax = P T M−1b, (12)

where the iterates xk within the algorithm are uniquely determined as long as x0 := Qb +
P T x̄ is used. We will treat this in more detail in Sect. 3.2. The resulting method will be
denoted as ‘Deflation Variant 2’ (DEF2). Observe that (12) cannot be written in the form
of (3), with an SPD operator P and an SPSD matrix A. Fortunately, in Sect. 3.2, it will be
shown that (12) is equivalent to a linear system, that is in the form of (3).

The main difference between DEF1 and DEF2 is their flipped two-level preconditioner.
In addition, if we define the ‘uniqueness’-operation as computing v = Qb + P T ṽ, for a
given vector ṽ, this operation is carried out at the end of the iteration process in DEF1, so
that an arbitrarily chosen starting vector, x0, can be used. On the other hand, this operation
has been applied prior to the iteration process in DEF2, which can be interpreted as adopting
a special starting vector. As a consequence, they have different robustness properties with
respect to starting vectors, see Sect. 4.6.

2.3.3 Adapted Deflation Methods

If one applies C1 = Q and C2 = M−1 in a multiplicative combination, as given in (5), then
this yields

PA-DEF1 = M−1P + Q, (13)

see [37] for more details. In the MG language, this operator results from a non-symmetric
multigrid V(1,0)-cycle iteration scheme, where one first applies a coarse-grid correction,
followed by a smoothing step. Note that, although Q and M are SPD preconditioners, (13)
is a non-symmetric operator and, even more, it is not symmetric with respect to the inner
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product induced by A. In addition, PA-DEF1 can also be interpreted as an adapted deflation
preconditioner, since M−1P from DEF1 is combined in an additive way with a coarse-grid
correction, Q. Hence, the resulting method, corresponding to PA-DEF1, will be denoted as the
‘Adapted Deflation Variant 1’ (A-DEF1).

Subsequently, we can also reverse the order of Q and M−1 in (5), i.e., choose C1 = M−1

and C2 = Q, giving

PA-DEF2 = P T M−1 + Q. (14)

Using an additive Schwarz preconditioner for M , PA-DEF2 is the two-level Hybrid-II Schwarz
preconditioner [36, p. 48]. In MG methods, PA-DEF2 is the non-symmetric multigrid V(0,1)-
cycle preconditioner, where M−1 is used as a smoother. Similar to A-DEF1, PA-DEF2 is non-
symmetric. Fortunately, we will see in Sect. 3.2 that A-DEF2 is equivalent to a method based
on a symmetric operator. As in the case of PA-DEF1, PA-DEF2 can also be seen as an adapted
deflation preconditioner, since P T M−1 from DEF2 is combined with Q, in an additive way.
Therefore, the resulting method will be called the ‘Adapted Deflation Variant 2’ (A-DEF2).

2.3.4 Abstract Balancing Methods

The operators PA-DEF1 and PA-DEF2 can be symmetrized, by using the multiplicative combina-
tion of three preconditioners. If one substitutes C1 = Q, C2 = M−1 and C3 = Q into (6),
we obtain

PBNN = P T M−1P + Q.

The operator PBNN is a well-known operator in DDM. In combination with an additive
Schwarz preconditioner for M , and after some scaling and special choices of Z, the operator
PBNN is known as the Balancing-Neumann-Neumann preconditioner, introduced in [21] and
further analyzed, e.g., in [7, 22, 23, 33, 43]. In the abstract form, PBNN is called the Hybrid-1
preconditioner [43, p. 34]. Here, we will call it ‘Abstract Balancing Neumann-Neumann’
(BNN).

Of course, PA-DEF1 and PA-DEF2 could also be symmetrized by using twice M−1 instead of
Q (i.e., C1 = M−1,C2 = Q and C3 = M−1) in (6). This results in the well-known symmetric
multigrid V(1,1)-cycle iteration scheme, where a pre-smoothing step is followed by a coarse-
grid correction and ended with a post-smoothing step. The resulting preconditioner is then
explicitly given by

P = M−1P + P T M−1 + Q − M−1PAM−1. (15)

Note that this operator also follows by combining the A-DEF1 and A-DEF2 operators in
a multiplicative way. In (15), a structural difference can be observed between BNN and
the multigrid V(1,1)-cycle iteration. As mentioned before, in MG, the operator M−1 is
the smoothing operator and the coarse-grid system typically has half of the order of the
original system per direction. Hence, smoothing is cheap compared to solving the coarse-
grid system. In this case, symmetrizing with another smoothing step is natural. In DDM,
M−1 contains all local solves of the subdomain systems, while the dimension of the coarse
system is typically much smaller than the dimension of the original system. Except for
special choices of the restriction and prolongation operator, see, e.g., [4], it is generally
difficult to analyze the spectra of the system preconditioned by (15) in comparison with the
other methods described in this paper. Therefore, we do not include this preconditioner in
our comparison. In [38] a detailed comparison is given.
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Moreover, we will also consider two variants of BNN. In the first variant, we omit the
term Q from PBNN, giving us

PR-BNN1 = P T M−1P,

which remains a symmetric operator. To our knowledge, PR-BNN1 is unknown in the literature,
and this is the first time that its properties are analyzed. The corresponding method is called
‘Reduced Balancing Neumann-Neumann Variant 1’ (R-BNN1). Next, in the second variant
of BNN, we omit both the P and Q terms from PBNN, resulting in

PR-BNN2 = P T M−1, (16)

and this method will be denoted as ‘Reduced Balancing Neumann-Neumann Variant 2’
(R-BNN2). Notice that the operators of both R-BNN2 and DEF2 are equal, i.e., PDEF2 =
PR-BNN2 = P T M−1, where only the implementation appears to be different, see Sect. 2.4.1.
In fact, the implementation of DEF2 is equivalent to the approach as applied in, e.g., [34],
where the deflation method has been derived by combining a deflated Lanczos procedure
and the standard CG algorithm. On the other hand, R-BNN2 is the approach where deflation
is incorporated into the CG algorithm in a direct way [19], and it is also the approach where
a hybrid variant has been employed in DDM [43]. Finally, as mentioned earlier, P T M−1

is a non-symmetric preconditioner, but it will be shown in Sect. 3.2 that both PR-BNN1 and
PR-BNN2 are equivalent to PBNN, for certain starting vectors. Hence, we classify these meth-
ods as variants of the original abstract balancing method, rather than as variants of deflation
methods.

2.4 Aspects of Two-Level PCG Methods

For the sake of completeness, the two-level PCG methods that are considered here are given
in Table 1. More details about the methods can be found in the references, given in the last
column of this table. Subsequently, the implementation and the computational cost of these
methods will be considered in this subsection.

