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Abstract A gradual long-time growth of the solution in perfectly matched layers (PMLs)
has been previously reported in the literature. This undesirable phenomenon may hamper
the performance of the layer, which is designed to truncate the computational domain for
unsteady wave propagation problems. For unsplit PMLs, prior studies have attributed the
growth to the presence of multiple eigenvalues in the amplification matrix of the governing
system of differential equations. In the current paper, we analyze the temporal behavior of
unsplit PMLs for some commonly used second order explicit finite-difference schemes that
approximate the Maxwell’s equations. Our conclusion is that on top of having the PML as a
potential source of long-time growth, the type of the layer and the choice of the scheme play
a major role in how rapidly this growth may manifest itself and whether or not it manifests
itself at all.
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1 Introduction

Perfectly matched layers (PMLs) were first introduced by Bérenger [1, 2]. They provide
an efficient mechanism for truncating the computational domain when solving the prob-
lems of propagation of electromagnetic wave over unbounded regions. Beŕenger proposed
to surround the computational domain by a layer of artificial material capable of rapidly at-
tenuating all the outgoing waves while generating no reflections from the interface between
the domain and the layer, regardless of the waves’ frequency or angle of incidence. These
capabilities were attained by splitting the field components, i.e., by introducing the addi-
tional unknowns and equations in the layer, and then using the extra degrees of freedom for
the development of an efficient waves’ attenuation strategy.

From the standpoint of applications, the split field PML of [1, 2] has demonstrated
an overall excellent performance. It, however, has been noticed [3] (see also [4]) that the
Bérenger’s split, as well as other splits available in the literature [5], transform the strongly
hyperbolic (symmetric) Maxwell’s equations into a weakly hyperbolic system. This, in turn,
implies transition from strong well-posedness to weak well-posedness of the Cauchy prob-
lem [6]. The resulting concerns about well-posedness and stability of the Bérenger’s PML
have prompted the development of other PMLs [7–9]. These alternative strategies do not re-
quire splitting the field components, although they still introduce some additional unknowns
inside the layer. Later, however, the unsplit PMLs have also been found susceptible to grad-
ually developing instabilities [10]. A comparative study of some of the various PMLs was
performed in [11].

Two unsplit PMLs were investigated in [10] for the 2D Cartesian transverse electric (TE)
Maxwell’s equations. For the layer that truncates the domain in the x-direction, the so-called
mathematically derived PML of [9] is given by:

∂Ex

∂t
= ∂Hz

∂y

∂Ey

∂t
= − ∂Hz

∂x
− 2σEy − σP

∂Hz

∂t
= ∂Ex

∂y
− ∂Ey

∂x
+ σ ′Q

∂P

∂t
= σEy

∂Q

∂t
= − σQ − Ey

(1)

The additional quantities P and Q are non-zero only in the layer, and the damping of waves

is controlled by the parameter σ(x) = (x−a)3

d3 , where d is the PML thickness and x = a is the
interface between the domain and the layer.

An alternative to (1) is the physically motivated unsplit PML of [7] or [8], which can be
written in the following form [9]:
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(2)
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∂P
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Unlike in (1), there is only one additional quantity, P , inside the PML (2).
The analysis of [10] focuses on the quiescent solutions inside the PML, long after the ini-

tial perturbation has been absorbed. It is shown that if the spatial derivatives are neglected,
then the system of ODEs that results from either (1) or (2) would be characterized by multi-
ple eigenvalues and the degeneracy of eigenvectors. This indicates the possibility of a poly-
nomial growth. Experimentally, a slow growth originating in the PML was indeed observed
in [10] for one specific choice of the discrete approximation, namely when (1) or (2) were
approximated using fourth order central differences in space accompanied by a fourth order
Runge-Kutta method in time.

On the other hand, there have been reports in the literature that for a given computa-
tional setup the growth may or may not be observable, and that the artifacts generated in the
PML, if any, may or may not propagate back into the computational domain [12]. Hence,
in the current paper we set our goal as to systematically study the long-time behavior of the
PMLs (1) and (2) with a number of commonly used explicit second order finite-difference
schemes. Specifically, we consider two versions of the popular Yee scheme—the original
fully staggered Yee scheme of [13] and the scheme obtained by second order staggered Yee
differences in space combined with the Runge-Kutta evolution in time. We also consider
the leap-frog scheme, the Lax-Wendroff scheme, and the central difference scheme sup-
plemented by the Runge-Kutta time integration (subsequently referred to as the central/RK
scheme). Compared to [10], we complement our analysis by looking at the eigenvalues
(amplification factors) of the actual discretizations, as opposed to only those of the differen-
tial problem. Besides, we conduct extensive numerical tests for each of the aforementioned
schemes.

