Skip to main content
Log in

Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the discretization of general convex optimal control problem using the mixed finite element method. The state and co-state are discretized by the lowest order Raviart-Thomas element and the control is approximated by piecewise constant functions. We derive error estimates for both the control and the state approximation. Moreover, we present the superconvergence analysis for mixed finite element approximation of the optimal control problem. Finally, some numerical examples are given to demonstrate the practical side of the theoretical results about superconvergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, W.: On the approximation of infinite optimisation problems with an application to optimal control problems. Appl. Math. Optim. 12, 15–27 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alt, W., Mackenroth, U.: Convergence of finite element approximations to state constrained convex parabolic boundary control problems. SIAM J. Control Optim. 27, 718–736 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arada, N., Casas, E., Troltzsch, F.: Error estimates for a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991). MR 92d:65187

    MATH  Google Scholar 

  5. Chang, Y., Yang, D.: Superconvergence analysis of finite element methods for optimal control problems of the stationary Benard type. J. Comput. Math. 26, 660–676 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Chen, Y.: Superconvergence of quadratic optimal control problems by triangular mixed finite elements. Intl. J. Numer. Methods Eng. 75(8), 881–898 (2008)

    Article  Google Scholar 

  7. Chen, Y.: Superconvergence of optimal control problems by rectangular mixed finite element methods. Math. Comput. 77, 1269–1291 (2008)

    Article  Google Scholar 

  8. Chen, Y., Huang, Y., Yi, N.: A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations. Sci. China Ser. A Math. 51(8), 1376–1390 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, Y., Yi, N., Liu, W.B.: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46(5), 2254–2275 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  11. Douglas, J. Jr., Roberts, J.E.: Global estimates for mixed finite element methods for second order elliptic equations. Math. Comput. 44, 39–52 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ewing, R.E., Liu, M.M., Wang, J.: Superconvergence of mixed finite element approximations over quadrilaterals. SIAM J. Numer. Anal. 36, 772–787 (1999)

    Article  MathSciNet  Google Scholar 

  13. Falk, F.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  15. French, D.A., King, J.T.: Approximation of an elliptic control problem by the finite element method. Numer. Funct. Anal. Optim. 12, 299–315 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO Anal. Numer. 13, 313–328 (1979)

    MATH  MathSciNet  Google Scholar 

  17. Gunzburger, M.D., Hou, L.S.: Finite-dimensional approximation of a class of constrained nonlinear optimal control problems. SIAM J. Control Optim. 34, 1001–1043 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Haslinger, J., Neittaanmaki, P.: Finite Element Approximation for Optimal Shape Design. Wiley, Chichester (1989)

    Google Scholar 

  19. Hou, L., Turner, J.C.: Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls. Numer. Math. 71, 289–315 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Knowles, G.: Finite element approximation of parabolic time optimal control problems. SIAM J. Control Optim. 20, 414–427 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kwon, Y., Milner, F.A.: L -error estimates for mixed methods for semilinear second-order elliptic equations. SIAM J. Numer. Anal. 25, 46–53 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lasiecka, I.: Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions. SIAM J. Control Optim. 22, 477–500 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, R., Liu, W.B.: http://circus.math.pku.edu.cn/AFEPack

  24. Li, R., Ma, H., Liu, W.B., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lin, Q., Yan, N.: Structure and Analysis for Efficient Finite Element Methods (in Chinese), Hebei University Press (1996)

  26. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  27. Liu, W.B., Gong, W., Yan, N.: A new finite element approximation of a state-constrained optimal control problem. J. Comput. Math. 27, 97–114 (2009)

    MathSciNet  Google Scholar 

  28. Liu, W.B., Tiba, D.: Error estimates in the approximation of optimization problems. Numer. Funct. Anal. Optim. 22, 953–972 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal boundary control. SIAM J. Numer. Anal. 39, 73–99 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Liu, W.B., Yan, N.N.: A posteriori error estimates for control problems governed by Stokes’ equations. SIAM J. Numer. Anal. 40, 1805–1869 (2003)

    Google Scholar 

  31. Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43(3), 970–985 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Neittaanmaki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. Marcel Dekker, New York (1994)

    Google Scholar 

  33. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)

    Chapter  Google Scholar 

  34. Tiba, D.: Optimal Control of Nonsmooth Distributed Parameter Systems. Lecture Notes in Mathematics, vol. 1459. Springer, Berlin (1990)

    MATH  Google Scholar 

  35. Tiba, D., Troltzsch, F.: Error estimates for the discretization of state constrained convex control problems. Numer. Funct. Anal. Optim. 17, 1005–1028 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Troltzsch, F.: Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems—strong convergence of optimal control. Appl. Math. Optim. 29, 309–329 (1994)

    Article  MathSciNet  Google Scholar 

  37. Xing, X., Chen, Y.: Error estimates of mixed methods for optimal control problems governed by parabolic equations. Intl. J. Numer. Methods Eng. 75(6), 735–754 (2008)

    Article  MathSciNet  Google Scholar 

  38. Yan, N.: Superconvergence and recovery type a posteriori error estimate for constrained convex optimal control problems. In: Lu, Y., Sun, W., Tang, T. (eds.) Advances in Scientific Computing and Applications, pp. 408–419. Science Press, Beijing/New York (2004)

    Google Scholar 

  39. Yang, D., Chang, Y., Liu, W.B.: A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type. J. Comput. Math. 26, 471–487 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Huang, Y., Liu, W. et al. Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems. J Sci Comput 42, 382–403 (2010). https://doi.org/10.1007/s10915-009-9327-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9327-8

Keywords

Navigation