Skip to main content
Log in

Stable Boundary Treatment for the Wave Equation on Second-Order Form

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A stable and accurate boundary treatment is derived for the second-order wave equation. The domain is discretized using narrow-diagonal summation by parts operators and the boundary conditions are imposed using a penalty method, leading to fully explicit time integration. This discretization yields a stable and efficient scheme. The analysis is verified by numerical simulations in one-dimension using high-order finite difference discretizations, and in three-dimensions using an unstructured finite volume discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamberger, A., Glowinski, R., Tran, Q.H.: A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change. SIAM J. Numer. Anal. 34(2), 603–639 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bayliss, A., Jordan, K.E., Lemesurier, B.J., Turkel, E.: A fourth order accurate finite difference scheme for the computation of elastic waves. Bull. Seismol. Soc. Am. 76(4), 1115–1132 (1986)

    Google Scholar 

  3. Calabrese, G.: Finite differencing second order systems describing black holes. Phys. Rev. D 71, 027501 (2005)

    MathSciNet  Google Scholar 

  4. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cohen, G., Joly, P.: Construction and analysis of fourth-order finite difference schemes for the acoustic wave equation in nonhomogeneous media. SIAM J. Numer. Anal. 33(4), 1266–1302 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Diener, P., Dorband, E.N., Schnetter, E., Tiglio, M.: Optimized high-order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions. J. Sci. Comput. 32(1), 109–145 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grote, M., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Analysis 44, 2408–2431 (2006)

    Article  MATH  Google Scholar 

  8. Grote, M., Schneebeli, A., Schötzau, D.: Interior penalty discontinuous Galerkin method for maxwell’s equations: Energy norm error estimates. J. Comput. Appl. Math. 204, 375–386 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gustafsson, B., Kreiss, H.O., Sundström, A.: Stability theory of difference approximations for mixed initial boundary value problems. Math. Comput. 26(119), 649–686 (1972)

    Article  MATH  Google Scholar 

  10. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8, 47–106 (1999)

    Article  MathSciNet  Google Scholar 

  11. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2008)

    MATH  Google Scholar 

  12. Kelly, K.R., Ward, R.W., Treitel, S., Alford, R.M.: Synthetic seismograms: A finite difference approach. Geophysics 41, 2–27 (1976)

    Article  Google Scholar 

  13. Kreiss, H.-O., Petersson, N.A.: An embedded boundary method for the wave equation with discontinuous coefficients. SIAM J. Sci. Comput. 28, 2054–2074 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kreiss, H.-O., Petersson, N.A.: A second order accurate embedded boundary method for the wave equation with Dirichlet data. SIAM J. Sci. Comput. 27, 1141–1167 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kreiss, H.-O., Petersson, N.A., Yström, J.: Difference approximations for the second order wave equation. SIAM J. Numer. Anal. 40, 1940–1967 (2002)

    Article  Google Scholar 

  16. Kreiss, H.-O., Petersson, N.A., Yström, J.: Difference approximations of the Neumann problem for the second order wave equation. SIAM J. Numer. Anal. 42, 1292–1323 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kreiss, H.-O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, San Diego (1974)

    Google Scholar 

  18. Kreiss, H.-O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus XXIV, 3 (1972)

    MathSciNet  Google Scholar 

  19. Lehner, L., Neilsen, D., Reula, O., Tiglio, M.: The discrete energy method in numerical relativity: towards long-term stability. Class. Quantum Gravity 21, 5819–5848 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lehner, L., Reula, O., Tiglio, M.: Multi-block simulations in general relativity: high-order discretizations, numerical stability and applications. Class. Quantum Gravity 22, 5283–5321 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mattsson, K.: Boundary procedures for summation-by-parts operators. J. Sci. Comput. 18, 133–153 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mattsson, K., Ham, F., Iaccarino, G.: Stable and accurate wave propagation in discontinuous media. J. Comput. Phys. 227, 8753–8767 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199(2), 503–540 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mattsson, K., Nordström, J.: High order finite difference methods for wave propagation in discontinuous media. J. Comput. Phys. 220, 249–269 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mattsson, K., Svärd, M., Carpenter, M.H., Nordström, J.: High-order accurate computations for unsteady aerodynamics. Comput. Fluids 36, 636–649 (2006)

    Article  Google Scholar 

  27. Mattsson, K., Svärd, M., Nordström, J.: Stable and accurate artificial dissipation. J. Sci. Comput. 21(1), 57–79 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mattsson, K., Svärd, M., Shoeybi, M.: Stable and accurate schemes for the compressible Navier-Stokes equations. J. Comput. Phys. 227(4), 2293–2316 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nordström, J., Mattsson, K., Swanson, R.C.: Boundary conditions for a divergence free velocity-pressure formulation of the incompressible Navier-Stokes equations. J. Comput. Phys. 225, 874–890 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nycander, J.: Tidal generation of internal waves from a periodic array of steep ridges. J. Fluid Mech. 567, 415–432 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Olsson, P.: Summation by parts, projections, and stability I. Math. Comput. 64, 1035 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Olsson, P.: Summation by parts, projections, and stability II. Math. Comput. 64, 1473 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. Shubin, G.R., Bell, J.B.: A modified equation approach to constructing fourth order methods for acoustic wave propagation. SIAM J. Sci. Stat. Comput. 8(2), 135–151 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  34. Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110, 47–67 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  35. Svärd, M., Gong, J., Nordström, J.: An accuracy evaluation of unstructured node-centred finite volume methods. Appl. Numer. Math. 58(8), 1142–1158 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comput. Phys. 218, 333–352 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Szilagyl, B., Kreiss, H.-O., Winicour, J.W.: Modeling the black hole excision problem. Phys. Rev. D 71, 104035 (2005)

    MathSciNet  Google Scholar 

  38. Tsynkov, S.V.: Numerical solution of problems on unbounded domains: a review. Appl. Numer. Math. 27, 465–532 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. Virieux, J.: Sh-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 49, 1933–1957 (1984)

    Article  Google Scholar 

  40. Virieux, J.: P-sv wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 51, 889–901 (1986)

    Article  Google Scholar 

  41. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Mattsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattsson, K., Ham, F. & Iaccarino, G. Stable Boundary Treatment for the Wave Equation on Second-Order Form. J Sci Comput 41, 366–383 (2009). https://doi.org/10.1007/s10915-009-9305-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9305-1

Keywords

Navigation