Table 1 List of methods which will be compared. The operator of each method can be interpreted as the pre-
conditioner P , given in (3) with A = A. Where possible, references to the methods and their implementations
are given in the last column

Name Method Operator References

PREC Traditional Preconditioned CG M−1 [14, 26]

AD Additive Coarse-Grid Correction M−1 + Q [2, 36, 43]

DEF1 Deflation Variant 1 M−1P [45]

DEF2 Deflation Variant 2 PT M−1 [19, 31, 34]

A-DEF1 Adapted Deflation Variant 1 M−1P + Q [36, 44, 47]

A-DEF2 Adapted Deflation Variant 2 PT M−1 + Q [36, 44, 47]

BNN Abstract Balancing PT M−1P + Q [21]

R-BNN1 Reduced Balancing Variant 1 PT M−1P –

R-BNN2 Reduced Balancing Variant 2 PT M−1 [21, 43]
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Algorithm 1 General Two-Level PCG Method for solving Ax = b.
1: Select arbitrary x̄ and Vstart, M1, M2, M3, Vend from Table 2
2: x0 := Vstart , r0 := b − Ax0

3: y0 := M1r0, p0 := M2y0

4: for j := 0,1, . . . , until convergence do
5: wj := M3Apj

6: αj := (rj , yj )/(pj ,wj )

7: xj+1 := xj + αjpj

8: rj+1 := rj − αjwj

9: yj+1 := M1rj+1

10: βj := (rj+1, yj+1)/(rj , yj )

11: pj+1 := M2yj+1 + βjpj

12: end for
13: xit := Vend

Table 2 Choices of Vstart, M1, M2, M3, Vend for each method, as used in Algorithm 1

Method Vstart M1 M2 M3 Vend

PREC x̄ M−1 I I xj+1

AD x̄ M−1 + Q I I xj+1

DEF1 x̄ M−1 I P Qb + PT xj+1

DEF2 Qb + PT x̄ M−1 PT I xj+1

A-DEF1 x̄ M−1P + Q I I xj+1

A-DEF2 Qb + PT x̄ P T M−1 + Q I I xj+1

BNN x̄ P T M−1P + Q I I xj+1

R-BNN1 Qb + PT x̄ P T M−1P I I xj+1

R-BNN2 Qb + PT x̄ P T M−1 I I xj+1

Remark 2.1 We emphasize that the parameters of the two-level PCG methods that will be
compared can be arbitrary, so that the comparison between these methods is based on their
abstract versions. This means that the results of the comparison are valid for any full-rank
matrix Z and SPD matrices A and M .

2.4.1 Implementation Issues

The general implementation of the two-level PCG methods given in Table 1 can be found in
Algorithm 1. For each method, the corresponding matrices, Mi , and vectors, Vstart and Vend,
are presented in Table 2. For more details, we refer to [37].

From Algorithm 1 and Table 2, it can be observed that one or more preconditioning and
projection operations are carried out in the steps where the terms Mi , with i = 1,2,3, are
involved. For most two-level PCG methods, these steps are combined to obtain the pre-
conditioned/projected residuals, yj+1. DEF2 is the only method where a projection step is
applied to the search directions, pj+1. Likewise, DEF1 is the only method where the pro-
jection is performed to create wj . In this case, rj+1 = P (b − Axj+1) should hold, while
rj+1 = b − Axj+1 is satisfied for the other methods. This does not lead to problems if one



350 J Sci Comput (2009) 39: 340–370

wants to compare the two-level PCG methods in a fair way. This can be seen as follows.
Denote first the iterates of DEF1 and any other method as x̃j+1 and xj+1, respectively. Then,
for DEF1, we have

rj+1 = P (b − Ax̃j+1) = Pb − AP T x̃j+1 = b − A(Qb + P T x̃j+1) = b − Axj+1,

where xj+1 = Qb + P T x̃j+1 and AP T = PA have been used. Hence, rj+1 = b − Axj+1 is
satisfied for all methods that we consider. In this case, the two-level PCG methods can be
compared fairly by terminating the iterative process of each method when the norm of the
relative residual, ‖rj+1‖2/‖r1‖2, is below a tolerance, δ.

Moreover, notice that we use the same arbitrary starting vector, x̄, in each method, but
the actual starting vector, Vstart , may differ for each method. Finally, it can also be noticed
that the ending vector, Vend, is the same for all methods, except for DEF1.

Recall that P , as given in (3), should be SPD to guarantee convergence of CG, see
also [10]. This is obviously the case for PREC, AD, DEF1, and BNN. It can be shown
that DEF2, A-DEF2, R-BNN1, and R-BNN2 also rely on appropriate operators, where it
turns out that Vstart = Qb + P T x̄ plays an important role in this derivation, see Theorem 3.4.
A-DEF1 is the only method which does not have an SPD operator, and which can also not
be decomposed or transformed into an SPD operator, P . Hence, it cannot be guaranteed
that A-DEF1 always works, but it performs rather satisfactorily for most of the test cases
considered in Sect. 4.

2.4.2 Computational Cost

The computational cost of each method depends not only on the choices of M and Z, but
also on the implementation and on the storage of the matrices. It is easy to see that, for each
iteration, PREC requires 1 matrix-vector multiplication (MVM), 2 inner products (IP), 3
vector updates (VU) and 1 preconditioning step.

Note that AZ and E should be computed and stored beforehand, so that only one MVM
with A is required in each iteration of the two-level PCG methods. Moreover, we distinguish
between two cases considering Z and AZ:

• Z is sufficiently sparse, so that Z and AZ can be stored in approximately two vectors;
• Z is full, so that Z and AZ are full matrices.

The first case, which is the best case in terms of efficiency, occurs often in DDM, where
the columns of Z correspond to subdomains, while the second case occurs, for example,
in (approximated) eigenvector deflation methods. In the coarse grid operators we use the
following operations: ZT y and (AZ)y. In the sparse case the amount of work for both
operations is equal to the cost of an inner product. If Z is full the costs are equal to a
matrix-vector product where the matrix (Z or AZ) has dimensions n× k. For this reason we
have the column ‘inner/matrix-vector multiplications’ in Table 3. For each two-level PCG
method, we give the extra computational cost per iteration above that of PREC, see Table 3.
In the table, the number of operations of the form Py and Qy, for a given vector, y, per
iteration is also provided. Note that, if both Py and Qy should be computed for the same
vector, y, such as in A-DEF1, and BNN, then Qy can be determined efficiently, since it
only requires one IP if Z is sparse, or one MVM if Z is full. Moreover, we remark that the
given computational cost is based on the resulting abstract operators and implementation as
presented in Algorithm 1.

From Table 3, it can be seen that AD is obviously the cheapest method per iteration, while
BNN and R-BNN1 are the most expensive two-level PCG methods, since two operations
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Table 3 Extra computational
cost per iteration of the two-level
PCG methods compared to
PREC. IP = inner products,
MVM = matrix-vector
multiplications, VU = vector
updates and CSS = coarse
system solves. Note that IP holds
for sparse Z and MVM holds for
full Z

Method Theory Implementation

Py, PT y Qy IP/MVM VU CSS

AD 0 1 2 0 1

DEF1 1 0 2 1 1

DEF2 1 0 2 1 1

A-DEF1 1 1 3 1 1

A-DEF2 1 1 4 1 2

BNN 2 1 5 2 2

R-BNN1 2 0 4 2 2

R-BNN2 1 0 2 1 1

with P and P T are involved. With respect to the implementation, this implies that AD only
needs 2 inner/matrix-vector products and 1 coarse system solve extra compared to PREC,
while both BNN and R-BNN1 require obviously more inner/matrix-vector products, coarse
system solves and additional vector updates. Note that in the ‘theory’ columns of Table 3
the computational cost is given, if the operators are used according to their definitions. The
actual implementation can differ a lot as can be seen from the ‘implementation’ columns.
Finally, observe that using a two-level PCG method is only efficient if Z is sparse, or if the
number of projection vectors is relatively small in the case of a full matrix, Z.

