Skip to main content
Log in

An Irregularly Portioned Lagrangian Monte Carlo Method for Turbulent Flow Simulation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A novel computational methodology, termed “Irregularly Portioned Lagrangian Monte Carlo” (IPLMC) is developed for large eddy simulation (LES) of turbulent flows. This methodology is intended for use in the filtered density function (FDF) formulation and is particularly suitable for simulation of chemically reacting flows on massively parallel platforms. The IPLMC facilitates efficient simulations, and thus allows reliable prediction of complex turbulent flames. Sample results are presented of LES of both premixed and non-premixed flames via this method, and the results are assessed via comparison with laboratory data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. R.T. Edwards, Philadelphia (2005)

    Google Scholar 

  3. Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005)

    Article  Google Scholar 

  4. Givi, P.: Filtered density function for subgrid scale modeling of turbulent combustion. AIAA J. 44(1), 16–23 (2006)

    Article  Google Scholar 

  5. Givi, P.: Model free simulations of turbulent reactive flows. Prog. Energy Combust. Sci. 15, 1–107 (1989)

    Article  Google Scholar 

  6. Pope, S.B.: Computations of turbulent combustion: progress and challenges. Proc. Combust. Inst. 23, 591–612 (1990)

    Google Scholar 

  7. Madnia, C.K., Givi, P.: Direct numerical simulation and large eddy simulation of reacting homogeneous turbulence. In: Galperin, B., Orszag, S.A. (eds.) Large Eddy Simulations of Complex Engineering and Geophysical Flows, chap. 15, pp. 315–346. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  8. Frankel, S.H., Adumitroaie, V., Madnia, C.K., Givi, P.: Large eddy simulations of turbulent reacting flows by assumed PDF methods. In: Ragab, S.A., Piomelli, U. (eds.) Engineering Applications of Large Eddy Simulations. FED, vol. 162, pp. 81–101. ASME, New York (1993)

    Google Scholar 

  9. Gao, F., O’Brien, E.E.: A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids A 5(6), 1282–1284 (1993)

    Article  MATH  Google Scholar 

  10. Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10(2), 499–515 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)

    Article  MATH  Google Scholar 

  12. James, S., Jaberi, F.A.: Large scale simulations of two-dimensional nonpremixed methane jet flames. Combust. Flame 123, 465–487 (2000)

    Article  Google Scholar 

  13. Garrick, S.C., Jaberi, F.A., Givi, P.: Large eddy simulation of scalar transport in a turbulent jet flow. In: Knight, D., Sakell, L. (eds.) Recent Advances in DNS and LES, Fluid Mechanics and its Applications, vol. 54, pp. 155–166. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  14. Gicquel, L.Y.M., Givi, P., Jaberi, F.A., Pope, S.B.: Velocity filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 14(3), 1196–1213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sheikhi, M.R.H., Drozda, T.G., Givi, P., Pope, S.B.: Velocity-scalar filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 15(8), 2321–2337 (2003)

    Article  Google Scholar 

  16. Sheikhi, M.R.H., Givi, P., Pope, S.B.: Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 19(9), 095106 (2007)

    Article  Google Scholar 

  17. Sheikhi, M.R.H., Givi, P., Pope, S.B.: Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 21, 075102 (2009)

    Article  Google Scholar 

  18. Zhou, X.Y., Pereira, J.C.F.: Large eddy simulation (2D) of a reacting plane mixing layer using filtered density function. Flow Turbul. Combust. 64, 279–300 (2000)

    Article  MATH  Google Scholar 

  19. Heinz, S.: On Fokker-Planck equations for turbulent reacting flows. Part 2. Filter density function for large eddy simulation. Flow Turbul. Combust. 70(1–4), 153–181 (2003)

    Article  MATH  Google Scholar 

  20. Cha, C.M., Troullet, P.: A subgrid-scale mixing model for large-eddy simulations of turbulent reacting flows using the filtered density function. Phys. Fluids 15(6), 1496–1504 (2003)

