Skip to main content
Log in

A Collocation Method with Exact Imposition of Mixed Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a natural collocation method with exact imposition of mixed boundary conditions based on a generalized Gauss-Lobatto-Legendre-Birhoff quadrature rule that builds in the underlying boundary data. We provide a direct construction of the quadrature rule, and show that the collocation method can be implemented as efficiently as the usual collocation scheme for PDEs with Dirichlet boundary conditions. We apply the collocation method to some model PDEs and the time-harmonic Helmholtz equation, and demonstrate its spectral accuracy and efficiency by various numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berckmann, P.: Orthogonal Polynomials for Engineers and Physicists. Golem Press, Boulder (1973)

    Google Scholar 

  2. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Techniques of Scientific Computing (Part 2). Handbook of Numerical Analysis, vol. V, pp. 209–486. Elsevier, Amsterdam (1997)

    Google Scholar 

  4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, Mineola (2001)

    MATH  Google Scholar 

  5. Canuto, C.: Boundary conditions in Chebyshev and Legendre methods. SIAM J. Numer. Anal. 23(4), 815–831 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Scientific Computation. Springer, Berlin (2006). Fundamentals in single domains

    MATH  Google Scholar 

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Scientific Computation. Springer, Berlin (2007). Evolution to complex geometries and applications to fluid dynamics

    MATH  Google Scholar 

  8. Deville, M.O., Mund, E.H.: Finite-element preconditioning for pseudospectral solutions of elliptic problems. SIAM J. Sci. Stat. Comput. 11(2), 311–342 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dyn, N., Jetter, K.: Existence of Gaussian quadrature formulas for Birkhoff type data. Arch. Math. (Basel) 52(6), 588–594 (1989)

    MATH  MathSciNet  Google Scholar 

  10. Ezzirani, A., Guessab, A.: A fast algorithm for Gaussian type quadrature formulae with mixed boundary conditions and some lumped mass spectral approximations. Math. Comput. 68(225), 217–248 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  12. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comput. 23, 221–230 (1969); Addendum, ibid., 23(106, loose microfiche suppl) A1–A10 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  13. Huang, W.Z., Sloan, D.M.: The pseudospectral method for third-order differential equations. SIAM J. Numer. Anal. 29(6), 1626–1647 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ihlenburg, F.: Finite Element Analysis of Acoustic Scattering. Applied Mathematical Sciences, vol. 132. Springer, New York (1998)

    MATH  Google Scholar 

  15. Jetter, K.: Uniqueness of Gauss-Birkhoff quadrature formulas. SIAM J. Numer. Anal. 24(1), 147–154 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005)

    Google Scholar 

  17. Keller, J.B., Givoli, D.: Exact non-reflecting boundary conditions. J. Comput. Phys. 82(1), 172–192 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, J., Ma, H.P., Sun, W.W.: Error analysis for solving the Korteweg-de Vries equation by a Legendre pseudo-spectral method. Numer. Methods Partial Differ. Equ. 16(6), 513–534 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Merryfield, W.J., Shizgal, B.: Properties of collocation third-derivative operators. J. Comput. Phys. 105(1), 182–185 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mulholland, L.S., Huang, W.Z., Sloan, D.M.: Pseudospectral solution of near-singular problems using numerical coordinate transformations based on adaptivity. SIAM J. Sci. Comput. 19(4), 1261–1289 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nédélec, J.C.: Acoustic and Electromagnetic Equations. Applied Mathematical Sciences, vol. 144. Springer, New York (2001). Integral representations for harmonic problems

    MATH  Google Scholar 

  22. Shen, J., Wang, L.L.: Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains. SIAM J. Numer. Anal. 45(5), 1954–1978 (2007) (electronic)

    Article  MathSciNet  Google Scholar 

  23. Sun, W., Huang, W., Russell, R.D.: Finite difference preconditioning for solving orthogonal collocation equations of boundary value problems. SIAM J. Numer. Anal. 33(6), 2268–2285 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Szegö, G.: Orthogonal Polynomials, 4th edn., vol. 23. AMS Coll. Publ. (1975)

  25. Trefethen, L.N.: Spectral methods in MATLAB. Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    MATH  Google Scholar 

  26. Wang, L.L., Guo, B.Y.: Interpolation approximation based on Gauss-Lobatto-Legendre-Birkhoff quadrature. J. Approx. Theor. (2009). doi:10.1016/j.jat.2008.08.016

    Google Scholar 

  27. Wang, L.L., Guo, B.Y., Wang, Z.Q.: Generalized quadrature formula and its application to pseudospectral methods. Numer. Math. Theory Methods Appl. 11(2), 179–196 (2002)

    MATH  MathSciNet  Google Scholar 

  28. Xu, Y.: Quasi-orthogonal polynomials, quadrature, and interpolation. J. Math. Anal. Appl. 182(3), 779–799 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Lian Wang.

Additional information

The work of the first author is supported in part by National Basic Research Project of China N.2005CB321701, NSF of China, N.10771142, Science and Technology Commission of Shanghai Municipality Grant, N.075105118, Shuguang Project of Shanghai Education Commission, N.08SG45, Shanghai Leading Academic Discipline Project N.S30405 and The Fund for E-institute of Shanghai Universities N.E03004.

The work of the second author is partially supported by AcRF Tier 1 Grant RG58/08, Singapore MOE Grant # T207B2202, and Singapore # NRF2007IDM-IDM002-010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZQ., Wang, LL. A Collocation Method with Exact Imposition of Mixed Boundary Conditions. J Sci Comput 42, 291–317 (2010). https://doi.org/10.1007/s10915-009-9325-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9325-x

Keywords

Navigation