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Abstract
A recent article by Deng and Cai introduced fourth-order image approximations to the reaction
field for a charge inside a dielectric sphere immersed in a solvent of low ionic strength. To
represent such a reaction field, the image approximations employ a point charge at the classical
Kelvin image point and two line charges that extend from the Kelvin image point along the radial
direction to infinity. In this paper, a sixth-order image approximation is developed, using the same
point charge with three different line charges. Procedures on how to discretize the line charges by
point image charges and how to implement the resulting point image approximation in O(N)
complexity for potential and force field calculations are included. Numerical results demonstrate
the sixth-order convergence rate of the image approximation and the O(N) complexity of the fast
implementation of the point image approximation.
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1 Introduction
Following [5,6], this paper concerns fast and accurate calculation of electrostatic interactions
among point charges inside a spherical dielectric cavity embedded in an ionic solvent of
dissimilar dielectric constant. Such a problem could be encountered in many applications
such as hybrid explicit/implicit solvent biomolecular dynamics simulations [15,16,22], in
which biomolecules and a part of solvent molecules within a dielectric cavity are explicitly
modeled while a surrounding dielectric continuum is used to model bulk effects of the
solvent outside the cavity.

The point charges in the dielectric cavity will polarize the surrounding dielectric medium,
which in turn generates a reaction field to the electric field throughout the cavity. The
electric potential field inside the cavity is thus expressed as Ψin = ΨS + ΨRF, where ΨS is the
Coulomb potential given by the Coulomb's Law, and ΨRF is the reaction field which will
dominate the computational cost for calculating the electric field inside the cavity.
Therefore, fast and accurate calculation of such a reaction field will have a wide impact on
computational simulations for chemical and biological systems involving electrostatic
interactions within a solvent.
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In case of a spherical cavity, a popular approach to calculate the reaction field is the method
of images, in which the reaction field is represented in terms of potentials of discrete image
charges. For the pure water solvent, namely, with no ions present in the solvent, a variety of
approaches exist for calculating the reaction field for charges inside the spherical cavity, for
example, the high-order accurate multiple image approximation [2] and references therein.
For an ionic solvent, by assuming that the ionic strength of the solvent is low enough so that
the product of the inverse Debye screening length of the solvent and the radius of the
spherical cavity is less than one, image approximations of various orders (up to fourth-order)
to the ionic solvent induced reaction field have been developed. More specifically, in [5], a
first- and a second-order image approximations are presented using a point image charge at
the classical Kelvin image point and a line image charge that extends from this Kelvin image
point along the radial direction to infinity. Later in [6], a fourth-order image approximation
and its improved version are obtained using the same point image charge together with two
line image charges that extend from the Kelvin image point along the radial direction to
infinity. Following the same procedure as used in [5,6], we shall develop in this paper a
sixth-order accurate image approximation to the ionic solvent induced reaction field, which
will provide higher accuracy in the evaluation of potential and force fields inside the cavity.

The structure of the paper is as follows. In Sect. 2, the exact series solution to the ionic
solvent induced reaction field due to a point charge inside a dielectric sphere is briefly
reviewed. Then, in Sect. 3, after a short description of the previous fourth-order image
approximations, a sixth-order image approximation to the reaction field by a point image
charge at the classical Kelvin image point and three line image charges is developed. How to
discretize the line image charges by point image charges is then discussed in Sect. 4. Next in
Sects. 5 and 6, details are given on how to calculate in O(N) complexity the potential and the
force fields among N charges inside the spherical cavity, respectively. Numerical results are
presented in Sect. 7 to validate the convergence property and investigate the efficiency of
the sixth-order image approximation. Finally a conclusion is made in Sect. 8.

2 Exact Series Solution to the Ionic Solvent Induced Reaction Field
By the principle of linear superposition, the reaction field due to a single point charge q
inside a spherical cavity of radius a centered at the origin only needs to be considered. The
sphere has a dielectric constant εi, and the surrounding ionic solvent is represented as a
homogeneous medium of a dielectric constant εo. The point charge q is located on the x-axis
inside the sphere at a distance rS < a from the spherical center, as shown in Fig. 1.