3 Theoretical Comparison

In this section, a comparison of eigenvalue distributions of the two-level preconditioned
matrices corresponding to the methods will be made. Thereafter, some relations between
the abstract balancing method and the other methods will be derived. Some parts of the
results are closely related to results known [28, 29, 43], but most of the presented results
are new. We emphasize that all results presented in this section are valid for any full-rank
matrix Z and SPD preconditioner M .

3.1 Spectral Analysis of the Methods

We start this subsection with some notation. Suppose that arbitrary matrices C,D ∈ R
n×n

have spectra σ(C) := {λ1, λ2, . . . , λn} and σ(D) := {μ1,μ2, . . . ,μn}. The addition of the
sets, σ(C) and σ(D), is defined as σ(C) + σ(D) := {μ1 + λ1,μ2 + λ2, . . . ,μn + λn}. Sup-
pose now that B ∈ R

n×n is an arbitrary symmetric positive definite matrix with eigenvalues
{λi} for i = 1,2, . . . , n, sorted increasingly. Then, the (spectral) condition number, κ , of B

is defined as κ(B) := ‖B‖2‖B−1‖2 = λn

λ1
. If B has s zero eigenvalues with s < n, then the

effective condition number of B , κ̃ , is defined as κ̃(B) := λn

λs+1
.

In [46], it has been shown that

κ̃
(
M−1PA

)
< κ

(
M−1A

)
,

for any SPD matrices A and M , and any Z with full rank. This means that the system corre-
sponding to DEF1 is better conditioned than that of PREC. It will follow from the analysis
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below that the system corresponding to PREC is always worse conditioned compared to all
two-level PCG methods described in this paper.

In [28, 29], it has been shown that the effective condition number of DEF1 is not worse
than the condition number of both AD and BNN, i.e.,

κ̃
(
M−1PA

) ≤ κ
(
M−1A + QA

)
,

κ̃
(
M−1PA

) ≤ κ
(
P T M−1PA + QA

)
,

for all full-rank Z and SPD matrices A and M .
In addition to the comparisons of AD, DEF1, and BNN, performed in [28–30], more

relations between the eigenvalue distribution of these and other two-level PCG methods are
given below. We first show in Theorem 3.1, that DEF1, DEF2, R-BNN1, and R-BNN2 have
identical spectra, and that the same is true for BNN, A-DEF1, and A-DEF2.

Theorem 3.1 Suppose that A ∈ R
n×n is SPD. Let M , Q and P be as in Definition 2.1.

Then, the following two statements hold:

• σ(M−1PA) = σ(P T M−1A) = σ(P T M−1PA);
• σ((P T M−1P + Q)A) = σ((M−1P + Q)A) = σ((P T M−1 + Q)A).

Proof Note first that σ(CD) = σ(DC), σ(C + I ) = σ(C) + σ(I) and σ(C) = σ(CT )

hold, for arbitrary matrices C,D ∈ R
n×n, see also [37, Lemma 3.1]. Using these facts and

Lemma 2.1, we obtain immediately that

σ
(
M−1PA

) = σ
(
AM−1P

) = σ
(
P T M−1A

)
,

and that

σ
(
M−1PA

) = σ
(
M−1P 2A

)
= σ

(
M−1PAP T

)
= σ

(
P T M−1PA

)
,

which proves the first statement. Moreover, we also have that

σ
(
P T M−1PA + QA

) = σ
(
P T M−1PA − P T + I

)
= σ

(
(M−1PA − I )P T

) + σ(I)

= σ
(
M−1P 2A − P T

) + σ(I)

= σ
(
M−1PA + QA

)
,

and, likewise,

σ
(
P T M−1A + QA

) = σ
(
P T M−1A − P T

) + σ(I)

= σ
(
AM−1P − P

) + σ(I)

= σ
(
PAM−1P − P

) + σ(I)

= σ
(
P T M−1AP T − P T

) + σ(I)

= σ
(
P T M−1PA + QA

)
,
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which completes the proof of the second statement. �

As a consequence of Theorem 3.1, DEF1, DEF2, R-BNN1, and R-BNN2 can be inter-
preted as one class of two-level PCG methods with the same spectral properties, whereas
BNN, A-DEF1, and A-DEF2 lead to another class of two-level PCG methods. These two
classes can be related to each other by [29, Theorem 2.8], which states that if σ(M−1PA) =
{0, . . . ,0,μk+1, . . . ,μn} is given, then σ(P T M−1PA + QA) = {1, . . . ,1,μk+1, . . . ,μn}.
We can even show that the reverse statement also holds. These two results are presented
in Theorem 3.2.

Theorem 3.2 Suppose that A ∈ R
n×n are SPD. Let M , Q and P be as in Definition 2.1. Let

the spectra of DEF1 and BNN be given by

σ(M−1PA) = {λ1, . . . , λn}, σ (P T M−1PA + QA) = {μ1, . . . ,μn},
respectively. Then, the eigenvalues within these spectra can be ordered such that the follow-
ing statements hold:

• λi = 0 and μi = 1, for i = 1, . . . , k;
• λi = μi, for i = k + 1, . . . , n.

Proof The proof of this theorem goes along the same lines as that of [29, Theorem 2.8]. For
the details we refer to [37]. �

Due to Theorem 3.2, both DEF1 and BNN provide almost the same spectra with the same
clustering. The zero eigenvalues of DEF1 are replaced by eigenvalues equal to one in the
case of BNN. Moreover, note that if 1 ∈ [μk+1,μn] then the effective condition numbers of
BNN and DEF1 are identical. On the other hand, if 1 /∈ [μk+1,μn], then DEF1 has a more
favorable effective condition number compared to BNN. It appears that if eigenvalue 1 is
an outlier, then it can take a number of iterations before superlinear convergence sets in and
from that iteration on the effective condition numbers of both methods are the same (see
Fig. 4.1 in [29]).

Next, Theorem 3.3 relates all methods in terms of their spectra and provides a strong
connection between the two classes as given in Theorem 3.1.

Theorem 3.3 Let the spectrum of DEF1, DEF2, R-BNN1, or R-BNN2 be given by
{0, . . . ,0, λk+1, . . . , λn}, satisfying λk+1 ≤ λk+2 ≤ · · · ≤ λn. Let the spectrum of BNN, A-
DEF1, or A-DEF2 be {1, . . . ,1,μk+1, . . . ,μn}, with μk+1 ≤ μk+2 ≤ · · · ≤ μn. Then, λi = μi

for all i = k + 1, . . . , n.

