REMARKS ON THE CONSISTENCY OF UPWIND SOURCE AT INTERFACE SCHEMES ON NONUNIFORM GRIDS

Chiara Simeoni

work in progress with G. Puppo and M. Semplice

Laboratoire de Mathématiques J.A. Dieudonné Université Nice Sophia Antipolis, France

e-mail : simeoni@unice.fr http://math.unice.fr/laboratoire/fiche&id=257

preliminary study of the *supra-convergence* of finite volume schemes for conservation laws with geometrical source terms

- upwind interfacial discretizations for nonuniform time/space grids
- inconsistent characteristics of the (local) truncation error
- notion of (global) consistency, related to the well-balance property
- convergence theory at optimal rates according to Wendroff & White
- computational performance as *adaptive meshing* yields an extra stabilization against the nonlinear response over shock regions

formal analysis for scalar (linear) advection/transport balance equations

$$\partial_t u + \partial_x A(u) + b(u) z'(x) = 0, \quad t \in \mathbb{R}^+, x \in \mathbb{R}$$
$$u(0, x) = u_0(x) \in L^p(\mathbb{R}) \cap L^\infty(\mathbb{R}), \quad 1 \le p < +\infty$$

where a(u) = A'(u) = a > 0, $z' \in L^{p}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ and $b \in C^{1}(\mathbb{R})$ and the <u>stationary solutions</u> are described by

$$D(u(x)) + z(x) = C^{st}, \quad D'(u) = \frac{a(u)}{b(u)} \in L^{\infty}(\mathbb{R})$$

(with D strictly monotonic for the existence of a unique Lipschitz continuous steady state)

difficulties and limits : restriction to geometrical source terms for the extended notation as (non conservative) fluxes; physical applications with negligible fluxes (groundwater models, nonlinear age-dependent population dynamics, stochastic processes with multiplicative noise); improvements by mesh adaptivity may reduce because modified schemes loose critical features (conservation form, well-balancing, ...) <u>numerical issues</u> : accurate computation of non-constant steady states, occurring for the balance between source term and internal forces; unstructured grids required for multi-dimensional problems incorporating composite physical geometries

B.D. Rogers, A.G.L. Borthwick, P.H. Taylor, Mathematical balancing of flux gradient and source terms prior to using Roe's approximate Riemann solver, *J. Comput. Phys.* (2003)
M.J. Castro, P. Garcia-Navarro, The application of a conservative grid adaptation technique to 1D shallow water equations, *Math. Comput. Modelling* (2001)
S. Karni, A. Kurganov, G. Petrova, A smoothness indicator for adaptive algorithms for hyperbolic systems, *J. Comput. Phys.* (2002)

<u>analytical studies</u> : recent theoretical advances on adaptive techniques for mesh refinement; consistency properties of finite volume schemes setting on nonuniform grids with respect to (strong) convergence

• G. Puppo, M. Semplice, Numerical entropy and adaptivity for finite volume schemes, Commun. Comput. Phys. (2011)

• C. Arvanitis, A.I. Delis, Behavior of finite volume schemes for hyperbolic conservation laws on adaptive redistributed spatial grids, J. Sci. Comput. (2006)

• C. Arvanitis, Ch. Makridakis, N.I. Sfakianakis, Entropy conservative schemes and adaptive mesh selection for hyperbolic conservation laws, J. Hyperbolic Differ. Equ. (2010)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= nav

numerical simulations for smooth data with periodic boundary conditions experimental errors at time T = 1.5, with a = 0.5, b = 1.0 and CFL = 0.9the nonuniform meshes for the computation are *arbitrarily generated* (not compatible with some L^p -type regularity condition)

cells	$ e(t) _{L^1}$		$ e(t) _{L^2}$		$ e(t) _{L^{\infty}}$	
		rates		rates		rates
30	0.313172E-01		0.365947E-01		0.596413E-01	
60	0.147558E-01	1.105	0.174315E-01	1.109	0.251566E-01	1.173
120	0.724135E-02	1.071	0.777632E-02	1.073	0.138610E-01	1.132
240	0.350149E-02	1.055	0.374801E-02	1.056	0.556219E-02	1.111
480	0.181983E-02	1.043	0.198378E-02	1.042	0.264091E-02	1.108
960	0.732448E-03	1.023	0.781343E-03	1.029	0.824566E-03	1.089