It is well-known that the total electric potential Ψin(r) inside the cavity is given by the
solution of the Poisson equation

(2.1)

where δ(r) denotes the Dirac delta function. Outside the cavity, on the other hand, by
assuming that the mobile ion concentration follows the Debye-Hückel theory, namely, the
mobile ion charges follow a Boltzmann distribution in the mean field approximation, for a
solvent of low ionic strength, the electric potential Ψout(r) is then given by the solution of
the linearized Poisson-Boltzmann equation (LPBE) [14]

(2.2)

where λ is the inverse Debye screening length determined by the ionic concentration and the
exterior dielectric constant εo (for the pure water solvent, λ 0). On the interface Γ of the
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dielectric cavity and its surrounding dielectric medium, the following two boundary
conditions are to be satisfied for the continuities of the potential and the fluxes along the
normal direction of the interface

(2.3)

where n is the unit outward vector normal to the surface of the cavity.

Using the classical electrostatic theory, the reaction field of the spherical dielectric can be
solved analytically [5]. More precisely, with respect to a spherical coordinate system (r, θ,
φ) originating in the center of the sphere (the pole is denoted by the x-axis in this paper), due
to the azimuthal symmetry, the reaction field at a point r = (r, θ, φ) inside the sphere takes
on the form

(2.4)

where Pn(x) represent the Legendre polynomials and An are the expansion coefficients given
by

(2.5)

where u = λa, rK = a2/rS with rK = (rK, 0, 0) denoting the classical Kelvin image point, and
kn(r) are the modified spherical Hankel functions [1,9]

(2.6)

In theory, any desired degree of accuracy can be obtained using the direct series expansion
(2.4). In the case that the point charge is close to the spherical boundary, when calculating
the reaction field at an observation point also close to the boundary, the convergence of the
series expansion is slow due to the fact that r/rK = rrS/a2 ≈ 1, requiring a great number of
terms in the series expansion to achieve satisfactory accuracy in the reaction field.

3 Line Image Approximations to the Reaction Field
Let us now turn ourselves to the problem of finding image charges outside the spherical
region giving rise to the reaction potential inside the sphere. For the pure water solvent, such
image charges include a point charge at the classical Kelvin image point and a continuous
line charge extending along the radial direction from this Kelvin image point to infinity
[17,20,21]. For an ionic solvent, as mentioned earlier, by assuming that the ionic strength of
the solvent is low enough such that the product of the inverse Debye screening length λ
(which is proportional to the square root of the ionic concentration) and the radius of the
spherical cavity a is less than one (u = λa < 1), several image approximations of various
orders (in terms of u = λa) to the ionic solvent induced reaction field have been developed
[5,6]. It should be emphasized again that the assumption of u = λa < 1 is physically
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justifiable since the condition of low ionic strength is required for the linearization of the
Poisson-Boltzmann equation to be meaningful.

3.1 Previous Fourth-Order Image Approximations
The key idea in the development of the foregoing image charge methods is to approximate

 with simple rational functions of n when u is small. In fact, by applying the
expansion of the modified spherical Hankel function

(3.1)

which essentially implies

a fourth-order image approximation to the ionic solvent induced reaction field can be
obtained as follows [6]

(3.2)

where the constant position-independent correction potential  and the position-dependent
correction potential  are defined as

(3.3)

(3.4)

respectively. Here we denote

(3.5)

(3.6)

The point image charge qK and the two line image charges  and  are defined by
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respectively, where , , ,  are defined in [6], and γ (εi — εo)/(εi + εo).

Moreover, the accuracy of the fourth-order image approximation (3.2) can be further
improved by including another position-dependent correction potential, yielding the
improved fourth-order image approximation [6]

(3.7)

with the position-dependent correction potential  defined by

where

(3.8)

3.2 Formulation of the Sixth-Order Image Approximation
To construct a sixth-order image approximation for better accuracy, by using the Taylor
expansion

and the truncation

one can arrive at the expansion of the modified spherical Hankel function in terms of 1/r as
follows

(3.9)

However, after expanding k4(r) directly in terms of 1/r, it turns out that (3.9) is also true for
n = 4. Correspondingly, the derivative of the modified spherical Hankel function can be
expanded as
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(3.10)

Consequently, for n ≥ 4 we obtain

Inserting this approximation into (2.5) leads to

where

After some algebraic manipulations, the expansion coefficients An can be further expressed
as

where

Now using the root-finding formula for a cubic equation,1 one can get the three roots of the
equation β1 + β2n + β3n2 + n3 = 0 as

1See http://en.wikipedia.org/wiki/Cubic_equation.
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where

Theorem 1 If 0 ≤ u ≤ 1, then the three roots n1, n2 and n3 of the cubic equation β1 + β2n +
β3n2 + n3 = 0 satisfy

Proof Let

Then, we have

where εr = εi/εo > 0. For 0 ≤ u ≤ 1, it can be seen that

indicating that the equation f(n) = 0 has exactly one root in each of the three open intervals
(−1, 0), (0, 1) and (1, 2).