It turns out that the growth can, in fact, be effectively removed by just the discretization
itself. The Yee scheme, the Lax-Wendroff scheme, and the central/RK scheme applied to the
PML (2) exhibit no growth at all in our experiments, whereas both Yee-type schemes, as well
as the Lax-Wendroff scheme, applied to the PML (1) exhibit a very slow growth that can
be deemed non-existent for any practical purpose. On the other hand, the discretization may
also greatly exacerbate the growth and make the computations impossible, which is what
happens to the leap-frog scheme with both PMLs. Finally, the popular family of central
schemes with Runge-Kutta smoothers1 remains susceptible to a moderately slow growth of
the solution in the PML (1), which indicates that the appropriate remedies need to be sought
for. Altogether, we conclude that the phenomenon of growth of the numerical solution in
the PML proves to depend strongly on both the choice of the PML and the choice of the
scheme.

2 Computational Setup

To enable an easier comparison, we take the same setup as in [10]. Our computational do-
main is a Cartesian square: {(x, y) | − a ≤ x ≤ a, −a ≤ y ≤ a} with a = 50; it is terminated
in the x-direction by two symmetrically located PMLs: −a−d ≤ x ≤ −a and a ≤ x ≤ a+d ,

1It is apparently the most straightforward venue to high order approximations.
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where d = 10. The Cartesian discretization grid has square cells: hx = hy = 1. At the top
and bottom boundaries, y = a and y = −a, as well as at the outer boundaries of the PML,
x = a + d and x = −a − d , we use classical locally one-dimensional characteristic artificial
boundary conditions (ABCs, see [14]) obtained by setting to zero the Riemann invariant that
corresponds to the incoming characteristic. We emphasize that having the PML only in one
coordinate direction allows us to avoid the corner problem, which may be a source of addi-
tional numerical difficulties. As such, our study focuses on the issues that can be attributed
solely to the PML.

In all forthcoming simulations, we investigate numerically the evolution on the grid of a
smooth initial perturbation of the magnetic field:

H(x,y,0) =
⎧
⎨

⎩

cos8(
π
√

x2+y2

2r0
), if

√
x2 + y2 ≤ r0

0, if
√

x2 + y2 > r0

where r0 = 10. The initial values of the electric field Ex and Ey are zero. This is a compact
initial condition, and the resulting solution is expected in the form of a wave that exits the
computational domain leaving behind a vanishing “tail” (note, this is a 2D setting with no
Huygens’ principle). The case with a continuously operating forcing function is studied
in [15], and growth of the solution similar to that reported hereafter is also observed.

We additionally emphasize that as we terminate the PML by characteristic ABCs, we
can determine conclusively whether or not the long-term growth, in case it is observed,
shall actually be attributed to the PML. Indeed, we can first run the computation with the
PML. Then, we can merely turn off the PML (by setting σ(x) ≡ 0) while leaving all other
components of the algorithm intact and while still keeping all the boundaries nonreflecting
(to the degree permitted by the locally one-dimensional treatment). If no growth is detected
in the second case (no PML), then the previously observed growth is clearly due to the PML
and nothing else. Hereafter, if the growth is reported, it shall be assumed that it has been
verified this way.

Finally, let us quantify the notion of a long time. Introduce the unit of time as the domain
size over the propagation speed: T = 2a/c, where c = 1. We will be investigating the phe-
nomena that start manifesting themselves no earlier than 10T to 15T and all the way up to
hundreds and thousands of T ’s.

3 The Original Yee Scheme

The staggered Yee scheme [13] as applied to the mathematical PML (1) reads:
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where Hz ≡ H , the indices m, n, and p correspond to x, y, and t , respectively, and the
equations for Ey and Q are approximated semi-implicitly. For the PML (2), the approxi-
mation using Yee scheme looks similar. In actual numerical runs, the Yee scheme exhibits
no growth with the physical PML (2). More specifically, the magnitude of the solution de-
cays gradually and does not exceed 10−6 at t = 2500T . From the standpoint of practice, this
value is extremely large, and hence we can say that the growth does not manifest itself at all.
For the mathematical PML (1), scheme (3) still displays some growth but it is very slow; no
artifacts can be seen until several hundred T .

In Fig. 1, we are showing a typical snapshot of the solution obtained using scheme (3)—
the level lines of Ex(x, y, t) at t = 500T . Other quantities look similar, their magnitude
across the domain does not exceed 0.5. In practice, the time t = 500T is also very large
and we therefore believe that the growth shown in Fig. 1 can be disregarded in most cases.
Moreover, one can see from Fig. 1 that the artifacts originate in the PML near its interface
with the domain, i.e., in the region where σ(x) is small. This observation is generally in
agreement with the analysis of [10].

