Skip to main content
Log in

Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Zhang and Shu (J. Comput. Phys. 229:3091–3120, 2010), two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in Zhang and Shu (J. Comput. Phys. 229:8918–8934, 2010). The extension of these schemes to triangular meshes is conceptually plausible but highly nontrivial. In this paper, we first introduce a special quadrature rule which is exact for two-variable polynomials over a triangle of a given degree and satisfy a few other conditions, by which we can construct high order maximum principle satisfying finite volume schemes (e.g. essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes) or DG method solving two dimensional scalar conservation laws on triangular meshes. The same method can preserve the maximum principle for DG or finite volume schemes solving two-dimensional incompressible Euler equations in the vorticity stream-function formulation, or any passive convection equation with an incompressible velocity field. We also obtain positivity preserving (for density and pressure) high order DG or finite volume schemes solving compressible Euler equations on triangular meshes. Numerical tests for the third order Runge-Kutta DG (RKDG) method on unstructured meshes are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, S., Chang, K.: On the shock-vortex interaction in Schardin’s problem. Shock Waves 10, 333–343 (2000)

    Article  MATH  Google Scholar 

  2. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MATH  MathSciNet  Google Scholar 

  3. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000)

    MATH  Google Scholar 

  5. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ha, Y., Gardner, C., Gelb, A., Shu, C.-W.: Numerical simulation of high Mach number astrophysical jets with radiative cooling. J. Sci. Comput. 24, 597–612 (2005)

    Article  MathSciNet  Google Scholar 

  7. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Korobeinikov, V.P.: Problems of Point-Blast Theory. American Institute of Physics, New York (1991)

    Google Scholar 

  10. Liu, J.-G., Shu, C.-W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160, 577–596 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, W., Cheng, J., Shu, C.-W.: High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228, 8872–8891 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Niceno, B.: EasyMesh Version 1.4: a two-dimensional quality mesh generator (2001). Available from: http://www-dinma.univ.trieste.it/nirftc/research/easymesh/

  14. Perthame, B., Shu, C.-W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73, 119–130 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sambasivan, S.K., UdayKumar, H.S.: Ghost fluid method for strong shock interactions part 2: immersed solid boundaries. AIAA J. 47, 2923–2937 (2009)

    Article  Google Scholar 

  16. Schardin, H.: High frequency cinematography in the shock tube. J. Photosci. 5, 19–26 (1957)

    Google Scholar 

  17. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  18. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MATH  Google Scholar 

  19. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Skews, B.W.: The perturbed region behind a diffracting shock wave. J. Fluid Mech. 29, 705–719 (1967)

    Article  Google Scholar 

  21. Sun, M., Takayama, K.: The formation of a secondary shock wave behind a shock wave diffracting at a convex corner. Shock Waves 7, 287–295 (1997)

    Article  MATH  Google Scholar 

  22. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, X., Shu, C.-W.: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wang Shu.

Additional information

Research supported by AFOSR grant FA9550-09-1-0126 and NSF grant DMS-0809086.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Xia, Y. & Shu, CW. Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes. J Sci Comput 50, 29–62 (2012). https://doi.org/10.1007/s10915-011-9472-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9472-8

Keywords

Navigation