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Abstract

The steady-state simplified PN approximation to the radiative transport equation
has been successfully applied to many problems involving radiation. Recently, time-
dependent simplified PN equations have been derived by an asymptotic analysis
similar to the asymptotic derivation of the steady-state SPN equations [7]. In this
paper, we present computational results for the time-dependent SPN equations in
two dimensions, obtained by using an adaptive finite element approach. Several
numerical comparisons with other existing models are shown.

1 Introduction

Time-dependent radiative transfer, described by the radiative transfer equation, is hard to
compute. This is due to the six-dimensional phase space (1× time, 2× angle, 3× space).
There is an interest in time-dependent radiative transfer solutions, e.g. in astrophysics
(supernova explosions), the interaction of short-pulsed lasers with plasmas, and light de-
tection and ranging (LIDAR). It is our purpose in this paper to numerically investigate
the time-dependent simplified PN equations in two dimensions. These models have been
very successful in the steady case. Here we investigate an extension to the time-dependent
case.
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The simplified PN (SPN) equations were originally developed for steady-state problems
in nuclear engineering [8, 9, 10] and have subsequently been generalized and successfully
applied in several other fields, including radiative transfer [13, 18, 19]. The first formal
derivation by Gelbard [8, 9, 10] started with the one-dimensional PN equations, which
contain only first-order space derivatives, and used substitutions to obtain a system of
elliptic partial differential equations. To obtain equations in three space dimensions, even-
order moments are interpreted as scalars, odd-order moments are interpreted as vectors,
and one-dimensional derivatives ∂x are replaced by divergence operators and gradients
respectively. In three space dimensions, compared to the (N + 1)2 independent unknowns
in the spherical harmonics PN equations, the number of unknowns in the SPN equations
increases only linearly with N . Because of the derivation via the one-dimensional PN

equations, the SPN method was at first not widely accepted. But alternative derivations
via asymptotic expansion [17] and via a variational approach [2, 23] have substantiated the
validity of the SPN hierarchy.

The SPN equations are accurate if the medium is optically thick, the scattering rate is
comparable to the collision rate, and scattering is not highly forward-peaked [17]. In
addition, numerical experiments (cf. [19] and references therein) have shown that the SPN

equations give good results even when the regime is not so diffusive, and even in the
presence of a discontinuity in the opacities. This means that in the diffusive regime a
higher accuracy is obtained and at the same time the range of applicability is increased.

Until recently, the SPN method was almost exclusively applied to steady-state transport
equations, i.e. no time dependence was assumed. Only then can the PN equations be
substituted into each other to give a second-order system. To our knowledge, there has
been only one attempt in the literature [21] to apply the SPN method to a time-dependent
problem. Here, the authors use a semi-discretization in time (i.e. the time variable is
discretized whereas the other variables are treated as being continuous) and apply the SPN

approximation to the then steady system. This paper, on the other hand, investigates time-
dependent SPN equations which were systematically derived from the Boltzmann equation
using an asymptotic analysis.

The numerical solution of the SPN equations are often still quite expensive due to their
inherent multi-scale structure in both time and space. A remedy is to use fully adaptive
algorithms where the local accuracy of the numerical solution is controlled by means of a
posteriori error estimates in space and time. Such estimators are well established to control
the adaptive multilevel process producing highly refined space-time grids to capture local
effects efficiently and therefore drastically reducing the size of the arising linear algebraic
systems with respect to a prescribed tolerance. We apply the adaptive Rothe method
based on the discretization sequence first in time then in space, in contrast to the usual
Method of Lines approach (see e.g. [14] and references therein). The spatial discretization
is considered as a perturbation of the time integration process. Implementations have been
done in the KARDOS library [6], which provides a suitable programming environment for
adaptive algorithms to solve nonlinear time-dependent PDEs.
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This paper is organized as follows: A brief summary of the derivation of the time-dependent
SPN equations using asymptotic analysis is given in Section 2. Suitable initial and bound-
ary conditions are stated in Section 3. The imployed numerical method is described in
Section 4. In Section 5, these techniques are applied to two test cases from the recent
radiative transfer literature.

