Skip to main content
Log in

Fast Matrix-Vector Multiplication in the Sparse-Grid Galerkin Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Sparse grid discretization of higher dimensional partial differential equations is a means to break the curse of dimensionality. For classical sparse grids based on the one-dimensional hierarchical basis, a sophisticated algorithm has been devised to calculate the application of a vector to the Galerkin matrix in linear complexity, despite the fact that the matrix is not sparse. However more general sparse grid constructions have been recently introduced, e.g. based on multilevel finite elements, where the specified algorithms only have a log-linear scaling. This article extends the idea of the linear scaling algorithm to more general sparse grid spaces. This is achieved by abstracting the algorithm given in (Balder and Zenger, SIAM J. Sci. Comput. 17:631, 1996) from specific bases, thereby identifying the prerequisites for performing the algorithm. In this way one can easily adapt the algorithm to specific discretizations, leading for example to an optimal linear scaling algorithm in the case of multilevel finite element frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balder, R., Zenger, C.: The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput. 17(3), 631–646 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bungartz, H.J.: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Ph.D. thesis, TU München (1992)

  3. Bungartz, H.J.: A multigrid algorithm for higher order finite elements on sparse grids. ETNA Electron. Trans. Numer. Anal. 6, 63–77 (1997)

    MATH  MathSciNet  Google Scholar 

  4. Bungartz, H.J.: Finite elements of higher order on sparse grids. Habilitationsschrift, Fakultät für Informatik, TU München (1998)

  5. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chernov, A., Schwab, C.: Sparse p-version BEM for first kind boundary integral equations with random loading. Appl. Numer. Math. 59(11), 2698–2712 (2009). doi:10.1016/j.apnum.2008.12.023

    Article  MATH  MathSciNet  Google Scholar 

  7. Griebel, M., Oeltz, D.: A sparse grid space-time discretization scheme for parabolic problems. Computing 81(1), 1–34 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Harbrecht, H., Schneider, R., Schwab, C.: Multilevel frames for sparse tensor product spaces. Numer. Math. 110(2), 199–220 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Niedermeier, A.: Implementational aspects of prewavelet sparse grid methods. In: Lai, C.H., Bjoerstad, P., Cross, M., Widlund, O. (eds.) Eleventh International Conference of Domain Decomposition Methods (1999)

    Google Scholar 

  10. Schwab, C., Todor, R.A.: Sparse finite elements for elliptic problems with stochastic loading. Numer. Math. 95(4), 707–734 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Weidmann, J.: Linear Operators in Hilbert Spaces. Springer, New York (1980)

    MATH  Google Scholar 

  12. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math. 49, 379–412 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zenger, C.: Sparse grids. In: Hachbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations. Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg, Wiesbaden (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Zeiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeiser, A. Fast Matrix-Vector Multiplication in the Sparse-Grid Galerkin Method. J Sci Comput 47, 328–346 (2011). https://doi.org/10.1007/s10915-010-9438-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9438-2

Keywords

Navigation