Table: standard (first order) scheme on highly nonuniform grids

- nonuniform mesh with strong inhomogeneity of the cells' size :

$$h > 0, \gamma \gg 1, \quad \Delta x_i = \begin{cases} h & i = 2k \\ \gamma h & i = 2k+1 \end{cases}, \ k \in \mathbb{Z}$$

accuracy test for the <u>Saint-Venant equations of shallow waters</u> through the *kinetic scheme with reflections*

 \bullet B. Perthame, C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, Calcolo (2001)

Figure: continuous solutions with discontinuity in the derivatives

cells	$ e(t) _{L^{1}}$		$ e(t) _{L^2}$		$ e(t) _{L^{\infty}}$	
		rates		rates		rates
50	0.2251		0.0768		0.0460	
100	0.1870	0.2673	0.0637	0.2682	0.0466	-0.0198
200	0.0927	1.0126	0.0309	1.0456	0.0224	1.0590
400	0.0492	0.9134	0.0163	0.9218	0.0113	0.9849
800	0.0259	0.9254	0.00874	0.8976	0.00570	0.9863
1600	0.0157	0.7197	0.00627	0.4802	0.00388	0.558

Table: experimental errors at time T = 1.0 for parabolic source term

<u>finite volume schemes</u> because of the *conservation property*, possible discrete versions of the *entropy inequalities*, and implementation with low regularity external fields (*integral formulation*)

FIGURE 1. piecewise constant reconstruction on the spatial mesh

non-degeneracy constraint for nonuniform grids :

 $\exists \alpha, \beta > 0 / \alpha \Delta x_{i+1} \leq \Delta x_i \leq \beta \Delta x_{i+1}, \forall i \in \mathbb{Z}$

variable time-step $\Delta t_n = t_{n+1} - t_n, n \in \mathbb{N}$

cell-centered discrete unknowns

$$v_i^n \approx \frac{1}{\Delta x_i} \int_{C_i} u(t_n, x) dx = u(t_n, x_i) + \mathcal{O}(h^2)$$

characteristic parameters $h = \max_{i \in \mathbb{Z}} \Delta x_i$ and $\Delta t = \sup_{n \in \mathbb{N}} \Delta t_n$

the simplest explicit (three points) interfacial upwind (and eventually well-balanced) scheme reads

$$\frac{v_i^{n+1} - v_i^n}{\Delta t_n} + a \, \frac{v_i^n - v_{i-1}^n}{\Delta x_i} + b(v_i^n) \, \frac{z_i - z_{i-1}}{\Delta x_i} = 0$$

together with initial data and boundary conditions

- the standard CFL-condition on the (local) ratio $\Delta t_n / \Delta x_i$ guarantees the numerical stability (adjusted to include the numerical source term)

• S. Osher, R. Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, *Math. Comp.* (1983)

- extension to multi-dimensional finite volumes through the splitting of one-dimensional schemes (with application to linear systems)

• M. Ben-Artzi, J. Falcovitz, An upwind second-order scheme for compressible duct flows, SIAM J. Sci. Statist. Comput. (1986)

• P.L. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms, *Lecture Notes in Math.* (1987)

• A. Bermudez, M.E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms, Computers & Fluids (1994)

for the cell-averages $g_i = \frac{1}{\Delta x_i} \int_{C_i} g(x) dx$ of any function $g \in W^{2,p}$, $1 \le p < +\infty$, thanks to the symmetry of cell-centered integrals

$$g_{i} = g(x_{i}) + \frac{1}{\Delta x_{i}} \int_{C_{i}} g''(\xi(x)) \frac{(x - x_{i})^{2}}{2} dx$$