On the other hand, note that for 0 ≤ φ ≤ π, we have

and that n1, n2 and n3 are also the three roots of the equation f(n) = 0. Therefore, we must
have

Then, using partial fractions gives us
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(3.11)

where σ1 = −n1, σ2 = n2, σ3 = n3, and

On the other hand, for n ≤ 3, directly applying the exact expressions of k0(r), k1(r), k2(r) and
k3(r), in fact we can arrive at

and accordingly, we have

(3.12)

where C0(u), C1(u) and C2(u) are given in (3.5), (3.6) and (3.8), respectively, and C3(u) is
defined below

(3.13)

Inserting now the approximation of An given by (3.11) into (2.4), the reaction field inside the
sphere can be expressed as

(3.14)

where S1, S2, S3 and S4 represent the following four series
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Now, the problem reduces to how to represent each of the above four series by a line image
charge. To this end, we recall that the Coulomb potential ΦS(r), the potential at r due to a
point charge q at rS , can be expanded in terms of the Legendre polynomials of cos θ as
follows [19]

(3.15)

First, in order to obtain an image representation for the series S1, we note that it can be
written as

where the first part is exactly the expansion of the potential at r due to a point charge of
magnitude qK outside the sphere at the classical Kelvin image point rK = (rK, 0, 0).
Therefore, we have

(3.16)

Next, to find an image representation for the second series S2, we need the integral identity
which can be regarded as a Mellin transformation

(3.17)

and is valid for all n ≥ 0 when σ > 0. Inserting (3.17) with σ = σ1 into S2 yields

where
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(3.18)

Note that the integrand in the above integral again becomes the expansion given by (3.15)
for a charge of magnitude qL1(x) outside the sphere at the point x = (x, 0, 0). Therefore,
qL1(x) can be regarded as a continuous line charge which stretches from the classical Kelvin
image point rK along the radial direction to infinity. Thus, the second series S2 becomes

(3.19)

To find image representations for the series S3 and S4, we use a similar integral identity

(3.20)

which is valid for all n ≥ 1 when σ < 1 and valid for all n ≥ 2 when σ < 2. Inserting this into
S3 yields

where

(3.21)

Then, applying the identity (expansion (3.15) with rS = x, q = 1 and εi = 1)

and noting that

we obtain

(3.22)

Similarly, we can obtain
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(3.23)

where

(3.24)

Finally, inserting (3.16), (3.19), (3.22) and (3.23) into (3.14) and then combining like terms,
we have the sixth-order line image approximation to the ionic solvent induced reaction
potential

(3.25)

where ΦC0 is a position-independent correction potential defined as

(3.26)

and on the other hand, ΦC1(r), ΦC2(r), and ΦC3(r) are position-dependent correction
potentials given by

For convenience, in terms of the Kronecker delta δ1n we define

Then, we have
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(3.27)

4 Point Image Approximations to the Reaction Field
In this section, we will discuss how to approximate each line image charge involved in the
image approximation in the previous section by a set of point image charges. Without losing
of generality, we consider

(4.1)

where σ > 0. First, by introducing the change of variables rK/x = ((1 − s)/2)τ with τ > 0, we
have

(4.2)

where α = τσ − 1 and

(4.3)

Next, a numerical quadrature will be employed to approximate the integral in (4.2).
Although in principle any numerical quadrature can be used, considering that s = −1
corresponds to the Kelvin image point x = rK and that α > −1 because σ > 0 and τ > 0, the
Jacobi-Gauss-Radau quadrature is particularly used in this paper. More precisely, let sm, ωm,
m = 1, 2, ..., M, be the Jacobi-Gauss-Radau points and weights on the interval [−1, 1] with α
= τσ − 1 and β = 0, which can be obtained with the program ORTHPOL [8]. Then, the
numerical quadrature for the integral in (4.2) is

(4.4)

where for m = 1, 2, ..., M,

(4.5)

The parameter τ > 0 in the change of variables rK/x = ((1 − s)/2)τ can be used as a parameter
to control the accuracy of numerical approximations. When τ = 1/σ we have α = 0, and in
this case the quadrature given by (4.4) simply reduces to the usual Gauss-Radau quadrature.