Proof The theorem follows immediately from Theorem 3.1 and 3.2. �

From Theorem 3.3, it can be concluded that all two-level PCG methods have almost
the same clusters of eigenvalues. Therefore, we expect that the convergence of all methods
will be similar, see Sect. 4.3 for some test cases. Moreover, the zeros in the spectrum of
the first class (consisting of DEF1, DEF2, R-BNN1, or R-BNN2) might become nearly
zero, due to roundoff errors or the approximate solution of coarse systems in the two-level
preconditioner. This gives an unfavorable spectrum, resulting in slow convergence of the
method. This phenomenon does not appear in the case of BNN, A-DEF1, or A-DEF2. Small
perturbations in those two-level PCG methods lead to small changes in their spectra and
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condition numbers. Theoretically, this can be analyzed using Z consisting of eigenvectors,
see [28, Sect. 3], but, in general, it is difficult to examine for general Z. This issue will be
further illustrated in Sects. 4.4 and 4.5 using numerical experiments.

3.2 Equivalences between the Methods

In this subsection, it will be shown that DEF2, A-DEF2, R-BNN1, and R-BNN2 produce
identical iterates in exact arithmetic. More importantly, we will prove that these two-level
PCG methods are equivalent to the more expensive BNN method for certain starting vectors.
First, Lemma 3.1 shows that some steps in the BNN implementation can be reduced, see
also [21] and [43, Sect. 2.5.2].

Lemma 3.1 Let Q and P be as in Definition 2.1. Suppose that Vstart = Qb + P T x̄ instead
of Vstart = x̄ is used in BNN, where x̄ ∈ R

n is an arbitrary vector. Then

• Qrj+1 = 0;
• Prj+1 = rj+1,

for all j = −1,0,1, . . ., in the BNN implementation of Algorithm 1.

Proof For the first statement, the proof is as follows. It can be verified that Qr0 = 0 and
QAp0 = 0. By the inductive hypothesis, Qrj = 0 and QApj = 0 hold. Then, for the in-
ductive step, we obtain Qrj+1 = 0 and QApj+1 = 0, since Qrj+1 = Qrj − αjQApj = 0,

and

QApj+1 = QAyj+1 + βjQApj = QAP T M−1Prj+1 + QAQrj+1 = 0,

where we have used Lemma 2.1.
Next, for the second statement, Pr0 = r0 and PAp0 = Ap0 can be easily shown. Assume

that Prj = rj and PApj = Apj . Then, both Prj+1 = rj+1 and PApj+1 = Apj+1 hold,
because

Prj+1 = Prj − αjPApj = rj − αjApj = rj+1,

and

PApj+1 = PAyj+1 + βjPApj

= PAP T M−1Prj+1 + βjApj

= AP T M−1rj+1 + βjApj

= AP T M−1Prj+1 + βjApj

= A(yj+1 + βjpj )

= Apj+1,

where we have applied the result of the first statement. This concludes the proof. �

Subsequently, we will provide a more detailed comparison between BNN and DEF1,
in terms of errors in the A-norm, see Lemma 3.2. In fact, it is a generalization of [29,
Theorems 3.4 and 3.5], where we now apply arbitrary starting vectors, x̄, instead of zero
starting vectors.
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Lemma 3.2 Suppose that A ∈ R
n×n is SPD. Let Q and P be as in Definition 2.1. Let

(xj+1)DEF1 and (xj+1)BNN denote iterates xj+1 of DEF1 and BNN given in Algorithm 1, re-
spectively. Then, they satisfy

• ‖x − (xj+1)DEF1‖A ≤ ‖x − (xj+1)BNN‖A, if (x0)DEF1 = (x0)BNN;
• (xj+1)DEF1 = (xj+1)BNN, if (x0)DEF1 = x̄ and (x0)BNN = Qb + P T x̄;

Proof The proof is analogous to the proofs as given in [29, Theorems 3.4 and 3.5]. �

From Lemma 3.2, we conclude that the errors of the iterates built by DEF1 are never
larger than those of BNN in the A-norm. Additionally, DEF1 and BNN produce the same
iterates in exact arithmetic, if Vstart = Qb + P T x̄ is used in BNN.

Next, Lemma 3.1 and 3.2 can now be combined to obtain the following important result.

Theorem 3.4 Let Q and P be as in Definition 2.1. Let x̄ ∈ R
n be an arbitrary vector. The

following methods produce exactly the same iterates in exact arithmetic:

• BNN with Vstart = Qb + P T x̄;
• DEF2, A-DEF2, R-BNN1 and R-BNN2 (with Vstart = Qb + P T x̄);
• DEF1 (with Vstart = x̄) whose iterates are based on Qb + P T xj+1.

Proof The theorem follows immediately from Lemma 3.1 and 3.2. �

As a result of Theorem 3.4, BNN is mathematically equivalent to R-BNN1, R-BNN2,
A-DEF2 and DEF2, if Vstart = Qb + P T x̄ is used. They even produce the same iterates as
DEF1, if its iterates, xj+1, are transformed into Qb + P T xj+1. This will be illustrated in
Sect. 4.3.

Another consequence of Theorem 3.4 is that the corresponding operators for DEF2,
A-DEF2, R-BNN1 and R-BNN2 are all appropriate in a certain subspace, although they
are not symmetric. Hence, CG in combination with these operators should, in theory, work
fine. In Sect. 4.6 we investigate the results of Theorem 3.4 if rounding errors are involved.

4 Numerical Comparison

In this section, a numerical comparison of the two-level PCG methods will be performed.
We consider two test problems, a 2-D porous media and a 2-D bubbly flow problem.

4.1 Test Problems and Choice of Projection Vectors

The main differential equation in both porous media and bubbly flow problem is the follow-
ing elliptic equation with a discontinuous coefficient,

−∇ · (K(x)∇p(x)) = 0, x = (x, y) ∈ � = (0,1)2, (17)

where p denotes the pressure, and K is a piecewise-constant coefficient that is equal to

K(x) =
{

σ(x), σ is the permeability in porous media flows;
1

ρ(x)
, ρ is the density in bubbly flows.
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The exact description of the problems and the corresponding choices for projection vectors
are given below.

A standard second-order finite-difference scheme is applied to discretize (17), where we
use a uniform Cartesian grid. This results in our main linear system, Ax = b, with A ∈ R

n×n.
Moreover, we choose as preconditioner, M , the Incomplete Cholesky decomposition without
fill-in [26], IC(0), but it seems that other traditional SPD preconditioners could also be used
instead, leading to similar results, see [45].