2 Time-Dependent SPN Equations

We consider a convex, open, bounded domain Z in R
3, and we assume that Z has a

smooth boundary with outward normal vector n. The direction of particle motion is given
by Ω ∈ S2, where S2 is the unit sphere in three dimensions. Moreover, we let

Γ = ∂Z × S2 and Γ− = {(x,Ω) ∈ Γ : n(x) · Ω < 0}.

The transport of mono-energetic particles that undergo isotropic scattering in a medium
is modeled by the linear Boltzmann equation

1

v
∂tψ(t, x,Ω)+Ω ·∇xψ(t, x,Ω)+σt(x)ψ(t, x,Ω) =

σs(x)

4π

∫

S2

ψ(t, x,Ω′)dΩ′+
q(t, x)

4π
, (2.1)

where q is an isotropic source term. At the boundary, we prescribe the ingoing radiation

ψ(t, x,Ω) = ψb(t, x,Ω) on Γ−, (2.2)

and as the initial condition, we prescribe

ψ(0, x,Ω) = ψ0(x,Ω). (2.3)

Here, ψ(t, x,Ω) cos θdAdtdΩ is the number of particles at point x and time t that move
with velocity v during dt through an area dA into a solid angle dΩ around Ω, and θ is the
angle between Ω and dA. The total cross section σt(x) is the sum of the absorption cross
section σa(x) and the total scattering cross section σs(x).

The time-dependent SPN equations have been derived in [7]. For the convenience of the
reader, we here present an abbreviatied version which contains the major ideas. The steady-
state diffusion equation is an elliptic PDE. Time-dependent diffusion theory is governed
by a parabolic PDE. To obtain higher-order corrections to diffusion theory, we write the
transport equation in a parabolic scaling. Space-derivatives are scaled by a small parameter
ε and the additional time-derivative is scaled by ε2. This is called a parabolic scaling, since
a differential operator that is first-order in time and second-order in space is invariant
under this scaling. The transport equation is therefore written as:

ε2
1

v
∂tψ + εΩ · ∇xψ + σtψ =

(

σt − ε2σa
) 1

4π
φ+ ε2

q

4π
, (2.4)
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where ψ = ψ(t, x,Ω), φ(t, x) =
∫

S2 ψ(t, x,Ω)dΩ, and q = q(t, x).

Integrating (2.4) over Ω and dividing by ε2, we obtain the “balance” equation

1

v
∂tφ+

1

ε
∇x ·

∫

S2

ΩψdΩ + σaφ = q, (2.5)

which states a basic physical principle: changes in the scalar flux φ are either due to
leakage (the spatial derivative term), absorption, or sources. We require that this “balance”
equation be contained in the final choice of SPN equations.

We write (2.4) as
(1 + εΩ ·X + ε2T )ψ = S, (2.6)

where

X =
1

σt
∇x, T =

1

vσt
∂t, and S =

(

1− ε2
σa
σt

)

φ

4π
+ ε2

q

4πσt
. (2.7)

We start by expanding the inverse of the operator in (2.6) in powers of ε

ψ = (1 + εΩ ·X + ε2T )−1S

=
{

1− (Ω ·X)ε+
[

−T + (Ω ·X)2
]

ε2 +
[

(Ω ·X)T + (T − (Ω ·X)2)(Ω ·X)
]

ε3

+
[

(T − (Ω ·X)2)T + (−2(Ω ·X)T + (Ω ·X)3)(Ω ·X)
]

ε4 · · ·
}

S +O(ε5). (2.8)

In the following we assume that the system is homogeneous, i.e. σa and σt are constant.
This assumption is crucial for the validity of the following analysis. For a discussion of
the non-homogeneous case, we refer the reader to the end of this section. Integrating (2.8)
with respect to Ω and using

∫

S2

(Ω ·X)ndΩ = [1 + (−1)n]
2π

n+ 1
Xn = [1 + (−1)n]

2π

n+ 1
(X ·X)

n

2 , (2.9)

we obtain

φ =

∫

S2

ψdΩ

=4π

{

1 +

(

1

3
X2 − T

)

ε2 +

(

T 2 +
1

5
X4 − TX2

)

ε4

+

(

1

7
X6 + 2T 2X2 − T 3 − TX4

)

ε6
}

S +O(ε8). (2.10)
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Hence,

4πS =

{

1 +

(

1

3
X2 − T

)

ε2 +

(

T 2 +
1

5
X4 − TX2

)