4.1 Discretization by Point Image Charges at Different Locations
Note that
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Recall that 0 < σ1 < 1. Then using (4.4) with σ = σ1 leads to

(4.6)

where for m = 1, 2, ..., M,

(4.7)

Here  and  are the quadrature points and weights with α = τσ11 − 1.

Similarly, note that

Recall that 0 < σ2 < 1. Then, applying (4.4) with σ = (1 − σ2) > 0, we get

(4.8)

where for m = 1, 2, ..., M,

(4.9)

Here  and  are the quadrature points and weights with α = τ(1 − σ2) − 1.

Also, it can be noted that

Recalling that 1 < σ3 < 2, and applying (4.4) with σ = (2 − σ3) > 0, we get

(4.10)
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where for m = 1, 2, ..., M,

(4.11)

Here  and  are the quadrature points and weights with α = τ(2 − σ3) − 1.

Note that the second summation in the right-hand side of (4.8) and that in the right-hand side
of (4.10) are position-independent. Adding them to ΦC0 leaves us with a modified position-
independent correction potential

(4.12)

Likewise, adding the last summation in the right-hand side of (4.10) to ΦC1(r) gives us a
modified position-dependent correction potential

(4.13)

where

4.2 Discretization by Point Image Charges at the Same Locations
For computational efficiency, we can choose to discretize the three line image charges
qL1(x), qL2(x) and qL3(x) by point charges at the same locations. More specifically, one can
choose a common parameter σc > 0 to rewrite the line charge qL1(x) as

Then, for m = 1, 2, ..., M, we have

(4.14)

Here the quadrature points and weights are obtained using α = τσc − 1.

Similarly, the line image charges qL2(x) and qL3(x) are discretized into

(4.15)
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(4.16)

The parameter σc > 0 is tunable for optimal computational efficiency. For example,
depending on the value of u = λa, any of the three natural choices σc = σ1, σc = 1 − σ2 or σc =
2 − σ3 could perform well.

Furthermore, since s1 = −1 and consequently x1 = rK , the classical Kelvin image charge and
the first discrete image charge of each image line charge can be combined. In conclusion, in
general we have the following multiple discrete image approximation to the reaction
potential inside the sphere in terms of the potentials of 3M − 2 point charges (or M charges
if a common parameter σc is utilized) and some correction potentials.

(4.17)

where

For the sake of convenience, we simply write (4.17) as

(4.18)

where the summation over m includes the modified Kelvin image charge  at the
corresponding Kelvin image point rK and all discrete image point charges , , and  at

, , and , respectively, and Nim is the total number of all point image charges.

5 O(N) Implementation of the Point Image Approximation
The main purpose for the discrete image approximation to the reaction field is to enable us
to apply existing fast algorithms, such as the pre-corrected FFT [23] or the fast multipole
method (FMM) [3,4,10,12,13], directly in calculating the electrostatic interactions among N
source point charges inside the spherical cavity in O(N log N) or even O(N) operations. In
particular, below we give a straightforward O(N) implementation of the discrete image
approximation with using the FMM.

For convenience, let , i = 1, 2, ..., N, be N observation points and

, j = 1, 2, ..., N, be the locations of N source charges with charge strengths q1,
q2, ..., qN. By linear superposition, the reaction field at an observation point , in the case
that the sixth-order image approximation (4.18) is employed, becomes
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(5.1)

Here and in the sequel a quantity with a second subscript j designates a quantity associated

with the source charge , such as

5.1 O(N) Calculation of the Correction Potentials
Obviously, the position-independent correction potential

can be evaluated in O(N) operations. The evaluation of other correction potentials in O(N)
operations, however, needs some manipulations due to their position-dependence. First of
all, from (4.13) we have

(5.2)

which in component form can be written as

(5.3)

where

Now it becomes clear that the second correction potential can be evaluated in O(N)
operations as well. Analogously, the third correction potential can also be evaluated in O(N)
operations. In fact, from (3.27) we have

which can be written as
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(5.4)

where

and ⊗ represents the outer product of two vectors.