4.1.1 Porous Media Flow

In the porous media flow problem, � consists of equal shale and sandstone layers with uni-
form thickness, see Fig. 1(a). The contrast, which is the ratio between the high and low
permeabilities, is ε = 106. We impose a Dirichlet condition on the boundary y = 1 and
homogeneous Neumann conditions on the other boundaries. The layers are denoted by the
disjoint sets, �j, j = 1,2, . . . , k, such that � = ⋃k

j=1 �j . The discretized domain and lay-
ers are denoted by �h and �hj

, respectively.
The projection vectors are chosen such that they are strongly related to the geometry

of the problem. For each �hj
, with j = 1,2, . . . , k, a projection vector, zj , is defined as

follows:

(zj )i :=
{

0, xi ∈ �h \ �hj
;

1, xi ∈ �hj
,

(18)

where xi is a grid point of �h. In this case, each projection vector corresponds to a unique
layer, see also Fig. 2(a). With (18) we then set Z := [z1 z2 · · · zk], thus the columns of Z

consists of orthogonal disjoint piecewise-constant vectors. This choice of Z corresponds to
non-overlapping subdomains, which are often used in DDM.

4.1.2 Bubbly Flow Problem

In the bubbly flow problem, we consider circular air bubbles in � filled with water, see
Fig. 1(b) for the geometry. In this case, the density contrast is equal to ε = 103. We impose
non-homogeneous Neumann boundaries such that the resulting linear system (17) is still
compatible. In contrast to the porous media flow problem, A is now singular.

The projection vectors are again based on (18), but with a significant difference that the
subdomains are taken independently of the bubbles. Instead, identical square subdomains
are chosen, where the number of them can be varied, see also Fig. 2(b). This means that a
subdomain might cover two densities, yielding a more sophisticated situation compared to
the porous media flow problem. It can be shown that the corresponding projection vectors
approximate slow-varying eigenvectors corresponding to small eigenvalues, see e.g. [41].
This is even the case for bubbly flow problems with a more complex geometry, provided
that a sufficient number of subdomains is taken. We omit the last column of Z in order to
get a nonsingular matrix E [39].

4.2 Setup of the Experiments

We will start with a numerical experiment using standard parameters, which means that an
appropriate termination criterion, exact computation of E−1, and exactly computed starting
vectors are used. Results for both test problems are given. Subsequently, numerical experi-
ments will be performed with an approximation of E−1, severe termination tolerances, and
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Fig. 1 Geometry of the
piecewise-constant coefficient,
K(x), in the two test problems

(a) Porous media problem

(b) Bubbly flow problem

perturbed starting vectors. We restrict ourselves to the porous media flow problem in these
experiments, since the results for the bubbly flows turn out to be similar, see [37].

The results for each method will be presented in two ways. First, results will be summa-
rized in a table, presenting the number of iterations and the standard norm of the relative
errors (i.e., ‖xit − x‖2/‖x‖2 with the iterated solution, xit). Second, the results will be pre-
sented graphically. Finally, for each test case, the iterative process of each method will be
terminated if the maximum allowed number of iterations (chosen to be equal to 250) is
reached, or if the norm of the relative residual, ‖rj+1‖2/‖r0‖2, falls below a given toler-
ance. As mentioned in Sect. 2.4.1, this termination criterion leads to a fair comparison of
the two-level PCG methods.

Finally, we remark that the choice of parameters, Z, M and the direct solver for E−1, are
the same for each two-level PCG method. This allows us to compare these methods fairly.
However, in practice, the two-level PCG methods come from different fields, where typical
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(a) Porous media problem (b) Bubbly flow problem

Fig. 2 Geometry of subdomains �j . Number of subdomains is fixed in the porous media problem, whereas
it can be varied in the bubbly flow problem

Table 4 Number of required
iterations for convergence of all
proposed methods, for the porous
media problem with ‘standard’
parameters

Method k = 5 k = 7

n = 292 n = 542 n = 412 n = 552

PREC 102 174 184 222

AD 59 95 74 90

DEF1 58 94 75 90

DEF2 68 94 75 90

A-DEF1 58 95 86 103

A-DEF2 58 94 75 90

BNN 58 94 75 90

R-BNN1 58 94 75 90

R-BNN2 58 94 75 90

choices associated with these fields are made for these parameters. This is also mentioned
in Sect. 2.1. A comparison of the two-level PCG methods with their typical parameters is
done in [20].

4.3 Experiment using Standard Parameters

In the first numerical experiment, standard parameters are used with stopping tolerance δ =
10−10, an exact small matrix inverse E−1 and an unperturbed starting vector, Vstart .

4.3.1 Porous Media Problem

The results are presented in Table 4 and Fig. 3. The relative errors are approximately the
same for all methods. The figure presents only one test case, since a similar behavior is
seen for the other test cases. Moreover, for the sake of a better view, the results for PREC
are omitted in Fig. 3. We note that the A-norm errors form a monotonically decreasing
sequence as we expect from the CG theory.
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Fig. 3 Relative errors in 2-norm during the iterative process, for the porous media problem with n = 552,
k = 7 and ‘standard’ parameters

From Table 4, we observe that PREC needs more iterations to converge when the number
of grid points, n, or number of layers, k, is increased. This only holds partly for the two-level
PCG methods. The convergence of these methods is less sensitive to the number of layers,
since the number of projection vectors is chosen to be equal to the number of layers. PREC
is obviously the slowest method, and the two-level PCG methods, except for A-DEF1, show
approximately the same performance, which confirms the theory (cf. Theorem 3.1 and 3.3).
Notice that even though AD converges comparably well as the other two-level PCG methods
(except A-DEF1), it can be observed in Fig. 3 that AD shows a very erratic behavior with
respect to the errors in the 2-norm. The AD errors measured in the A-norm, however, appear
to be close to those of the other methods [37].

Subsequently, we present the same results in terms of computational cost. We restrict
ourselves to the test case with n = 552 and k = 7, see Table 5. Analogous results are obtained
for the other test cases. The total computational cost within the iterations is given, following
the analysis carried out in Sect. 2.4.2. Due to the sparsity of Z, both Z and AZ can be
stored as approximately two vectors, resulting in the fact that there is no need to perform
extra matrix-vector multiplications, in addition to those required by PREC. It depends on
the exact implementation of the methods (such as the storage and computation with Z, AZ

and E) to determine which two-level PCG method requires the smallest computational cost.
For example, if both IP, VU, CSS and PR require the same amount of computing time,
then it can be deduced from Table 5 that BNN is the most expensive method, whereas AD,
following by DEF1, DEF2 and R-BNN2, has the lowest computational cost per iteration.

4.3.2 Bubbly Flow Problem

The results with the bubbly flow problem can be found in Table 6 and Fig. 4. Now, we keep
the number of grid points, n, constant and we vary the number of projection vectors, k.