ε4

+

(

1

7
X6 + 2T 2X2 − T 3 − TX4

)

ε6
}

−1

φ+O(ε8)

=

{

1 +

(

−1

3
X2 + T

)

ε2 +

(

− 4

45
X4 +

1

3
TX2

)

ε4

+

(

− 44

945
X6 − 1

3
T 2X2 +

4

15
TX4

)

ε6
}

φ+O(ε8). (2.11)

Inserting the definition of the source term S from (2.7), we get

(

1− ε2
σa
σt

)

φ+ ε2
q

σt
=

{

1 +

(

−1

3
X2 + T

)

ε2 +

(

− 4

45
X4 +

1

3
TX2

)

ε4

+

(

− 44

945
X6 − 1

3
T 2X2 +

4

15
TX4

)

ε6
}

φ+O(ε8).

(2.12)

Deleting φ on both sides and multiplying by σt/ε
2, we obtain

−σaφ+ q = σtTφ− σt
3
X2

[

φ− ε2Tφ+
4

15
ε2X2φ

+
44

315
ε4X4φ+ ε4T 2φ− 4

5
ε4TX2φ

]

+O(ε6).

(2.13)

We note that this equation has the form of the balance equation (2.5). Since we want to
keep this form, in the subsequent approximations we only manipulate the terms within the
brackets.

2.1 SP1 Approximation

For the lowest-order approximation, we neglect terms of order O(ε2). Then (2.13) becomes
the classical diffusion (SP1) equation

1

v
∂tφ =

1

3σt
∇2

xφ− σaφ+ q. (2.14)

2.2 SP3 Approximation

As in the steady case, the SP2 equations, which are of order O(ε4), have proven to be
inadequate in practice. This is due to their origin from the P2 equations [7]. Therefore we
omit them and proceed with the SP3 equations.

5



Noting that Eq. (2.13) has the form of the balance equation (2.5), we write (2.13) as

q − σaφ = σtTφ− σt
3
X2
{

φ+
[

1 +
11

21
ε2X2 − 3αε2T

] 4

15
ε2X2φ

−
[

1− ε2T +
4

5
(1− α)ε2X2

]

ε2Tφ
}

+O(ε6).
(2.15)

As before, we have isolated terms that contain time-dependent diffusion operators (first-
order time and second-order space derivative). The transformation of the asymptotic
expansion into the SP2 system, i.e. the definition of ξ, is unique up to a multiplicative
factor. However, for the expansion up to terms of order O(ε6), it is not clear how the
substitutions have to be performed. Thus we have introduced a parameter α ∈ [0, 1] to
split the mixed term TX2 into two parts. We chose the parameter between zero and one
in order to get diffusion equations with the correct signs.

Using Neumann’s series, we write (2.15) as:

q − σaφ = σtTφ− σt
3
X2
{

φ+
[

1− 11

21
ε2X2 + 3αε2T

]

−1 4

15
ε2X2φ

−
[

1 + ε2T − 4

5
(1− α)ε2X2

]

−1

ε2Tφ
}

+O(ε6).
(2.16)

Now we define

φ2 =
1

2

[

1− 11

21
ε2X2 + 3αε2T

]

−1(
4

15
ε2X2φ

)

, (2.17a)

ζ =

[

1 + ε2T − 4

5
(1− α)ε2X2

]

−1
(

ε2Tφ
)

, (2.17b)

to obtain the system

1

v
∂tφ =

1

3σt
∇2

x [φ+ 2φ2 − ζ ]− σaφ+ q, (2.18a)

1

v
∂tφ2 =

1

3σt
∇2

x

[

2

15α
φ+

11

21α
φ2

]

− 1

3α

σt
ε2
φ2, (2.18b)

1

v
∂tζ =

1

3σt
∇2

x

[

φ+ 2φ2 +

(

12

5
(1− α)− 1

)

ζ

]

− σaφ+ q − σt
ε2
ζ. (2.18c)

Without time-dependence, the variable ζ is zero. Moreover, for α = 2
3
the above equations

reduce to the steady-state SP3 approximation. To obtain a system that is not ill-posed,
we must take 0 < α < 0.9 [7].