In component form, (5.4) can be written as

(5.5)

where

Similarly, the fourth correction potential can be evaluated in O(N) operations as well. By

expressing the cosine of the angle θ between  and  in terms of their rectangular
coordinates, from (3.27) one can arrive at
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(5.6)

where

5.2 O(N) Calculation of the Potentials of the Image Charges
The FMM is known to be extremely efficient in the evaluation of pairwise interactions in
large ensembles of particles, such as that included in (5.1)
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For instance, the adaptive FMM of [4] requires O(N) work and breaks even with the direct
calculation at about N = 750 for three-digit precision, N = 1500 for six-digit precision, and N
= 2500 for nine-digit precision, respectively [11]. Using such an adaptive FMM with O(N)
computational complexity, the calculation of the potentials of the discrete image charges for
all observation points can be evaluated in O(N) operations in a straightforward way.

In the simplest implementation, such evaluation can be carried out with a single FMM run

by including all point image charges  into the FMM cube. In the case that the total
potential is to be calculated, all original source charges are also included in the FMM box.
All charges are taken as acting in a homogeneous medium of the dielectric constant εi.

5.3 Local Expansions for Potential Calculations
The introduced discrete image charges outside the sphere will result in a large computational
domain and the image charges are highly nonuniformly distributed, particularly because the
image charges of those source charges close to the center of the sphere are far away from the
spherical boundary. Therefore, direct application of the FMM by including all image
charges in this large computational box is not efficient. Instead, a simple but more efficient
way would be to calculate the local expansion due to the far field image charges directly
inside the sphere. This way, one can achieve not only a smaller FMM box but also a smaller
number of total charges in the FMM box.

More specifically, in practice we could introduce a bigger cut-off sphere of radius κa
centered at the origin with κ > 1. The calculation of the potentials inside the original
dielectric sphere due to those image charges inside this cut-off sphere is still carried out by
the chosen fast method. For all image charges outside this cut-off sphere at (ρl, αl, βl), l = 1,
2, ..., L, with charge strengths q̂l, l = 1, 2, ..., L, the calculation of the potential at r = (r, θ, φ)
inside the dielectric sphere generated by these image charges can be described by a by a
local expansion

(5.7)

where  are the spherical harmonics, and  are the local expansion coefficients given
by

(5.8)

Furthermore, for any p ≥ 1,

(5.9)

Xiang et al. Page 19

J Sci Comput. Author manuscript; available in PMC 2010 December 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6 O(N) Calculation of the Force Field
In practice, most time in molecular dynamics simulations the electric force field needs to be
calculated. Although force equations are not difficult to derive, we would like to include
them here for completeness. In general, electric forces are computed by taking gradients of
electric potentials. Therefore, the electric force exerted on Particle i at the position  is
expressed as

In the case that the reaction potential field is approximated by the sixth-order image
approximation (4.18), the image approximation for the electric force field becomes (note

that )

First of all, O(N) calculation of the gradients of the correction potentials can be derived
directly from the O(N) calculation of the corresponding correction potentials. For examples,
from (5.2) and (5.4) we can obtain

and

On the other hand, the FMM can be used to calculate

in O(N) complexity.

Moreover, the force field inside the sphere due to the far field image charges can also be
described in local expansions. Local expansion for force calculations in the FMM can be
found in [7,18]. When using the local expansion (5.7) to calculate the far-field electric
potential due to all image charges outside the cut-off sphere, the corresponding far-field
force f(r) exerted on a particle q at r = (r, θ, φ) inside the dielectric sphere can also be
described by local expansions. Passing the details, we have
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(6.1)

(6.2)

(6.3)

where Re(...) and Im(...) represent the real and the imaginary parts of a complex number,
respectively, and

and

7 Numerical Examples
For illustration purpose, a unit dielectric sphere is used. The dielectric constants of the
sphere and its surrounding medium are assumed to be εi = 2 (normally 1, 2 or 4) and εo = 80
(the dielectric constant of water), respectively. Unless otherwise specified, the results
obtained by the direct series expansion with 400 terms are treated as the exact reaction fields
to calculate the errors of the sixth-order image approximation.