By considering Table 6 and Fig. 4, we observe that all methods perform the same, ex-
cept for PREC, AD and A-DEF1. A-DEF1 has difficulties to converge, especially for the
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Table 5 Total computational
cost within the iterations in terms
of number of inner products
(‘IP’), vector updates (‘VU’),
coarse system solves (‘CSS’),
preconditioning step with M−1

(‘PR’), for the porous media
problem with n = 552, k = 7 and
‘standard’ parameters

Method IP VU CSS PR

PREC 222 666 0 222

AD 270 270 90 90

DEF1 270 360 90 90

DEF2 270 360 90 90

A-DEF1 412 412 103 103

A-DEF2 450 360 180 90

BNN 540 450 180 90

R-BNN1 450 450 180 90

R-BNN2 270 360 90 90

Table 6 Number of required iterations for convergence and the 2-norm of the relative errors of all methods,
for the bubbly flow problem with n = 642 and ‘standard’ parameters. ‘NC’ means no convergence within 250
iterations

Method k = 22 k = 42 k = 82

# It. ‖xit−x‖2‖x‖2
# It. ‖xit−x‖2‖x‖2

# It. ‖xit−x‖2‖x‖2

PREC 137 4.6 × 10−7 137 4.6 × 10−7 137 1.8 × 10−7

AD 161 1.1 × 10−8 163 8.4 × 10−9 60 1.1 × 10−8

DEF1 149 1.5 × 10−8 144 3.1 × 10−8 42 1.8 × 10−8

DEF2 149 1.5 × 10−8 144 3.1 × 10−8 42 1.8 × 10−8

A-DEF1 239 3.5 × 10−7 NC 9.0 × 10−6 48 1.5 × 10−9

A-DEF2 149 1.5 × 10−8 144 3.1 × 10−8 42 1.1 × 10−8

BNN 149 1.5 × 10−8 144 3.1 × 10−8 42 1.1 × 10−8

R-BNN1 149 1.5 × 10−8 144 3.1 × 10−8 42 1.1 × 10−8

R-BNN2 149 1.5 × 10−8 144 3.1 × 10−8 42 1.1 × 10−8

cases with k = 22 and k = 42. This is not surprising, since it cannot be shown that it is an
appropriate preconditioner, see Sect. 2.4.1. In addition, the number of projection vectors is
apparently too low to approximate the eigenvectors corresponding to the small eigenvalues,
which is the result of the presence of the bubbles. Therefore, we hardly see any improve-
ments by comparing all two-level PCG methods to PREC in the case of k = 22 and k = 42. It
is unexpected that PREC requires fewer iterations in these cases, but observe that the corre-
sponding solution is somewhat less accurate than the others. Moreover, we remark that AD
performs obviously worse, compared to the other two-level PCG methods.

The computational cost of the methods in this experiment is presented in Table 7. We
restrict ourselves to the test case with k = 82, since analogous results are obtained for the
other test cases. As mentioned in Sect. 4.3.1, it depends on the exact implementation of the
methods to determine which two-level PCG method requires the lowest computational cost.
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(a) k = 22

(b) k = 42

Fig. 4 Relative errors during the iterative process, for the bubbly flow problem with n = 642 and ‘standard’
parameters

4.4 Experiment using Inaccurate Coarse Solves

In the remaining part of this paper, we restrict ourselves to the porous media problem, since
the results for the bubbly flow problems are similar, see [37].
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(c) k = 82

Fig. 4 (Continued)

Table 7 Computational cost
within the iterations in terms of
number of inner products (‘IP’),
vector updates (‘VU’), coarse
system solves (‘CSS’) and
preconditioning step with M−1

(‘PR’), for the bubbly flow
problem with n = 642, k = 82

and ‘standard’ parameters

Method IP VU CSS PR

PREC 137 411 0 137

AD 180 180 42 42

DEF1 126 168 42 42

DEF2 126 168 42 42

A-DEF1 192 192 48 48

A-DEF2 210 168 84 42

BNN 252 210 84 42

R-BNN1 210 210 84 42

R-BNN2 126 168 42 42

For problems with a relatively large number of projection vectors, it might be expensive
to find an accurate solution of the coarse system, Ey = v, by a direct solver at each iteration
of a two-level PCG method. Instead, only an approximate solution, ỹ, can be determined,
using, for example, approximate solvers based on SSOR or ILUT preconditioners, recursive
MG methods or nested iterations, such as a standard (Krylov) iterative solver with a low
accuracy. In this case, ỹ can be interpreted as Ẽ−1v, where Ẽ is an inexact matrix based
on E. This justifies our next experiment, using Ẽ−1 defined as

Ẽ−1 := (I + ψR)E−1(I + ψR), ψ > 0, (19)

where R ∈ R
k×k is a symmetric random matrix with elements from the interval [−0.5,0.5],

see also [28, Sect. 3] for more details. Note that theories, as derived in Sect. 3.2, are not
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Table 8 Number of required iterations for convergence and the 2-norm of the relative errors of all methods,
for the porous media problem with parameters n = 552 and k = 7. A perturbed small matrix, Ẽ−1, is used
with varying perturbation ψ

Method ψ = 10−12 ψ = 10−8 ψ = 10−4

# It. ‖xit−x‖2‖x‖2
# It. ‖xit−x‖2‖x‖2

# It. ‖xit−x‖2‖x‖2

PREC 222 2.6 × 10−8 222 2.6 × 10−8 222 2.6 × 10−8

AD 90 1.0 × 10−7 90 1.4 × 10−7 92 1.2 × 10−7

DEF1 90 2.6 × 10−6 NC 6.8 × 10−7 178 1.4 × 10−3

DEF2 90 2.6 × 10−6 NC 1.6 × 10+2 NC 2.0 × 10+4

A-DEF1 103 2.0 × 10−8 103 2.2 × 10−8 120 2.6 × 10−7

A-DEF2 90 2.2 × 10−8 90 2.6 × 10−8 90 2.5 × 10−7

BNN 90 2.3 × 10−8 90 2.8 × 10−8 90 7.1 × 10−8

R-BNN1 90 6.8 × 10−7 159 2.2 × 10−8 213 6.9 × 10−5

R-BNN2 90 2.6 × 10−6 NC 2.6 × 10−2 NC 1.8 × 10+2

valid for any ψ > 0, but we will see that some of those theoretical results are still confirmed
for relatively large ψ . The sensitivity of the two-level PCG methods to this approximation
with various values of ψ will be investigated and the results will be related to Theorem 3.4.
Note that the results for PREC are not influenced by this adaptation of E−1. They are only
included for reference.

We remark that (19) does not reflect the way that inexact coarse solves typically enter
two-level PCG methods, but it does provide us with good insights into approximate coarse
solves applied to these methods. Additionally, the approximation of E−1 can be quantified
explicitly using (19). Experiments with coarse solves that are done iteratively (i.e., nested
iterations) can be found in [42]. In that paper, it has been shown that it is reasonable to
apply (19), since they give similar results, as will be shown in this subsection. Moreover,
it turns out that the original PCG rather than a flexible variant can still be used in these
experiments, as long as the inner stopping tolerance is sufficiently small. More details about
inexact Krylov subspace methods can also be found in [35].