It is also interesting to see what happens to the eigenvalues. We adopt an approach similar
to that of [10] and analyze quiescent solutions in the PML, i.e., assume that there is no
spatial variation and neglect all spatial differences. Then, the difference equations for Ey

and P decouple from the rest of system (3), and dropping m and n for convenience, we have
(at a given location):

Ey
p+1/2 − Ey

p−1/2

τ
= − σ(Ey

p+1/2 + Ey
p−1/2) − σP p

P p+1 − P p

τ
= σEy

p+1/2

(4)

Fig. 1 Ex for the Yee scheme
(3) at t = 500T ; the contours are
equally spaced between −0.475
and 0.475 with the increment
0.05
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System (4) is a second order system of ordinary difference equations. Its eigenvalues can be
easily computed: λ1 = 1/(1 + στ) and λ2 = 1 − στ . Compared to the continuous case [10],
we observe a split of the eigenvalue, because the differential counterpart of system (4) has
a degenerate eigenvalue λ = −σ . The differential physical PML (2) in the quiescent state is
characterized by a double eigenvalue λ = 0 with only one eigenvector. For the Yee scheme,
however, it translates into a degenerate double eigenvalue as well, λ = 1, i.e., there is no
split. We note that in [10], the growth of the solution in the PML (1) was attributed precisely
to the degenerate eigenvalue λ = −σ . Yet our numerical experiments with the Yee scheme
show that this growth, no matter how slow it is, is present for the PML (1), for which the
double eigenvalue gets split, and is not present for the PML (2), for which it stays unsplit.

4 The Leap-Frog Scheme

Let us write down the leap-frog scheme as it applies to system (2):

Ex
p+1
m,n − Ex

p−1
m,n

2τ
= H

p
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p
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2hy

+ σm(Ex
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p
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p
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(5)
H
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p
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p

m,n−1

2hy
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p
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p
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2hx

− σmHp
m,n

P
p+1
m,n − P

p−1
m,n

2τ
= σm(Ex

p
m,n − P p

m,n)

We will use the principle of frozen coefficients and investigate the von Neumann stability of
scheme (5) for a fixed value of σ �= 0. Substituting the solution qλpei(αm+βn) into (5), where
q is a 4-dimensional vector and α and β are the frequencies that correspond to x and y, we
require that the corresponding determinant be zero and obtain (hx = hy = h):

4λ2(λ2 − 1)2τ 2 sin2 α + (−1 + λ2 + 2λστ)2(h2(λ2 − 1)2 + 4λ2τ 2 sin2 β) = 0

An algebraic equation of degree 8 is impossible to solve in the general case. However, for
the simplest case of a quiescent solution, α = β = 0, we have:

λ1,2 = −στ −
√

1 + σ 2τ 2, λ3,4 = −στ +
√

1 + σ 2τ 2, and λ5,6,7,8 = 1

We see that the eigenvalues λ1,2 are located outside the unit disk. Still, for sufficiently small
time steps we can always claim that |λ1,2| ≤ 1 + const τ . Hence, the situation is not “fatal,”
and scheme (5) may remain formally stable for finite time intervals,2 or, more precisely, the
necessary von Neumann condition of stability may still hold, provided that the other eigen-
values that correspond to non-zero frequencies will not “misbehave.” However, the stability
constant becomes exponentially large and obviously cannot grow slower than an exponential
function of time even if all α �= 0 and β �= 0 are taken into account. In practice, the com-
putation is completely ruined already at short times t ∼ T . The results for the mathematical
PML (1) are virtually identical.

2For long time stability, the eigenvalues have to be strictly inside the unit circle.
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5 The Lax-Wendroff Scheme

The Lax-Wendroff scheme for either type of the PML is obtained in the usual way, by re-
expressing the second time derivative of each unknown quantity through the corresponding
equation(s) and subsequently canceling the O(τ ) term in the truncation error by subtraction.
For PML (1), this yields:
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= σmEy
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2
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In the quiescent state, equations for Ey and P decouple from system (6), cf. (4). Then,
analysis of the eigenvalues similar to the one conducted in Sect. 3 yields: λ1,2 = 1 − στ +
σ 2τ2

2 . We see that the multiple eigenvalue from the differential system does not get split by
the discretization.

