Skip to main content
Log in

Simulating 2D Waves Propagation in Elastic Solid Media Using Wavelet Based Adaptive Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this study, an improved wavelet-based adaptive-grid method is presented for solving the second order hyperbolic Partial Differential Equations (PDEs) for describing the waves propagation in elastic solid media. In this method, the multiresolution adaptive threshold-based approach is incorporated with smoothing splines as denoiser of spurious oscillations. This smoothing method is fast, stable, less sensitive to noise, and directly applicable to unequally sampled data. However, the conventional methods can not be directly applied to estimate the smoothing parameters; therefore the optimum ranges are captured through trial-and-error efforts. Here, the spatial derivatives are directly calculated in a non-uniform grid by Fornberg fast method. The derivatives are calculated in 2D simulations, applying antisymmetric end padding method to minimize Gibb’s phenomenon, caused by the edge effects. Therefore, stable moving front is achieved. In the realistic source modeling, time dependent thresholding method, introduced here, is an efficient and cost effective adaptive scheme as well. Furthermore, level-dependent thresholding scheme is used to diminish the effects of non-physical long period waves reflected by absorbing boundaries. Finally, several 2D finite, infinite and semi-infinite numerical examples are simulated. These examples have fixed, free and absorbing boundary conditions. Here, the robustness of proposed method is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1975)

    Google Scholar 

  2. Alam, J.M., Kevlahan, N.K.-R., Vasilyev, O.V.: Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations. J. Comput. Phys. 214(2), 829–857 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertoluzza, S., Castro, L.: Adaptive wavelet collocation for elasticity: first results. Technical Report 1276, Pub. I.A.N.-C.N.R. de Pavia (2002)

  4. Cai, W., Wang, J.: Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs. SIAM J. Numer. Anal. 33(3), 937–970 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Craven, P., Wahba, G.: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross validation. Numer. Math. 31, 377–403 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cruz, P., Mendes, A., Magalhães, F.D.: Using wavelets for solving PDEs: an adaptive collocation method. Chem. Eng. Sci. 56(10), 3305–3309 (2001)

    Article  Google Scholar 

  7. Cruz, P., Mendes, A., Magalhães, F.D.: Wavelet-based adaptive grid method for the resolution of nonlinear PDEs. AICHE J. 48(4), 774–785 (2002)

    Article  Google Scholar 

  8. Donoho, D.L.: Interpolating wavelet transforms. Technical Report 408, Dept. of Statistics, Stanford University, Stanford (1992)

  9. Fatkullin, I., Hesthaven, J.S.: Adaptive high-order finite-difference method for nonlinear wave problems. J. Sci. Comput. 16(1), 47–67 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fornberg, B.: Calculation of weights in finite difference formulas. SIAM Rev. 40(3), 685–691 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128(1–2), 83–131 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Graff, K.F.: Wave Motion in Elastic Solids. Dover, New York (1973)

    Google Scholar 

  13. Holmström, M.: Solving hyperbolic PDEs using interpolating wavelets. SIAM J. Sci. Comput. 21(2), 405–420 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Holmström, M., Waldén, J.: Adaptive wavelet methods for hyperbolic PDEs. J. Sci. Comput. 13(1), 19–49 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hutchinson, M.F., de Hoog, F.R.: Smoothing noisy data with spline functions. Numer. Math. 47(1), 99–106 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jameson, L.M.: A wavelet-optimized, very high order adaptive grid and order numerical method. SIAM J. Sci. Comput. 19(6), 1980-2013 (1998)

    Article  MathSciNet  Google Scholar 

  17. Jameson, L.M., Miyama, T.: Wavelet analysis and ocean modeling: a dynamically adaptive numerical method “WOFD-AHO”. Mon. Weather Rev. 128(5), 1536–1548 (2000)

    Article  Google Scholar 

  18. Jansen, M.: Noise Reduction by Wavelet Thresholding. Lecture Notes in Statistics, vol. 161. Springer, New York (2001)

    MATH  Google Scholar 

  19. Kevlallan, N.K.-R., Vasilyev, O.V.: An adaptive wavelet collocation method for fluid-structure interaction at high Reynolds numbers. SIAM J. Sci. Comput. 26(6), 1894-1915 (2005)