The results of the experiment can be found in Table 8 and Fig. 5. The behavior of the A-
norm errors is comparable to that of the 2-norm error. We observe that the most robust two-
level PCG methods are AD, BNN and A-DEF2, since they appear to be largely insensitive to
perturbations in E−1. On the other hand, DEF1, DEF2, R-BNN1 and R-BNN2 are obviously
the worst methods, as expected, since the zero eigenvalues of the corresponding systems
become small nonzero eigenvalues due to the perturbation, ψ (cf. Sect. 3.1). In addition, it
can be observed that the errors diverge or stagnate for all test cases with DEF2 and R-BNN2,
whereas they remain bounded and tend to converge in the case of DEF1 and R-BNN1.

4.5 Experiment using Severe Termination Tolerances

In practice, the two-level PCG methods are sometimes compared with a ‘too strict’ termina-
tion criterion. Suppose a method is stopped if

‖rj ‖2
‖b‖2

≤ δ. If δ is taken less than κ(A)μ, where
μ is the machine precision, we call this ‘too strict’. Such a comparison can be unfair, since
certain two-level PCG methods are sensitive to severe termination criteria, see e.g. [15]. We
will investigate this in more detail, performing a numerical experiment with various values
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Fig. 5 Relative errors in 2-norm during the iterative process for the porous media problem with
n = 552, k = 7 and Ẽ−1, where a perturbation ψ = 10−8 is taken

Table 9 Number of required iterations for convergence and the 2-norm of the relative errors of all methods,
for the porous media problem with parameters n = 552 and k = 7. Various termination tolerances, δ, are
tested

Method δ = 10−8 δ = 10−12 δ = 10−16

# It. ‖xit−x‖2‖x‖2
# It. ‖xit−x‖2‖x‖2

# It. ‖xit−x‖2‖x‖2

PREC 134 3.7 × 10−1 >250 2.4 × 10−8 >250 2.4 × 10−8

AD 80 5.2 × 10−6 123 2.4 × 10−8 139 2.4 × 10−8

DEF1 80 7.5 × 10−8 121 2.0 × 10−8 NC 4.4 × 10−7

DEF2 80 7.5 × 10−8 144 1.9 × 10−8 NC 6.6 × 10+1

A-DEF1 80 9.4 × 10−8 121 2.5 × 10−8 190 2.5 × 10−8

A-DEF2 80 7.7 × 10−8 121 2.5 × 10−8 138 2.5 × 10−8

BNN 80 7.7 × 10−8 121 2.4 × 10−9 138 2.4 × 10−8

R-BNN1 80 7.6 × 10−8 121 2.3 × 10−8 NC 2.3 × 10−8

R-BNN2 80 7.5 × 10−8 121 1.9 × 10−8 NC 1.9 × 10−8

of the tolerance, δ. Note that for a relatively small δ, this may lead to a ‘too severe’ termi-
nation criterion with respect to machine precision. However, the aims of this experiment are
to test the sensitivity of the two-level PCG methods to δ and to investigate the maximum
accuracy that can be reached, rather than to perform realistic experiments.

The results of the experiment are presented in Table 9 and Fig. 6. It can be seen that
all methods perform well, even in the case of a relatively strict termination criterion (i.e.,
δ = 10−12). PREC also converges in all cases, but not within 250 iterations. Note, moreover,
that it does not give an accurate solution if δ is chosen too large, see also [45]. For δ <
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Fig. 6 Relative 2-norm errors during the iterative process for the porous media problem with n = 552, k = 7
and termination tolerance δ = 10−16

10−12, DEF1, DEF2, R-BNN1 and R-BNN2, show difficulties, since they do not converge
appropriately and may even diverge. This is in contrast to PREC, AD, BNN, A-DEF1 and
A-DEF2, which give good convergence results for δ = 10−16. Therefore, these two-level
PCG methods can be characterized as robust methods with respect to severe termination
criteria.

4.6 Experiment using Perturbed Starting Vectors

In Sect. 3.2, it has been proven that BNN with Vstart = Qb+P T x̄ gives exactly the same iter-
ates as DEF2, A-DEF2, R-BNN1 and R-BNN2, in exact arithmetic. In this case, the resulting
operators are well-defined and they should perform appropriately. In our next experiment,
we will perturb Vstart in DEF2, A-DEF2, R-BNN1 and R-BNN2, and examine whether this
influences the convergence results. The motivation of this experiment is the same as for the
experiment carried out in Sect. 4.4: for relatively large problems, it can be complicated to
determine Vstart accurately, due to, for example, the inaccurate computation of coarse solves.
It is important to note that if we use approximate starting vectors, then there is no longer any
equivalence between BNN and its reduced methods, as provided in the results of Sect. 3.2.
In this case, it is interesting to see how these methods perform in practice.

The perturbed Vstart, denoted as Wstart, will be defined as a component-wise multiplication
of a random vector and Vstart , i.e., each element of Wstart is defined as

(Wstart)i := (1 + γ (v0)i) (Vstart)i , i = 1,2, . . . , n,

where γ ≥ 0 gives control over the accuracy of the starting vector, and vector v0 is a ran-
dom vector with elements from the interval [−0.5,0.5], taken to give each element of Vstart

a different perturbation. As in the experiment performed in Sect. 4.4, the choice of Wstart

does not reflect the way in which starting vectors are perturbed in practice, but it provides
us with some valuable insights where the perturbation can be quantified in an easy way.



366 J Sci Comput (2009) 39: 340–370

Table 10 Number of required iterations for convergence and the 2-norm of the relative errors of some meth-
ods, for the porous media problem with parameters n = 552, k = 7 and perturbed starting vectors. An asterisk
(*) means that an extra uniqueness step is applied in that test case

Method γ = 10−10 γ = 10−5 γ = 100

# It. ‖xit−x‖2‖x‖2
# It. ‖xit−x‖2‖x‖2

# It. ‖xit−x‖2‖x‖2

DEF2 90 2.2 × 10−8 NC 2.1 × 10+11 NC 3.5 × 10+18

A-DEF2 90 2.5 × 10−8 90 2.5 × 10−8 90 2.4 × 10−8

R-BNN1 90 2.5 × 10−8 NC 2.5 × 10−8* NC 1.3 × 10−5*

R-BNN2 90 2.0 × 10−8 NC 2.9 × 10−6* NC 2.5 × 10−1*

Fig. 7 Relative errors in A-norm during the iterative process for the porous media problem with
n = 552, k = 72, and perturbed starting vectors with γ = 10−5. The plot of the relative errors in 2-norm
is omitted, since the two plots are approximately the same

Furthermore, note that if DEF2, R-BNN1 or R-BNN2 converge using Wstart , then we may
obtain a non-unique solution, since the corresponding operator is singular. Therefore, as in
the case of DEF1, we should apply the ‘uniqueness’ step, as mentioned in Sect. 2.3.2, at the
end of the iteration process. Note that this procedure is not required for A-DEF2, because
this method corresponds to a nonsingular operator.

We perform the numerical experiment using Wstart for different γ . The results can be
found in Table 10 and Fig. 7. Here, we use asterisks to stress that an extra uniqueness step
is applied in the specific method. Moreover, notice that PREC, AD, DEF1 and BNN are not
included in this experiment, since they apply an arbitrary vector, Vstart = x̄, by definition.