= $g(x_{i-\frac{1}{2}}) + g'(x_{i-\frac{1}{2}}) \frac{\Delta x_{i}}{2} + \mathcal{O}(h, \|g''\|_{L^{p}})$

$$g_i - g_{i-1} = g'(x_i) \left(\frac{\Delta x_{i-1}}{2} + \frac{\Delta x_i}{2} \right) + \frac{1}{\Delta x_i} \int_{C_i} g''(\eta(x)) \Theta(x) \, dx$$

with $\Theta(x) = (\xi(x) - x_i)((x - x_{i-\frac{3}{2}}) - \frac{\Delta x_{i-1}}{\Delta x_i}(x - x_{i-\frac{1}{2}}))$ for some $\xi(x), \eta(x) \in C_i \cup C_{i-1}$

providing the correct approximation on nonuniform meshes

- formal estimations about the *consistency error*
- additional condition b(u) > 0 for the stationary equations
- smooth solutions for which expansions can be performed

the (local) truncation error is evaluated by returning the analytical solution into the discrete formulation, with $u_i^n = u(t_n, x_i)$

$$T_i^n = \partial_t u_i^n + \frac{\Delta x_{i-1} + \Delta x_i}{2\Delta x_i} \Big[a \partial_x u_i^n + b(u_i^n) z'(x_i) \Big] + \mathcal{O}(\Delta t, h)$$

revealing a lack of consistency with the underlying balance equation

the space-step Δx_i could be very different from the length of an interfacial interval $|x_i - x_{i-1}| = \frac{\Delta x_{i-1}}{2} + \frac{\Delta x_i}{2}$, and the pointwise consistency error does not vanish : unless the spatial mesh is quasi-uniform, namely $\Delta x_{i-1} = \Delta x_i + \mathcal{O}(h^2)$, it seems that convergence by the *Lax theorem* cannot be expected, or at least a significant reduction in the rates occurs...

• J.D. Hoffman, Relationship between the truncation errors of centered finite-difference approximations on uniform and nonuniform meshes, *J. Comput. Phys.* (1982)

• E. Turkel, Accuracy of schemes with nonuniform meshes for compressible fluid flows, *Appl. Numer. Math.* (1986)

• J. Pike, Grid adaptive algorithms for the solution of the Euler equations on irregular grids, J. Comput. Phys. (1987)

formal accuracy of finite volume schemes is actually maintained on nonuniform meshes, because of the supra-convergence phenomenon

- investigated first for homogeneous hyperbolic conservation laws

A.N. Tikhonov, A.A. Samarsky, On the theory of homogeneous difference schemes, *Outlines Joint Sympos. Partial Differential Equations* (Novosibirsk, 1963)
H.-O. Kreiss, T.A. Manteuffel, B. Swartz, B. Wendroff, A.B. White Jr., Supra-convergent schemes on irregular grids, *Math. Comp.* (1986)
B. Wendroff, A.B. White Jr., A supraconvergent scheme for nonlinear hyperbolic systems, *Comput. Math. Appl.* (1989)

??? (fully discrete) convergence at optimal rates for smooth solutions of upwind schemes for linear equations on two-dimensional triangulations

• B. Després, Lax theorem and finite volume schemes, Math. Comp. (2004)

• B. Després, An explicit a priori estimate for a finite volume approximation of linear advection on non-Cartesian grids, SIAM J. Numer. Anal. (2004)

??? comprehensive interpretation of a priori error estimates, based on the Kuznetsov's theory, for (scalar) nonlinear problems with low regularity

• B. Cockburn, P.-A. Gremaud, A priori error estimates for numerical methods for scalar conservation laws. II. Flux-splitting monotone schemes on irregular Cartesian grids, *Math. Comp.* (1997)

the discrete unknowns (and external fields) are replaced by

$$v_i^n \approx \frac{1}{\Delta x_i} \int_{C_i} \left[u(t_n, x) + \frac{\Delta x_i}{2} \partial_x u(t_n, x) \right] dx, \quad n \in \mathbb{N}, \ i \in \mathbb{Z}$$

with a first order correction to compensate the truncation error, since it represents precisely the <u>discrepancy between cell-centered and interfacial</u> <u>averages</u>, which do not coincide for nonuniform grids