    Google Scholar 

  20. Lee, T.C.M.: Smoothing parameter selection for smoothing splines: a simulation study. Comput. Stat. Data Anal. 42(1–2), 139–148 (2003)

    Article  MATH  Google Scholar 

  21. Lee, T.C.M.: Improved smoothing spline regression by combining estimates of different smoothness. Stat. Probab. Lett. 67(2), 133–140 (2004)

    Article  MATH  Google Scholar 

  22. Liu, Y., Cameron, I.T., Wang, F.Y.: The wavelet collocation method for transient problems with steep gradients. Chem. Eng. Sci. 55(9), 1729–1734 (2000)

    Article  Google Scholar 

  23. Loader, C.: Smoothing: local regression techniques. In: Gentle, J.E., Härdle, W., Mori, Y. (eds.) Handbook of Computational Statistics Concepts and Methods, pp. 539–564. Springer, Berlin (2004)

    Google Scholar 

  24. Mallet, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

    Google Scholar 

  25. Nievergelt, Y.: Wavelets Made Easy. Birkhauser, Boston (1999)

    MATH  Google Scholar 

  26. Ragozin, D.L.: Error bounds for derivative estimates based on spline smoothing of exact or noisy data. J. Approx. Theory 37, 335–355 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. Reinsch, C.H.: Smoothing by spline functions. Numer. Math. 10, 177–183 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  28. Reinsch, C.H.: Smoothing by spline functions, II. Numer. Math. 16, 451–454 (1971)

    Article  MathSciNet  Google Scholar 

  29. Salomon, D.: Curves and Surfaces for Computer Graphics. Springer, New York (2006)

    MATH  Google Scholar 

  30. Santos, J.C., Cruz, P., Magalhães, F.D., Mendes, A.: 2D wavelet-based adaptive grid method for the resolution of PDEs. AICHE J. 49(3), 706–717 (2003)

    Article  Google Scholar 

  31. Santos, J.C., Cruz, P., Alves, M.A., Oliveira, P.J., Magalhães, F.D., Mendes, A.: Adaptive multiresolution approach for two-dimensional PDEs. Comput. Methods Appl. Mech. Eng. 193(3), 405–425 (2004)

    Article  MATH  Google Scholar 

  32. Shi, Z., Kouri, D.J., Wei, G.W., Hoffman, D.K.: Generalized symmetric interpolation wavelets. Comput. Phys. Commun. 119(2–3), 194–218 (1999)

    Article  MATH  Google Scholar 

  33. Sochacki, J., Kubichek, R., George, J., Fletcher, W.R., Smithson, S.: Absorbing boundary conditions and surface waves. Geophysics 52(1), 60–71 (1987)

    Article  Google Scholar 

  34. Unser, M.: Splines: a perfect fit for signal/image processing. IEEE Signal Process. Mag. 16(6), 22–38 (1999)

    Article  Google Scholar 

  35. van den Bogert, T.: Practical guide to smoothing and filtering. Available from Netlib. http://isb.ri.ccf.org/isb/software/bogert/filter.ps (1996)

  36. Vasilyev, O.V., Kevlahan, N.K.-R.: An adaptive multilevel wavelet collocation method for elliptic problems. J. Comput. Phys. 206(2), 412–431 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Vasilyev, O.V., Paolucci, S.: A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain. J. Comput. Phys. 125(2), 498–512 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Vasilyev, O.V., Paolucci, S.: A fast adaptive wavelet collocation algorithm for multidimensional PDEs. J. Comput. Phys. 138(1), 16–56 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  39. Woltring, H.J.: A FORTRAN package for generalized, cross validatory spline smoothing and differentiation. Adv. Eng. Softw. 8(2), 104–113 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yousefi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousefi, H., Noorzad, A. & Farjoodi, J. Simulating 2D Waves Propagation in Elastic Solid Media Using Wavelet Based Adaptive Method. J Sci Comput 42, 404–425 (2010). https://doi.org/10.1007/s10915-009-9328-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9328-7

Keywords

Navigation