From the results, it can be noticed that all involved methods converge appropriately for
γ = 10−10. For γ ≥ 10−5, DEF2, R-BNN1 and R-BNN2 fail to converge, although R-BNN1
seems already to be converged and the current stopping criterion is apparently unreliable for
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this method in this experiment. The most robust method is, obviously, A-DEF2. This method
seems to be completely insensitive to the perturbation, γ . This experiment has shown that the
‘reduced’ variants of BNN have different robustness properties with respect to perturbations
in starting vectors.

4.7 Summary and Discussion

The theoretical results given in Sect. 3 only hold in exact arithmetic and under the assump-
tions required to prove them. However, from a numerical point of view, we have observed
that some of these assumptions are necessary, whereas others are only sufficient for certain
two-level PCG methods. The numerical results confirm the theoretical fact that all two-
level PCG methods perform approximately the same, although A-DEF1 showed problems
in some test cases. This is understood by the fact that A-DEF1 corresponds to a non-SPSD
operator, as also discussed in Sect. 2.4.1.

If the dimensions of the matrix E become large, it is favorable to solve the correspond-
ing systems iteratively, with a low accuracy. In this case, we have seen that DEF1, DEF2,
R-BNN1 and R-BNN2 showed difficulties in convergence. It can be observed that the errors
during the iterative process of DEF2 explode, whereas DEF1 converges slowly to the solu-
tion, but in an erratic way. The most robust methods turn out to be AD, BNN, A-DEF1 and
A-DEF2.

If A is ill-conditioned and the tolerance of the termination criterion, chosen by the user,
becomes too severe, it is advantageous if the two-level PCG method still works appropri-
ately. However, we have observed that DEF1, DEF2, A-DEF1, R-BNN1 and R-BNN2 can-
not deal with too strict tolerances. This is in contrast to AD, BNN, A-DEF2, which remain
robust in all test cases.

In theory, BNN gives the same iterates as DEF2, A-DEF2, R-BNN1 and R-BNN2, for
certain starting vectors. In addition to the fact that these ‘reduced’ variants, except A-DEF2,
are not able to deal with inaccurate coarse solves, some of them are also sensitive to per-
turbations of the starting vector. In contrast to the other methods, A-DEF2 appears to be
independent of these perturbations. This can be of great importance, if one uses multigrid-
like subdomains, where the number of subdomains, k, is very large, and the starting vector
cannot be obtained accurately. We recall that the robustness of the two-level PCG methods
is difficult to analyze theoretically, so that the analysis of this robustness issue is especially
based on numerical experiments.

In the numerical experiments, we have observed that several methods showed divergence,
stagnation or erratic behavior of the errors during the iterative process. This may be caused
by the fact that the residuals gradually lose orthogonality with respect to the columns of Z,
see also [34]. It can easily be shown that

ZT rj = 0, j = 1,2, . . . , (20)

should hold for DEF1, DEF2, A-DEF2, R-BNN1 and R-BNN2. However, it appeared that
(20) is not always satisfied in the experiments. A remedy to recover this orthogonality in the
badly-converging methods is described in, e.g., [34]. If we define the ‘reorthogonalization’
matrix W as

W := I − Z(ZT Z)−1ZT , (21)

then W is orthogonal to Z, i.e.,

ZT W = ZT − ZT Z(ZT Z)−1ZT = 0. (22)
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Now, orthogonality of the residuals, rj , can be preserved, by premultiplying rj by W right
after rj is computed in the algorithm:

rj := Wrj , j = 1,2, . . . . (23)

As a consequence, these adapted residuals satisfy (20), due to (22).1

In the numerical experiments of [37, Sect. 4.6], we have shown that the adapted versions
of the methods, including the reorthogonalization strategy, converge better in terms of the
residuals. Unfortunately, it appeared that accurate solutions could not be obtained using this
approach. To preserve the relation, rj = b − Axj , each iterate xj should be adapted via

xj := xj − A−1Z(ZT Z)−1ZT rj , j = 1,2, . . . . (24)

However, it is clear that (24) is not useful to apply in practice due to the presence of A−1 in
that expression. Hence, the reorthogonalization strategy cannot be used in practice.

5 Conclusions

Several abstract two-level PCG methods, listed in Table 1, have been considered, coming
from the fields of deflation, domain decomposition and multigrid. A comparison of these
methods, whose parameters can be arbitrary, has been carried out by investigating their
theoretical and numerical aspects.

Theoretically, DEF1 appears to be the best method [28–30]. We have seen that all two-
level PCG methods, except for PREC and AD, have comparable eigenvalue distributions.
Two classes of two-level PCG methods could be made, each having the same spectral prop-
erties. The first class consists of DEF1, DEF2, R-BNN1 and R-BNN2, and the second class
includes BNN, A-DEF1 and A-DEF2. Although the differences are surprisingly marginal
and, therefore, similar convergence behaviors are expected, it has been shown that the asso-
ciated spectrum of the methods of the first class is possibly more favorable than those of the
second class.

In numerical experiments with realistic termination criteria and relatively small pertur-
bations in the starting vector and coarse solves, it has been observed that all two-level PCG
methods always converge faster than PREC. More importantly, all two-level PCG methods
show approximately the same convergence behavior, although the residuals of AD some-
times have a nonmonotonical convergence behavior. Both DEF1 and DEF2 are sensitive
to sufficiently large perturbations in the coarse solves or too strict termination criterion. In
contrast to DEF1, DEF2 also has the drawbacks that it cannot deal with perturbed start-
ing vectors and that the method diverges when the convergence deteriorates. The errors are
usually bounded in DEF1, if this method does not converge.

It has been shown that, for certain starting vectors, the expensive operator of BNN can be
reduced to simpler and cheaper operators, which are used in DEF2, A-DEF2, R-BNN1 and
R-BNN2. Hence, some two-level PCG methods of the two spectral classes are mathemati-
cally equivalent in exact arithmetic. However, these reduced variants, except for A-DEF2,

1Note that (20) is not valid for AD, A-DEF1 and BNN. In the case of AD and BNN, this is not a problem,
because they appear extremely robust in most test cases. This is in contrast to A-DEF1, which is not robust in
several test cases, since it is not an appropriate preconditioner, see Sect. 2.4.1. The non-robustness of this pro-
jector cannot be resolved using the reorthogonalization strategy. Moreover, note that the reorthogonalization
operator (23) is relatively cheap, provided that Z is sparse.
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do not appear to be robust in the numerical experiments, when applying inaccurate coarse
solves, strict stopping tolerances or perturbed starting vectors. In fact, one should realize
that the reduced variants of BNN, except A-DEF2, are not as robust as DEF1 or DEF2.

Finally, by examining all theoretical and numerical aspects, we conclude that BNN and
A-DEF2 are the best two-level PCG methods in the sense of robustness. However, BNN
is slightly more expensive to use. Hence, A-DEF2 seems to be the best and most robust
method, considering the theory, numerical experiments and the computational cost.
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