• D. Bouche, J.-M. Ghidaglia, F. Pascal, Error estimate and the geometric corrector for the upwind finite volume method applied to the linear advection equation, *SIAM J. Numer. Anal.* (2005)

the modified equation of the scheme for the new reconstruction reads

$$\begin{aligned} R_i^n &= \partial_t u_i^n + a \partial_x u_i^n + b(u_i^n) z'(x_i) + \\ &+ \frac{\Delta x_{i-1}}{2} \Big[a \partial_{xx} u_i^n + b(u_i^n) z''(x_i) \Big] \frac{\Delta x_{i-1} + \Delta x_i}{2 \Delta x_i} + \\ &+ \frac{\Delta x_i}{2} \Big[\partial_{tx} u_i^n + b'(u_i^n) z'(x_i) \partial_x u_i^n \Big] + \mathcal{O}(\Delta t, h) \end{aligned}$$

for $u_i^n = u(t_n, x_i)$, with extra terms involving (admissible) higher regularity of the solution, and bounded through the *mesh's condition*

first order approximation justifies to use

$$E_{i}^{n} = v_{i}^{n} - u(t_{n}, x_{i}) - \frac{\Delta x_{i}}{2} \partial_{x} u(t_{n}, x_{i}), \quad S_{i}^{n} = z_{i} - z(x_{i}) - \frac{\Delta x_{i}}{2} z'(x_{i})$$

as <u>reference quantities for error analysis</u> : fixing b(u) = b > 0 to avoid inessential technicality, the typical stability equation of the scheme

$$E_i^{n+1} = E_i^n - a \frac{\Delta t_n}{\Delta x_i} \left(E_i^n - E_{i-1}^n \right) - b \frac{\Delta t_n}{\Delta x_i} \left(S_i^n - S_{i-1}^n \right) - \Delta t_n R_i^n$$

provides convergence with optimal rates for (regular) nonuniform grids

- diffusive and dispersive characteristics of the numerical method
- the <u>truncation error always vanishes for the simulation of steady</u> <u>states, for the</u> <u>well-balance property</u> (besides an overall stability)
- conservative schemes perform substantially better on unstructured meshes in comparison to those not preserving some special structures even for uniform meshes
- O.V. Vasilyev, High order finite difference schemes on non-uniform meshes with good conservation properties, *J. Comput. Phys.* (2000)
 Compute the second second

for many <u>applications to real systems</u>, the advection may become negligible, so that the external fields dominate over the fluxes...

cells	$ e(t) _{L^1}$		$ e(t) _{L^2}$		$ e(t) _{L^{\infty}}$	
		rates		rates		rates
30	0.208333E+01		0.143466E+01		0.151412E+01	
60	0.229167E+01	-0.138	0.152438E+01	-0.088	0.275635E+01	-0.860
120	0.260417E+01	-0.161	0.151382E+01	-0.039	0.253439E+01	-0.370
240	0.255208E+01	-0.098	0.155620E+01	-0.039	0.144264E+01	0.023
480	0.252604E+01	-0.069	0.157700E+01	-0.034	0.202358E+01	-0.105
960	0.248698E+01	-0.051	0.159362E+01	-0.030	0.176882E+01	-0.045

Table: standard (first order) scheme on highly nonuniform grid for a = 0.005

cells	$ e(t) _{l^{1}}$		$ e(t) _{l^2}$		$ e(t) _{L^{\infty}}$	
		rates		rates		rates
30	0.308642E-01		0.156844E+00		0.254948E-01	
60	0.169753E-01	0.862	0.887122E-01	0.818	0.164315E-01	1.108
120	0.925926E-02	0.868	0.424803E-01	0.939	0.787522E-02	1.093
240	0.462963E-02	0.912	0.216954E-01	0.953	0.384303E-02	1.075
480	0.231481E-02	0.934	0.127825E-01	0.905	0.189368E-02	1.062
960	0.115138E-02	0.949	0.739794E-02	0.882	0.698813E-02	1.055

Table: modified (first order) scheme on highly nonuniform grid for a = 0.005

≡ nar

• Th. Katsaounis, C. Simeoni, Three-points interfacial quadrature for geometrical source terms on nonuniform grids, *Calcolo* (2011)

steady states for <u>sinusoidal source term</u> : *adaptive techniques* customarily generate quasi-uniform grids, and the *well-balance property* significantly improve the numerical accuracy