2.3 Simplification of the SP3 System

In [7], the SP3 equations with α = 2/3 were derived from the P3 moment equations.
The variable φ2 can be identified with the second-order Legendre moment of the radiative
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intensity. The variable ζ , on the other hand, is an auxiliary variable without a straight-
forward physical interpretation. Furthermore, ζ = 0 in steady-state. To simplify the SP3

equations, we therefore make a quasi-steady approximation and neglect ζ . We obtain

1

v
∂tφ =

1

3σt
∇2

x[φ+ 2φ2]− σaφ+ q, (2.19a)

1

v
∂tφ2 =

1

3σt
∇2

x

[

2

15α
φ+

11

21α
φ2

]

− 1

3α

σt
ε2
φ2. (2.19b)

We call these the SSP3 (simplified-simplified P3) equations.

We expect that the time-dependent SPN equations can be generalized to anisotropic scat-
tering in a similar manner as in the steady-state case [17]. In the derivation of the equations,
we assumed a homogeneous medium. In steady-state, a variational analysis yielded the
SPN equations for non-homogeneous media as well as interface and boundary conditions
[2, 23]. The only difference for space-dependent coefficients is that the spatial derivatives
have to be modified like

1

σt
∇2

x → ∇x
1

σt(x)
∇x.

For steady-state problems, this modification of the spatial derivatives is asymptotically cor-
rect in planar geometry and we expect that it is asymptotically correct for time-dependent
planar geometry problems.

3 Boundary Conditions and Initial Values

In this section, we state boundary conditions for the SPN equations which have been
derived using Marshak’s method [20]. Let

l1 = −4

∫

n·Ω<0

(n · Ω)ψb dΩ, l2 = 16

∫

n·Ω<0

P3(n · Ω)ψb dΩ.

For the SP1 equations, we have

n · ∇xφ =
σt
ε

(

3

2
l1 −

3

2
φ

)

. (3.1)

For SP3 and SSP3, we obtain the boundary conditions:

n · ∇xφ =
σt
ε

(

−25

12
φ+

25

24
φ2 +

3

2
l1 +

7

12
l2

)

(3.2a)

n · ∇xφ2 =
σt
ε

(

7

24
φ− 35

24
φ2 −

7

24
l2

)

(3.2b)

ζ = 0. (3.2c)
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3.1 Initial Values

Given an initial particle distribution, it is straight-forward to calculate an initial value
for φ. From the asymptotic analysis, the physical meaning of the auxiliary variables (ξ,
φ2, ζ) is not obvious. Therefore it is not clear what the appropriate initial conditions
for these variables are. In many cases, the initial setting is a steady state. In addition,
the time-dependent SPN equations reduce to the steady-state SPN equations. For the
SP3 equations, we would have to solve (2.17) for φ2 and ζ . Of course, this gives ζ = 0.
Alternatively, φ2 could be identified as the second-order Legendre moment and thus be
computed from the initial value for ψ.

4 Numerical Method

We have derived the time-dependent SPN equations in three spatial dimensions. In the
following chapter, we will present numerical results in two spatial dimensions. Therefore,
here we also describe the numerical method for two dimensions. It can be generalized,
however, in a straightforward way.

Mathematically speaking, the above SPN models are nonlinear parabolic PDEs. This
means that after spatial discretization we are faced with a large scale stiff system. From
an ODE point of view, an optimal treatment of this stiffness structure is to apply some
L-stable implicit time discretization [4, 12]. From the PDE point of view, the avoidance
of order reduction (which may occur above order 2) is equally important for the overall
efficiency of the time integrator. Both properties are satisfied by the linearly implicit time
discretization of Rosenbrock type behind the code ROS3PL [15]. Note that the popular
Crank–Nicolson scheme is not L-stable and even not strongly A-stable, which results in an
insufficient filtering of spurious modes. Fully implicit schemes require the iterative solution
of finite dimensional nonlinear systems of algebraic equations by some Newton-like method.
In contrast, linearly implicit methods realize a simplified Newton method in function space
and require only the solution of a fixed number of linear systems per time step. According to
their one-step nature, they allow for a rapid change of step sizes and an efficient adaptation
of the spatial discretization in each time step. Moreover, a simple embedding technique
can be used to estimate the error part arising from time discretization.