    Article  Google Scholar 

  21. Sheikhi, M.R.H., Drozda, T.G., Givi, P., Jaberi, F.A., Pope, S.B.: Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia flame D). Proc. Combust. Inst. 30, 549–556 (2005)

    Article  Google Scholar 

  22. Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion. Combust. Flame 143(1–2), 56–78 (2005)

    Article  Google Scholar 

  23. Raman, V., Pitsch, H.: Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure. Combust. Flame 142(4), 329–347 (2005)

    Article  Google Scholar 

  24. van Vliet, E., Derksen, J.J., van den Akker, H.E.A.: Turbulent mixing in a tubular reactor: assessment of an FDF/LES approach. AIChE J. 51(3), 725–739 (2005)

    Article  Google Scholar 

  25. Carrara, M., DesJardin, P.: A filtered mass density function approach for modeling separated two-phase flows for LES I: mathematical formulation. Int. J. Multiphase Flow 32(3), 365–384 (2006)

    Article  MATH  Google Scholar 

  26. Mustata, R., Valiño, L., Jiménez, C., Jones, W.P., Bondi, S.: A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust. Flame 145(1–2), 88–104 (2006)

    Article  Google Scholar 

  27. Drozda, T.G., Sheikhi, M.R.H., Madnia, C.K., Givi, P.: Developments in formulation and application of the filtered density function. Flow, Turbul. Combust. 78(1), 35–67 (2007)

    Article  MATH  Google Scholar 

  28. Heinz, S.: Unified turbulence models for LES and RANS, FDF and PDF simulations. Theor. Comput. Fluid Dyn. 21, 99–118 (2007)

    Article  MATH  Google Scholar 

  29. Jones, W., Navarro-Martinez, S., Röhl, O.: Large eddy simulation of hydrogen auto-ignition with a probability density function method. Proc. Combust. Inst. 31(2), 1765–1771 (2007)

    Article  Google Scholar 

  30. Jones, W.P., Navarro-Martinez, S.: Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame 150, 170–187 (2007)

    Article  Google Scholar 

  31. James, S., Zhu, J., Anand, M.: Large eddy simulations of turbulent flames using the filtered density function model. Proc. Combust. Inst. 31(2), 1737–1745 (2007)

    Article  Google Scholar 

  32. Chen, Y.C.: Measurements of flame-front curvature based on Fourier transformation. Combust. Theor. Model. 11(3), 333–349 (2007)

    Article  MATH  Google Scholar 

  33. McDermott, R., Pope, S.B.: A particle formulation for treating differential diffusion in filtered density function methods. J. Comput. Phys. 226, 947–993 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Raman, V., Pitsch, H.: A consistent LES/filtered density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31(2), 1711–1719 (2007)

    Article  Google Scholar 

  35. Afshari, A., Jaberi, F.A., Shih, T.I.P.: Large-eddy simulations of turbulent flows in an axisymmetric dump combustor. AIAA J. 46(7), 1576–1592 (2008)

    Article  Google Scholar 

  36. Drozda, T.G., Wang, G., Sankaran, V., Mayo, J.R., Oefelein, J.C., Barlow, R.S.: Scalar filtered mass density functions in nonpremixed turbulent jet flames. Combust. Flame 155(1–2), 54–69 (2008)

    Article  Google Scholar 

  37. Madnia, C., Jaberi, F.A., Givi, P.: Large eddy simulation of heat and mass transport in turbulent flows. In: Minkowycz, W.J., Sparrow, E.M., Murthy, J.Y. (eds.) Handbook of Numerical Heat Transfer, 2nd edn., Chap. 5, pp. 167–190. Wiley, New York (2006)

    Google Scholar 

  38. Piomelli, U.: Large-eddy simulation: achievements and challenges. Prog. Aerosp. Sci. 35, 335–362 (1999)

    Article  Google Scholar 

  39. O’Brien, E.E.: The probability density function (PDF) approach to reacting turbulent flows. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, Topics in Applied Physics, vol. 44, pp. 185–218. Springer, Heidelberg (1980)

    Google Scholar 

  40. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  MathSciNet  Google Scholar 