7.1 Accuracy vs the Ionic Strength
We begin by considering a single point charge located on the x-axis inside the sphere at a
distance rS = 0.5 or rS = 0.95 from the center of the sphere. Different σ values are used in
discretizing the underlying image line charges, but for simplicity, we always choose τ = 1/σ
and M = 40 so that the same Gauss-Radau quadrature points and weights sm and ωm are
involved. For each selected value of u = λa, we calculate the relative error of the image
approximation in the reaction field, respectively, at 10,000 observation points uniformly
distributed (under the polar coordinates) within the unit disk in the plane y = 0. The maximal
relative error ∥ E ∥ at these observation points for various u values and the corresponding
order of convergence are shown in Tables 1 and 2. For sake of comparison, the results
obtained using the improved fourth order image approximation are also included. As can be
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observed, the results clearly demonstrate the O(u6) convergence rate of the sixth-order
image approximation.

7.2 Accuracy vs the Number of Discrete Image Charges
One natural concern with the proposed discrete image approximation is the final number of
point image charges required to achieve certain order of degree of accuracy. For a desired
accuracy, this number depends on the locations of the source charge and the observation
point. It should be small if compared to the number of terms needed to achieve the same
degree of accuracy in the direct series expansion to make the image approximation useful in
practice.

In this test, the source location is fixed at rS = 0.95. For each selected value of u = λa
ranging from 0.05 to 0.9, we approximate the reaction fields at the same 10,000 points
within the sphere by the sixth-order image approximation with several different numbers of
point image charges. Figure 2 shows the maximum relative errors of the point image
approximation using M = 2, M = 6 and M = 10, without a common σ being used. For the
sake of comparison, the corresponding error analysis results for the improved fourth-order
image approximation are also plotted.

As can be seen, when M = 2, the sixth-order multiple discrete image approximation can
achieve 10−3 accuracy. However, as M is small, the accuracy of the sixth-order image
approximation is no better than that of the improved fourth-order image approximation. This
is because when M is small, the numerical error stemming from the approximation of the
line image charges by point image charges dominates. Nevertheless, when M is relatively
large, the advantage of the sixth-order image approximation becomes evident in the sense of
accuracy. For example, as shown in Fig. 2, the sixth-order image approximation is clearly
shown to be more accurate than the fourth-order one when M = 10 is used, particularly for
cases with large u values. It should be pointed out that, since different line images are
discretized by point images at different locations, the number of total point images in the
sixth-order method is 3M − 2, while that in the fourth-order method is only 2M − 1 in this
particular test.

Similar error analysis results with a common σ being used are displayed in Fig. 3. Note that
in this case the sixth-order and the fourth-order methods both use M point images for a given
M value. As shown in Fig. 3, for low accuracy (such as 10−2), for all u values in the range of
[0.05, 0.9], both the sixth-order and the fourth-order methods need 2 point images and thus
the same computational cost to achieve the required accuracy. For high accuracy (such as
10−5), on the one hand, when the u value is small, the two methods still have comparable
performance, namely, they need to use the same number of point images to achieve the same
accuracy. On the other hand, when the u value is large such as 0.9, the error of the sixth-
order method using 10 point images can be less than 4 × 10−5, but that of the fourth-order
method using the same number of point images is around 2 × 10−4, implying that if it is
possible for the fourth-order method to realize the same 4 × 10−5 accuracy, it must use more
than 10 image charges and consequently more computational cost. Actually, as shown by
Fig. 4, the best accuracy the fourth-order method can achieve is around 1.2 × 10−3 for u =
0.9 and 1.5 × 10−4 for u = 0.5, respectively. Therefore, when the u value is large, high-
accuracy can only be accomplished by using the sixth-order method.