Linearly implicit time integrators of Rosenbrock type are implemented in the code fam-
ily KARDOS [6], which is used to solve our SPN models. KARDOS is characterized by
a combination of Rosenbrock solvers in time with multilevel finite elements in space in
the setting of an adaptive Rothe approach, i.e., first time discretization and then spatial
discretization. In this setting, both time-step control and dynamic mesh refinement on
the basis of a posteriori error estimation can be simultaneously realized [1, 16]. A rigorous
analysis for nonlinear parabolic systems has been given in [14], where challenging examples
from other fields of science and technology are also included.
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Next we want to describe the main ingredients of the adaptive Rothe method as needed
for the efficient solution of the above described SPN models. These models can be written
as abstract Cauchy problems of the form

H∂tU = F (U), U(t0) = U0, t > 0, (4.1)

where H is a constant regular matrix and the diffusion operators and the boundary
conditions are incorporated into the nonlinear function F (U). For example, we have
U = (φ, ξ, ζ)T for the SP3 model. To approximate the vector U(x, t) by values Un ≈ U(·, tn)
at a certain time grid

0 = t0 < t1 < · · · < tn < · · · < tM−1 < tM = T , (4.2)

we apply the 4-stage third-order Rosenbrock method ROS3PL, which has the recursive
form

(

H

τnγ
− Jn

)

Uni = F

(

Un+
i−1
∑

j=1

aij Unj

)

−H
i−1
∑

j=1

cij
τn
Unj , i = 1, . . . , 4, (4.3)

Un+1 = Un +
4
∑

i=1

miUni, (4.4)

where τn = tn+1 − tn and Jn = F ′(Un). The defining formula coefficients mi, aij , cij, and
γ are given in [15]. The method is L-stable and avoids order reduction.

ROS3PL offers a simple way to estimate the local error. An embedded solution Ûn+1 of
second order can be computed by replacing the original weights mi by m̂i in (4.4). In order
to take into account the scale of the problem, the local error estimator is defined by the
weighted root mean square norm

rn+1 =

(

‖Un+1 − Ûn+1‖2L2(Z)

ATOL+RTOL ‖Un+1‖2L2(Z)

)1/2

. (4.5)

The tolerances ATOL and RTOL have to be selected carefully to furnish meaningful input
for the error control. The estimator can be used to propose a new time step by

τn+1 =
τn
τn−1

(

TOLt rn
rn+1 rn+1

)1/3

τn, (4.6)

where TOLt is a desired tolerance prescribed by the user [11]. If rn+1 > TOLt, the step is
rejected and redone. Otherwise the step is accepted and we advance in time.

Observe that the above time discretization scheme has been applied to the abstract Cauchy
problem (4.1), i.e., to the initial value problem in function space. This means that the
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Rosenbrock discretization scheme (4.3) is a sequence of linear elliptic boundary value prob-
lems. The spatial approximation of the vectors Un is now done by multilevel finite elements.
This is described next.

The main idea of multilevel techniques consists of replacing the infinite dimensional solu-
tion space by a nested sequence of finite dimensional spaces with successively increasing
dimension in order to improve the approximation quality. To construct adaptive spatial
meshes, we apply the edge-oriented hierarchical error estimator from [5, 14]. Such estima-
tors are well established to control the adaptive multilevel process producing successively
finer meshes and, in spatial multi-scale cases, drastically reducing the size of the arising
linear algebraic systems with respect to a prescribed tolerance. Let Th be an admissible
finite element mesh at t= tn and S1

h be the associated finite dimensional space consisting
of all continuous piecewise linear functions. Then the standard Galerkin finite element
approximation Uh

ni ∈ S1
h of the intermediate values Uni in (4.3) satisfies the equation

(Ln U
h
ni, φh) = (Rni, φh) for all φh ∈ S1

h, (4.7)

where Ln is the weak representation of the differential operator on the left-hand side in (4.3)
and Rni stands for the entire right-hand side in (4.3). Since the operator Ln is independent
of i, its calculation is required only once within each time step. The resulting large scale
linear systems are solved by the BICGSTAB algorithm [24] with ILU preconditioning.