There is, however, an alternative way of discretizing the ODEs from system (1). Namely,
one can use a semi-implicit (Crank-Nicolson type) scheme for these two equations and still
maintain the overall second order accuracy. In this case, the continuous multiple eigenvalue
gets split by the discretization:

λ1,2 = 1 − στ + σ 2τ 2

2
+ σ 3τ 3

4
± σ 2τ 2

4

√
−4 + 4στ + σ 2τ 2

Yet in our numerical experiments no difference in the long-time behavior has been ob-
served between scheme (6) and the Lax-Wendroff scheme with the ODEs approximated
semi-implicitly. Both schemes develop a very slow growth, with the artifacts becoming no-
ticeable at about 500T , see Fig. 2. In accordance with the observations of [10], they originate
near the interface between the domain and the layer.
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Fig. 2 Ex for the Law-Wendroff
scheme (6) at t = 500T ; the
contours are equally spaced
between −0.575 and 0.575 with
the increment 0.05

The Lax-Wendroff scheme for the physical PML (2) can be built in much the same way
as scheme (6). In the experiments, PML (2) exhibits no artificial growth at least until t =
2500T . Altogether, this behavior is very similar to what we have seen for the Yee scheme in
Sect. 3.

It should also be noted that the implementation of scheme (6) requires one special con-
sideration. Originally, it was noticed that the artifacts in the solution could develop much
more rapidly than shown in Fig. 2, and starting predominantly at the intersections of the
interfaces between the domain and the PML x = ±a with the lateral boundaries y = ±a.
This was attributed to the presence of the term σ ′′Q in the equation for Ey in system (6). For
the cubic profile of σ(x), this term has relatively low regularity at the interfaces x = ±a, it
is continuous with discontinuous first derivative. If, however, this term is merely removed,
the growth displayed by scheme (6) slows down very considerably and does not noticeably
manifest itself until several hundred T . In doing so, inside the computational domain the
scheme still remains a complete second order Lax-Wendroff.

6 The Central Difference/RK Scheme

Let q
p
m,n denote the complete vector of unknowns at the spatial location (m,n) and time

level p. This vector has five components for the PML (1) and four components for the
PML (2). Let G(q) denote the operator of spatial discretization. It replaces the x and y

partial derivatives on the right-hand side of either (1) or (2) by the corresponding second
order central differences. It also replaces the non-differentiated terms by the appropriate
nodal values. Then, the central difference second order scheme for either system (1) or
system (2) with the standard fourth order Runge-Kutta evolution in time is given by:

q
p+1
m,n − q

p
m,n

τ
= 1

6
(k1 + 2k2 + 2k3 + k4) (7a)

where

k1 = G(qp
m,n), k2 = G(qp

m,n + τk1/2)

k3 = G(qp
m,n + τk2/2), k4 = G(qp

m,n + τk3)
(7b)
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Fig. 3 H for the central/RK
scheme (7a)–(7b) applied to the
PML (1) at t = 15T ; the contours
are equally spaced between −0.4
and 0.4 with the increment 0.1
and with the exception of the
zero contour

Alternatively, one can use a third order Runge-Kutta evolution in time, which yields:

q
p+1
m,n − q

p
m,n

τ
= 1

4
(k1 + 3k3) (8a)

where

k1 = G(qp
m,n), k2 = G(qp

m,n + τk1/3), k3 = G(qp
m,n + 2τk2/3) (8b)

Note that second order Runge-Kutta methods cannot be applied to the central difference
spatial discretization G(q) because the resulting scheme will be unstable. In doing so, the in-
stability will not be due to the PML, it will rather be a genuine von Neumann instability. On
the other hand, both schemes (7a)–(7b) and (8a)–(8b) are stable, provided that the Courant
number does not exceed 2.8 for scheme (7a)–(7b) and about 1.7 for scheme (8a)–(8b).

Analysis of the eigenvalues in the quiescent state (similar to the analysis conducted in
Sects. 3 and 5) shows that either scheme, (7a)–(7b) or (8a)–(8b), applied to either system,
(1) or (2), preserves multiple eigenvalues that characterize the differential formulation.

As far as the numerical results, both schemes (7a)–(7b) and (8a)–(8b) applied to the
mathematical PML (1) produce a moderate growth, with the artifacts clearly observable
already for the times t ranging between 10T and 15T , see Fig. 3. Furthermore, unlike in
the previous settings (Sects. 3 and 5), we could not see here the artifacts developing in the
layer and then propagating toward the domain. We rather saw them gradually picking up
throughout the entire computational region, as Fig. 3 shows. We are completely sure though
that these artifacts are still due to the layer and nothing else, because it has been verified
by switching off the PML while keeping all other parameters intact, as explained in Sect. 2.
Moreover, it has also been verified that these artifacts are not due to any von Neumann type
instability. They develop with the same rate (with respect to the actual time rather than the
number of steps) for the Courant number taken on the borderline of stability region, as well
as for the three times smaller Courant number.