7.3 Computational Complexity of the Point Image Approximation
To demonstrate the O(N) computational complexity of the O(N) implementation of the point
image approximation as described in Sects. 5 and 6, the sixth-order image approximation
has been implemented with using the free software KIFMM, developed by L. Ying using a
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so-called kernel-independent adaptive fast multipole method [24]. The experiments are
carried out on a Linux-based Dell OptiPlex 745 workstation with a CPU clock rate of 3 GHz
and a memory of 4 GB, using GNU Fortran 3.4.6 and C++ 4.1.2 compilers. In Tables 3 and
4, timing results of the potential and the force evaluations are reported and compared with
those obtained without using the FMM. The Gauss-Radau quadrature with M = 2 and a
common parameter σc = σ2 are used to construct discrete image charges, so for each source
charge, there are two discrete image charges. As can be seen, the timing scales as O(N2)
without using the FMM, and linearly with using the FMM. In the tables, N denotes the
number of total source charges, either uniformly or non-uniformly distributed inside the unit
sphere, and NC the number of total point charges included in the FMM box, respectively.

7.4 A Simple Application of the Method
Finally, the proposed sixth-order method is tested through calculation of solvation effects. A
spherical cavity of radius 15 Å contains 333 TIP3P water molecules and is immersed in an
ionic solvent. To calculate the total solvation energy of these water molecules, εi = 1 and εo
= 80 are used in this test. Here the solvation energy of a collection of N charges qi located at
ri, i = 1, 2, ..., N, is defined as

Figure 5 shows the relative error in the solvation energy obtained with the fourth-order and
the sixth-order image approximations by using M = 6 and M = 10 point image charges,
respectively, where the exact solvation energy is calculated by the series solution with 400
terms. As can be seen, the sixth-order accuracy of the present method has a noticeable effect
on the solvation energy.

8 Conclusions
In this paper, we have presented a sixth-order image approximation to the reaction field due
to a point charge inside a dielectric sphere immersed in an ionic solvent for small values of u
= λa (λ—the inverse Debye screening length of the ionic solvent, a—the radius of the
dielectric sphere). O(N) implementations of the image approximation in the electric potential
and force field evaluations have been described. Numerical results have demonstrated the
sixth-order convergence rate of the image approximation as well as the O(N) complexity of
the O(N) implementations of the image approximation. Numerical results have also
demonstrated that, compared to the previous fourth-order image approximation, the
proposed sixth-order image approximation is more accurate for cases with large u values
when a relatively large M value is used.
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Fig. 1.
A point charge and a dielectric sphere immersed in an ionic solvent
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Fig. 2.
Maximum relative errors in the ionic solvent induced reaction field due to a source charge
inside the unit sphere at distance rS = 0.95 from the spherical center. No common σ is used
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Fig. 3.
Maximum relative errors in the ionic solvent induced reaction field due to a source charge
inside the unit sphere at distance rS = 0.95 from the spherical center. A common σ is used
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Fig. 4.
Maximum relative errors in the ionic solvent induced reaction field due to a source charge
inside the unit sphere at distance rS = 0.95 from the spherical center. A common σ is used
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Fig. 5.
Relative error in the solvation energy calculation of water molecules in ionic solvents by
two image approximation methods

Xiang et al. Page 29

J Sci Comput. Author manuscript; available in PMC 2010 December 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xiang et al. Page 30

Table 1

Convergence rate of the proposed image approximation (rS = 0.5)

u Impr. 4th-order 6th-order

||E|| Order ||E|| Order

0.8 2.13E-5 2.22E-7

0.4 1.42E-6 3.91 3.46E-9 6.00

0.2 9.08E-8 3.97 5.61E-11 5.94
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Table 2

Convergence rate of the proposed image approximation (rS = 0.95)

u Impr. 4th-order 6th-order

||E|| Order ||E|| Order

0.8 1.68E-4 3.25E-6

0.4 1.12E-5 3.90 5.30E-8 5.94

0.2 7.20E-7 3.96 7.16E-10 6.21
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Table 3

Timing results for potential calculation

N NC FMM/uniform FMM/non-uniform Pairwise

1,000 3,000 0.175 0.173 0.134

2,000 6,000 0.329 0.325 0.535

4,000 12,000 0.751 0.745 2.144

8,000 24,000 1.435 1.355 8.564

16,000 48,000 2.701 2.665 34.274
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Table 4

Timing results for force calculation

N NC FMM/uniform FMM/non-uniform Pairwise

1,000 3,000 0.386 0.384 0.319

2,000 6,000 0.534 0.529 1.276

4,000 12,000 1.004 0.990 5.099

8,000 24,000 2.141 2.132 20.365

16,000 48,000 3.707 3.555 81.556
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