After computing the approximate intermediate values Uh
ni, a posteriori error estimates

can be used to give specific assessment of the error distribution. Consider a hierarchical
decomposition

S2
h = S1

h ⊕ Z2
h, (4.8)

where Z2
h is the subspace that corresponds to the span of quadratic bubble functions

corresponding to edges. Defining an a posteriori error estimator Eh
n+1 ∈ Z2

h by

Eh
n+1 = Eh

n0 +
4
∑

i=1

miE
h
ni, (4.9)

with Eh
n0 approximating the projection error of the initial value Un in Z

2
h and E

h
ni estimating

the spatial error of the intermediate value Uh
ni, the local spatial error for a finite element

T ∈ Th can be estimated by ηT := ‖Eh
n+1‖T . The error estimator Eh

n+1 is computed by
linear systems which can be derived from (4.7). We get for i = 0

(LnE
h
n0, φh) = (Ln (Un − Uh

n ), φh) for all φh ∈ Z2
h. (4.10)

and for i = 1, . . . , 4

(LnE
h
ni, φh) = (Rni(E

h
n1 + Uh

n1, . . . , E
h
n,i−1 + Uh

n,i−1), φh)− (Ln U
h
ni, φh) for all φh ∈ Z2

h.
(4.11)
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Solving these equations encounters a sequence of five large linear problems in the space of
hierarchical surpluses. From many practical computations, we have experienced that using
the approximate error estimator

Eh
n+1 ≈ Ẽh

n+1 = Eh
n0 +

Eh
n1

γ
, (4.12)

that is an error estimator for the embedded, locally second order linearly implicit Euler
solution Uh,euler

n+1 = Uh
n + Uh

n1/γ, is quite efficient. Combining (4.10) and the first equation
of (4.11) yields the following simplified error equation

(Ln Ẽ
h
n+1, φh) = (Ln(Un − Uh,euler

n+1 ) +
Rn1

γ
, φh) for all φh ∈ Z2

h. (4.13)

Although we have reduced the number of error equations considerably, we still face a fully
coupled system over the surplus space Z2

h in (4.13). Following the approach given in [5], we
take further advantage of a localization strategy. The idea is to replace the bilinear form
on the left hand side in (4.13) by a spectrally equivalent block-diagonal preconditioner in
the surplus space. Then, the error equation can be simultaneously solved for each bubble
function, that is, for each edge in the triangulation. Let Ẽh,loc

n+1 be the corresponding error
estimator. The local spatial error ηT for a finite element T ∈ Th can again be estimated by
computing the norm of Ẽh,loc

n+1 over T . For the overall spatial error, we define in line with
the local temporal error in (4.5)

|‖Ẽh,loc
n+1 ‖| =

(

‖Ẽh,loc
n+1 ‖2L2(Z)

ATOL+RTOL ‖Uh
n+1‖2L2(Z)

)1/2

. (4.14)

Based on this error estimation, we can control the spatial accuracy of the numerically
computed solution to an imposed tolerance level TOLx. New grid points are placed in
regions of insufficient accuracy. Therefore, all elements with ηT > 0.8maxT ηT are refined.
We apply the standard red-green refinement technique. The iterative process estimate-
refine-solve within a time step is continued until |‖Ẽh,loc

n+1 ‖| < TOLx. Obviously, temporal
and spatial errors have to be well balanced. We have also to take into account mesh
coarsening to gain efficiency. For more details, we refer to [14].

5 Numerical Results

5.1 Marshak Wave

This test case is a two-dimensional version of the analytical Marshak Wave test case from
[22]. Here, radiation is coupled to an energy equation for B ∼ T 4. The heat capacity is
chosen such that the problem becomes linear. The equations are

11
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Figure 1: Energy distribution φ for different times in 2D Marshak wave.

1

c
∂tψ(t, x,Ω) + Ω · ∇xψ(t, x,Ω) = σa(x) (B(t, x)− ψ(t, x,Ω)) +Q(t, x) (5.1)

∂tB(t, x) = σa(x)

(

1

4π

∫

4π

ψ(t, x,Ω)dΩ−B(t, x)

)

. (5.2)

The SPN approximation is applied to (5.1) and treats the B variable as an additional
source term. The additional equation (5.2) is an ordinary differential equation but fits into
the numerical framework above.

The setting is two-dimensional and infinite in space (x ∈ R
2), with time t ∈ [0, 10]. We

have σa = 1.0. In an initially empty medium, a spatially bounded source Q is switched on
at time zero:

Q(t, x) =

{

1
4x2

0

for 0 ≤ t ≤ t∗, x ∈ [−x0, x0]× [−x0, x0],
0 otherwise

with x0 = 0.5 and t∗ = 10.