For the physical PML (2), no growth of the Runge-Kutta solution could be observed at
least until t = 2500T . This is in contrast with the findings of [10], although in [10] the
differences in space were fourth order, and the code was multi-block with characteristics-
based treatment of the interfaces.
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Fig. 4 Ex for the Yee/RK
scheme applied to the PML (1) at
t = 500T ; the contours are
equally spaced between −0.475
and 0.475 with the increment
0.05

7 The Yee/RK Scheme

In Sects. 3 and 6, we have seen that the behavior of the original Yee scheme and that of
the central/RK scheme differ noticeably from one another. Hence, we decided to include
a combination scheme in our study that has Yee-type staggered differences in space, see
formula (3), and four stage Runge-Kutta evolution in time, see formulae (7a)–(7b). In doing
so, there is no staggering of the variables in time. The resulting Yee/RK scheme is a also a
popular tool among the CEM practitioners.

Analysis of the quiescent state eigenvalues for this scheme is exactly the same as the
corresponding analysis for the central/RK scheme, which we conducted in Sect. 6. Indeed,
once all the spatial differences are dropped, the two schemes reduce to one another. The
analysis shows that multiple eigenvalues that characterize the continuous formulation of the
problem are also preserved by the discretization.

Computational behavior of the combined Yee/RK scheme appears very similar to that of
the original Yee scheme, see Sect. 3. In Fig. 4, we are showing the level lines for the electric
field Ex at t = 500T . It is easy to see that this plot closely resembles the corresponding plot
for the original Yee scheme that we are showing in Fig. 1. We therefore conclude that the
faster growth of the solution due to the PML that we observed in Sect. 6 for the central/RK
scheme should mostly be attributed to the type of spatial discretization rather than to the
type of time integration employed. This also shows that the analysis of eigenvalues in the
quiescent state only may be insufficient.

8 Summary

We summarize our observations and results of the analysis in Table 1.
Altogether, the physical unsplit PML (2) seems somewhat less susceptible to developing

the long-time growth. For the mathematical PML (1), when it is used with either type of
the Yee scheme or the Lax-Wendroff scheme, the growth can still be disregarded for all
practical purposes. This growth, however, is more rapid for the central difference scheme
with Runge-Kutta evolution in time.

We realize, of course, that the analysis in this paper is somewhat limited in its scope.
For example, we cannot say ahead of time what’s going to happen to the reader’s favorite
high order scheme if applied to one of the PMLs we have considered. On the other hand, we
have analyzed the performance of all commonly used second order explicit finite-difference
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Table 1 Long-time behavior of
unsplit PMLs with second order
schemes.

Schemes

Yee Leap-frog

mathemat. growth ∼500T rapid

PML (1) eigenvalues split |λ| > 1

physical growth no rapid

PML (2) eigenvalues multiple |λ| > 1

Schemes

Lax-Wendroff Central/RK Yee/RK

expl. ODEs impl. ODEs 4-th RK 3-rd RK 4-th RK

∼500T ∼500T ∼15T ∼15T ∼500T

multiple split multiple multiple multiple

no no

multiple multiple multiple multiple

schemes, and within this class of methods reliable predictions can be made based on the
data from Table 1. Otherwise, analysis of the eigenvalues for a discretization not covered
in this paper can be performed similarly. It should be mentioned though that changing the
spatial discretization alone could noticeably change the numerical behavior, as shown by the
comparison of the central/RK scheme (Sect. 6) and the Yee/RK scheme (Sect. 7). Hence,
the quiescent eigenvalue analysis following [10] may need to be supplemented by a more
comprehensive study in the future that would enable more reliable predictions of the PML
performance.

To summarize, the presence or absence of the growth of numerical solution inside the
PML seems to be strongly affected by both the type of the layer and the type of discretiza-
tion, in particular, the discretization in space. Whereas in many cases no practically sig-
nificant growth can be observed, there are nonetheless distinct situations when the growth
clearly manifests itself. In our opinion, these observations justify the development of spe-
cial methodologies for stabilizing the PMLs over long propagation times. One particular
methodology that achieves this goal has been proposed in our recent paper [15]; it employs
the lacunae-based integration in time along with the PML. Work [15] also addresses the case
of continuous excitation in time, as opposed to the solutions driven only by initial conditions
that we have studied in the current paper.
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