Skip to main content
Log in

On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The goal of this article is to design a new approximate Riemann solver for the two-layer shallow water system which is fast compared to Roe schemes and accurate compared to Lax-Friedrichs, FORCE, or GFORCE schemes (see Castro et al. in Math. Comput. 79:1427–1472, 2010). This Riemann solver is based on a suitable decomposition of a Roe matrix (see Toumi in J. Comput. Phys. 102(2):360–373, 1992) by means of a parabolic viscosity matrix (see Degond et al. in C. R. Acad. Sci. Paris 1 328:479–483, 1999) that captures some information concerning the intermediate characteristic fields. The corresponding first order numerical scheme, which is called IFCP (Intermediate Field Capturing Parabola) is linearly L -stable, well-balanced, and it doesn’t require an entropy-fix technique. Some numerical experiments are presented to compare the behavior of this new scheme with Roe and GFORCE methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abgrall, R., Karni, S.: Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput. 31, 1603–1627 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229, 2759–2763 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Audusse, E.: A multilayer Saint-Venant model: derivation and numerical validation. Discrete Contin. Dyn. Syst., Ser. B 5, 189–214 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Audusse, E., Bristeau, M.O.: Finite-volume solvers for a multilayer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17, 311–319 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bouchut, F., Morales de Luna, T.: An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. M2AN Math. Model. Numer. Anal. 42, 683–698 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Castro, M.J., Macías, J., Parés, C.: A Q-Scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. Math. Model. Numer. Anal 35(1), 107–127 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Castro, M.J., Ferreiro, A.M., García, J.A., González, J.M., Macías, J., Parés, C., Vázquez, M.E.: On the numerical treatment of wet/dry fronts in shallow flows: applications to one-layer and two-layer systems. Math. Comput. Model. 42(3–4), 419–439 (2005)

    Article  MATH  Google Scholar 

  9. Castro, M.J., Gallardo, J.M., Parés, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow water systems. Math. Comput. 75, 1103–1134 (2006)

    Article  MATH  Google Scholar 

  10. Castro, M.J., Chacón, T., Fernández, E.D., Parés, C.: On well-balanced finite volume methods for non-conservative non-homogeneous hyperbolic systems. SIAM J. Sci. Comput. 29, 1093–1126 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Castro, M.J., Pardo, A., Parés, C.: Well-Balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Models Methods Appl. Sci. 17, 2055–2113 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Castro, M.J., LeFloch, P.G., Muñoz, M.L., Parés, C.: Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes. J. Comput. Phys. 3227, 8107–8129 (2008)

    Article  Google Scholar 

  13. Castro, M.J., Fernández, E.D., Ferreiro, A.M., García, J.A., Parés, C.: High order extensions of Roe schemes for two dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39, 67–114 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Castro, M.J., Pardo, A., Parés, C., Toro, E.F.: On some fast well-balanced first order solvers for nonconservative systems. Math. Comput. 79, 1427–1472 (2010)

    MATH  Google Scholar 

  15. Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)

    MATH  MathSciNet  Google Scholar 

  16. Degond, P., Peyrard, P.F., Russo, G., Villedieu, Ph.: Polynomial upwind schemes for hyperbolic systems. C. R. Acad. Sci. Paris 1 328, 479–483 (1999)

    MATH  MathSciNet  Google Scholar 

  17. Dumbser, M., Castro, M.J., Parés, C., Toro, E.F.: ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows. Comput. Fluids 38, 1731–1748 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Farmer, D., Armi, L.: Maximal two-layer exchange over a sill and through a combination of a sill and contraction with barotropic flow. J. Fluid Mech. 164, 53–76 (1986)

    Article  MATH  Google Scholar 

  19. Fernández-Nieto, E.D., Bouchut, F., Bresch, D., Castro, M.J., Mangeney, A.: A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227(16), 7720–7754 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Harten, A., Hyman, J.M.: Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kurganov, A., Petrova, G.: Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput. 31, 1742–1773 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44(1), 300–321 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Parés, C., Castro, M.J.: On the well-balance property of Roes method for nonconservative hyperbolic systems. Applications to shallow water systems. Math. Model. Numer. Anal. 38(5), 821–852 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A 363, 1573–1601 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schijf, J.B., Schonfeld, J.C.: Theoretical considerations on the motion of salt and fresh water. In: Proc. of the Minn. Int. Hydraulics Conv., Joint meeting IAHR and Hyd. Div. ASCE., Sept., pp. 321–333 (1953)

    Google Scholar 

  27. Toumi, I.: A weak formulation of Roe approximate Riemann solver. J. Comput. Phys. 102(2), 360–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Fernández-Nieto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Nieto, E.D., Castro Díaz, M.J. & Parés, C. On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System. J Sci Comput 48, 117–140 (2011). https://doi.org/10.1007/s10915-011-9465-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9465-7

Keywords

Navigation