Skip to main content
Log in

Simulations of Shallow Water Equations with Finite Difference Lax-Wendroff Weighted Essentially Non-oscillatory Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we study a Lax-Wendroff-type time discretization procedure for the finite difference weighted essentially non-oscillatory (WENO) schemes to solve one-dimensional and two-dimensional shallow water equations with source terms. In order to maintain genuinely high order accuracy and suit to problems with a rapidly varying bottom topography we use WENO reconstruction not only to the flux but also to the source terms of algebraical modified shallow water equations. Extensive simulations are performed, as a result, the WENO schemes with Lax-Wendroff-type time discretization can maintain nonoscillatory properties and more cost effective than that with Runge-Kutta time discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aràndiga, F., Belda, A.M., Mulet, P.: Point-value WENO multiresolution applications to stable image compression. J. Sci. Comput. 43, 158–182 (2009)

    Article  Google Scholar 

  2. Balsara, D.S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228, 5040–5054 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cai, Y., Navon, I.M.: Parallel block preconditioning techniques for the numerical simulation of the shallow water flow using finite element methods. J. Comput. Phys. 122, 39–50 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chleffi, V., Valaini, A., Zanni, A.: Finite volume method for simulating extreme flood events in natural channels. J. Hydraul. Res. 41, 167–177 (2003)

    Article  Google Scholar 

  6. Goutal, N., Maurel, F.: In: Proceedings of the Second Workshop on Dam-BreakWave Simulation. Technical Report HE-43/97/016/A. Electricité de France, Département Laboratoire National Hydraulique, Groupe Hydraulique Fluviale (1997)

  7. Harten, A., Engguist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov method: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 346, 146 (1998)

    MathSciNet  Google Scholar 

  10. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Qiu, J.X., Shu, C.W.: Finite difference WENO schemes with Lax-Wendroff-type time discretizations. SIAM J. Sci. Comput. 24, 2185–2198 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ricchiuto, M., Abgrall, R., Deconinck, H.: Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes. J. Comput. Phys. 222, 287–331 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rogers, B.D., Borthwick, Alistair G.L., Taylor, P.H.: Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. J. Comput. Phys. 192, 422–451 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shu, C.W.: Essential non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.W., Tadmor, E. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998). A. Quarteroni (ed.)

    Chapter  Google Scholar 

  15. Vukovic, S., Sopta, L.: ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations. J. Comput. Phys. 179, 593–621 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Xing, Y.L., Shu, C.W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zahran, Y.H.: An efficient WENO scheme for solving hyperbolic conservation laws. Appl. Math. Comput. 212, 37–50 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhou, J.G., Causon, D.M., Mingham, C.G., Ingram, D.M.: The surface gradient method for the treatment of source terms in the shallow water equations. J. Comput. Phys. 168, 1–25 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhu, J., Qiu, J.X.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method, III: unstructured meshes. J. Sci. Comput. 39, 293–321 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Qiu.

Additional information

The research of C. Lu was supported by NSFC 40906048 and Science research fund of Nanjing University of Information Science & Technology 20090203. The research of J. Qiu was supported by NSFC 10931004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, C., Qiu, J. Simulations of Shallow Water Equations with Finite Difference Lax-Wendroff Weighted Essentially Non-oscillatory Schemes. J Sci Comput 47, 281–302 (2011). https://doi.org/10.1007/s10915-010-9437-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9437-3

Keywords

Navigation