For symmetry reasons, the computational domain was restricted to [0, 10]× [0, 10]. We set
TOLt = TOLx = 10−4, RTOL = 1, ATOL = 10−4. The first time step was τ0 = 1.0e− 4.
We started with a criss-cross grid of 202 + 212 = 841 points, the largest side length in one
triangle being h = 2−1. After adaptive refinement, the smallest side length was h = 2−10

√
2.

The finest grid consisted of 58916 points (both values extremal for SP3). Both spatial
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Figure 2: Spatial degrees of freedom (left) and step size (right) as functions of time.

degrees of freedom and the time step are shown in Figure 2. The total computation times
were 19m33s (SP1), 79m10s (SSP3), 208m53s (SP3) on a PC with a 3 GHz i686 processor.

In Figure 1, the radiative energy φ for times t = 1 (lower curves) and t = 10 (higher
curves) computed by the different models SP1, SP3, SSP3 is compared to a benchmark
solution (high-order spherical harmonics solution), for both a cut along the x axis as well
as a cut along the diagonal x = y. As in the one-dimensional case (investigated in [7],
the higher-order diffusion approximations are a clear improvement on the SP1 diffusion
approximation.

5.2 Lattice Problem

As a more complex numerical test we consider a 2D checkerboard structure of different
materials. The geometry, shown in Fig. 3, is identical to the example presented in [3],
however modified here to have σt = σs = 0.2 cm−1 in the highly scattering regions (white
in Fig. 3), and σt = 10 cm−1, σs = 0 cm−1 in the highly absorbing regions (grey and
hatched squares in Fig. 4(a)). A source (hatched square in Fig. 3) q = 1 is switched on
at t = 0. The final time is t = 2.0. The test lies in an intermediate regime between thin
and thick media. The radiation field propagates through several obstacles. The main front
propagates to the top which is open, but some radiation will leak through the squares.

We set TOLt = 10−3, TOLx = 10−4, RTOL = 1, ATOL = 10−7 with initial time step
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Figure 3: Computational mesh for the SP3 solution at t = 2.0 (left) and step size as a
function of time (right).
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Figure 4: Computational domain for the SP3 solution (left) and comparison of the different
radiative energies along the center line x = 3.5.
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(a) P7 solution. (b) SP1 solution.

(c) SSP3 solution. (d) SP3 solution.

Figure 5: Energy distribution at t = 2.0 for different models.
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τ0 = 10−5. Figure 3(a) shows the adaptive grid for the SP3 solution at t = 2.0. It consists
of 100100 triangles and 50135 points, the smallest triangle being 2−9. Local refinements
can be seen around the jumps at the interfaces between the two media and in the central
radiating region. Computation times were 23m46s (SP1), 58m16s (SPP3), 164m57s (SP3)
on a PC with a 3 GHz i686 processor.

Figure 5 shows the radiative energy at time t = 2.0 on a logarithmic scale. The P7 solution,
which serves as a benchmark here, shows sharp fronts filling the squares adjacent to the
center square and a small front escaping on the top. While the radiation in the center region
is sufficiently well-described by the diffusion solutions, they overpredict the spreading of the
front into the outer regions. However, the SP3 solution clearly has a smaller and sharper
front than the other two lower-order approximations. Quantitatively, this becomes more
clear when looking at a cut through the energy profile at x = 3.5, shown in Figure 4(b).
The escaping front to the top is between y = 5 and y = 7 and it becomes clear that SP3

is closest to the benchmark, with SSP3 having slight advantages over SP1.

6 Conclusions

Concerning the validity of the time-dependent SPN equations, assertions similar to the
steady case can be made. Physically, the parabolic scaling and ε small mean that we require
the ratio of mean free path and characteristic length scale, as well as the characteristic
length divided by the product of characteristic time and velocity to be small of order ε.

The numerical results here and in [7] indicate that the SPN approximations improve diffu-
sion theory in the sense that not too far away from the diffusive limit a better approximation
is obtained.

In the lattice test case, a strong grid refinement around the obstacles was necessary. Sim-
ilarly, to approximate the effect of source terms well, initially smaller time steps were
needed. Using adaptivity in both time and space discretization is essential in many radia-
tive transfer applications. This is especially true for non-homogeneous media with varying
coefficients or with source terms.
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