Figure: cells sizes after mesh refinement (green) over uniform mesh

= nar

• C. Arvanitis, Mesh redistribution strategies and finite element schemes for hyperbolic conservation laws, *J. Sci. Comput.* (2008)

cells	$ e(t) _{L^1}$		$ e(t) _{L^2}$		$ e(t) _{L^{\infty}}$	
		rates		rates		rates
30	0.195000E-02		0.232276E-02		0.419508E-02	
60	0.569572E-01	1.820	0.679157E-01	1.819	0.123060E-02	1.814
120	0.218606E-01	1.619	0.260709E-01	1.618	0.470566E-01	1.619
240	0.960606E-00	1.484	0.114540E-01	1.484	0.206341E-01	1.485
480	0.450752E-00	1.391	0.537440E-00	1.391	0.967720E-00	1.392
960	0.221537E-00	1.234	0.294508E-00	1.233	0.461213E-00	1.234

Table: experimental well-balance error = 0.224508E - 02

- the <u>well-balance error is predominant for finer grids</u>, and higher rates are observed at longer times for the <u>smoothing effects of mesh refinement</u>
- difficulties are undervalued in the simulation of stationary solutions, so that testing the convergence rates may not be really effective...
- <u>counter-examples</u> for well-balanced schemes <u>with centered fluxes</u> on strongly or adaptive nonuniform meshes (uniform block-structured grids)
- (theoretical) convergence does not mean accurate pointwise simulation

ヘロト 不得 とうき とうとう ほう

the general (finite volume) Upwind Source at Interface scheme reads

$$\frac{\Delta x_i}{\Delta t_n} \left(v_i^{n+1} - v_i^n \right) + \left(A_{i+\frac{1}{2}}^n - A_{i-\frac{1}{2}}^n \right) + B_{i-\frac{1}{2}}^{n,+} + B_{i+\frac{1}{2}}^{n,-} = 0$$

and the numerical source term does not take a conservative form,

$$B_{i+\frac{1}{2}}^{n,\pm} = B^{\pm} (\Delta x_i, \Delta x_{i+1}, v_i^n, v_{i+1}^n, z_{i+1} - z_i)$$

the minimal (global) consistency requirement, for $K_B > 0$ constant,

$$\left| rac{B^-(h,k,u,u,\lambda)+B^+(h,k,u,u,\lambda)}{\lambda} - b(u)
ight| \leq \mathcal{K}_B \, \lambda$$

is actually a *structural property* (not derived from the modified equation) and thus it could fail the truncation error to vanish for nonuniform grids

• B. Perthame, C. Simeoni, Convergence of the upwind interface source method for hyperbolic conservation laws, Hyperbolic problems: theory, numerics, applications, 61-78, Springer, Berlin, 2003 (invited paper)

well-balanced schemes are consistent (Godunov solvers, VFRoe schemes, relaxation and central methods, kinetic schemes) for the supra-convergence

• F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser (2004)

??? ??? ???

influence of the non-uniformity of grids on the convergence's rates = effect of grid irregularity on the accuracy of finite volume algorithms

- alternative technique for rigorous proofs, because *entropy methods* following the *Kružkov's theory* do not provide the rates of convergence (and BV-bounds for strong convergence hold uniquely for uniform grids)

• M.G. Crandall, A. Majda, Monotone difference approximations for scalar conservation laws, *Math. Comp.* (1980)

• R. Sanders, On convergence of monotone finite difference schemes with variable spatial differencing, *Math. Comp.* (1983)

- thanks to an explicit formulation in terms of numerical derivatives, mesh-dependent extensions of the *Lax-Wendroff method* (on staggered grids) retrieve conservation form and standard (local) consistency

• M. Dumbser, A. Hidalgo, M. Castro, C. Parés, E.F. Toro, FORCE schemes on unstructured meshes II : Non-conservative hyperbolic systems, *Comput. Methods Appl. Mech. Engrg.* (2010)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= nav