  41. Vreman, B., Geurts, B., Kuerten, H.: Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid Mech. 278, 351–362 (1994)

    Article  MATH  Google Scholar 

  42. Sheikhi, M.R.H.: Joint velocity-scalar filtered density function for large eddy simulation of turbulent reacting flows. Ph.D. Thesis, Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA (2005)

  43. Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equations. Springer, New York (1972)

    MATH  Google Scholar 

  44. Risken, H.: The Fokker-Planck Equation, Methods of Solution and Applications. Springer, New York (1989)

    MATH  Google Scholar 

  45. Grigoriu, M.: Applied Non-Gaussian Processes. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  46. Chen, J.Y.: An Eulerian PDF scheme for LES of nonpremixed turbulent combustion with second-order accurate mixture fraction. Combust. Theor. Model. 11(5), 675–695 (2007)

    Article  MATH  Google Scholar 

  47. Sabelnikov, V., Soulard, O.: Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. Phys. Rev. E 72(1), 1–22 (2005)

    Google Scholar 

  48. Gustafson, K.E., Sethian, J.A. (eds.): Vortex Methods and Vortex Motion. SIAM, Philadelphia (1991)

    MATH  Google Scholar 

  49. Itô, K.: On Stochastic Differential Equations, Memoirs of the American Mathematical Society, vol. 4. American Math. Society, Providence (1951)

    Google Scholar 

  50. Lu, T., Law, C.K.: An efficient reduced mechanism for methane oxidation with NO chemistry. In: Joing Meeting of the U.S. Sections of the Combustion Institute. University of California at San Diego, San Diego (2007)

    Google Scholar 

  51. Top 500 Supercomputer Sites: http://www.top500.org/ (2010)

  52. Karypis, G., Kumar, V.: MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0. University of Minnesota, Minneapolis (1998)

    Google Scholar 

  53. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high-performance scientific simulations. Technical Report TR 00-018, University of Minnesota, Minneapolis, MN (1999)

  54. Catalyurek, U., Boman, E., Devine, K., Bozdag, D., Heaphy, R., Riesen, L.: Hypergraph-based dynamic load balancing for adaptive scientific computations. In: Proc. of 21st International Parallel and Distributed Processing Symposium (IPDPS’07). IEEE, New York (2007)

    Google Scholar 

  55. Chen, Y.-C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., Mansour, M.S.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 107(3), 223–226 (1996)

    Article  Google Scholar 

  56. Nooren, P.A., Versiuis, M., Van der Meer, T.H., Barlow, R.S., Frank, J.H.: Raman-Rayleigh-LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame. Appl. Phys. B 71, 95–111 (2000)

    Article  Google Scholar 

  57. Sandia National Laboratories: Combustion Research Facility website. http://www.ca.sandia.gov/tnf (2010)

  58. Schneider, C., Dreizler, A., Janicka, J., Hassel, E.P.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135, 185–190 (2003)

    Article  Google Scholar 

  59. Mallampalli, H.P., Fletcher, T.H., Chen, J.Y.: Evaluation of CH4/NO x reduced mechanisms used for modeling lean premixed turbulent combustion of natural gas. J. Eng. Gas Turbul. Power 120, 703–712 (1998)

    Article  Google Scholar 

  60. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  61. Bowman, C.T., Hanson, R.K., Gardiner, W.C., Lissianski, V., Frenklach, M., Goldenberg, M., Smith, G.P., Crosley, D.R., Golden, D.M.: GRI-Mech 2.11—an optimized detailed chemical reaction mechanism for methane combustion and NO formation and reburning. Report GRI-97/0020, Gas Research Institute, Chicago, IL (1997)

  62. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS Conference Proceedings, pp. 483–485. ACM Press, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Yılmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yılmaz, S.L., Nik, M.B., Sheikhi, M.R.H. et al. An Irregularly Portioned Lagrangian Monte Carlo Method for Turbulent Flow Simulation. J Sci Comput 47, 109–125 (2011). https://doi.org/10.1007/s10915-010-9424-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9424-8

Keywords

Navigation