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Abstract In (Xu and Shu in J. Sci. Comput. 40:375–390, 2009), a local discontinuous
Galerkin (LDG) method for the surface diffusion of graphs was developed and a rigorous
proof for its energy stability was given. Numerical simulation results showed the optimal
order of accuracy. In this subsequent paper, we concentrate on analyzing a priori error esti-
mates of the LDG method for the surface diffusion of graphs. The main achievement is the
derivation of the optimal convergence rate k + 1 in the L2 norm in one-dimension as well
as in multi-dimensions for Cartesian meshes using a completely discontinuous piecewise
polynomial space with degree k ≥ 1.

Keywords Local discontinuous Galerkin method · Surface diffusion of graphs · Stability ·
Error estimates

1 Introduction

In this paper, we consider the error estimates of the local discontinuous Galerkin (LDG)
method [31] for the surface diffusion of graphs

ut + ∇ ·
(

Q

(
I − ∇u ⊗ ∇u

Q2

)
∇H

)
= 0, (x, t) ∈ � × (0, T ], (1.1)
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with a periodic boundary condition and a smooth enough initial condition

u(x,0) = u0(x). (1.2)

For simplicity we always consider � = �d
i=1[ai, bi] ⊂ R

d to be a bounded rectangular do-
main with dimension d ≤ 3. Here Q is the area element

Q =
√

1 + |∇u|2 (1.3)

and H is the mean curvature of the domain boundary �

H = ∇ ·
(∇u

Q

)
. (1.4)

The reduced model (1.1) has an elegant divergence form, which is obtained by a (highly
nonlinear) 4th order geometric partial differential equations (PDEs). Similar structure has
been exploited in the continuous finite element methods by Bänsch [1] for surface diffusion
of graphs and Deckelnick and by Dziuk [18] for Willmore flow of graphs.

Finite element methods have been successfully applied to solve surface diffusion of
graphs. Earlier studies [12, 13] focused on the stability of the numerical scheme. Recently a
second order splitting method was presented by Deckelnick, Dziuk and Elliott [15], which
was proposed for Cahn-Hilliard equation by Elliott, French and Milner [20]. Subsequently
Bänsch, Morin and Nochetto [1] introduced a novel variational formulation for graphs and
obtained a priori quasi-optimal error estimates using continuous finite elements of degree
k ≥ 1. Later on, Deckelnick, Dziuk and Elliott [17] analyzed a fully discrete finite element
approximation for anisotropic surface diffusion of graphs and proved error bounds. Geo-
metric PDEs have many applications, such as body shape dynamics, surface construction,
computer data processing, phase transitions, image processing, etc. For more computational
theory we refer to the review paper [16] by Deckelnick, Dziuk and Elliott.

In [31], Xu and Shu developed a local discontinuous Galerkin (LDG) method for the sur-
face diffusion and Willmore flow of graphs and gave a rigorous proof for its energy stability.
In this method the basis functions used are discontinuous in space. The LDG discretiza-
tion also results in a high order accurate, extremely local, element based discretization. In
particular, the LDG method is well suited for hp-adaptation, which consists of local mesh
refinement and/or the adjustment of the polynomial order in individual elements. The opti-
mal error estimates results of the local discontinuous Galerkin method for Willmore flow of
graphs on Cartesian meshes are given in [22].

In this paper we analyze a priori error estimates of the method of the surface diffusion
of graphs which developed in [31]. The main achievement is the derivation of the optimal
convergence rate k + 1 in the L2 norm on Cartesian meshes. The key idea of the LDG
method for this equation is to rewrite the equation into a first order system, then choose
proper fluxes. So inter-element boundary terms that due to the flux on each element and
auxiliary variables which occur from the LDG discretization are the main challenges in this
paper. The analysis is made for the fully nonlinear case and the results are valid for all d ≤ 3
and polynomial degree k ≥ 1. Although the surface diffusion and Willmore flow of graphs
are both fourth order nonlinear equations and has some similar nonlinear term, the energy
of two equations are different. So, the technique of the proof for these two equations are
different. We borrow the idea in [1] and introduce the two nonlinear operators to facilitate
the proof. We generalize the analysis to fully nonlinear case comparing with analysis for
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linear fourth order equation in [19]. We also obtain the optimal accuracy results comparing
with the sub-optimal results for continuous finite element method in [1].

The DG method is a class of finite element methods, using discontinuous, piecewise
polynomials as the solution and the test space. It was first designed as a method for solv-
ing hyperbolic conservation laws containing only first order spatial derivatives, e.g. Reed
and Hill [25] for solving linear equations, and Cockburn et al. [4–7] for solving nonlinear
equations. It is difficult to apply the DG method directly to the equations with higher order
derivatives. The LDG method is an extension of the DG method aimed at solving partial
differential equations (PDEs) containing higher than first order spatial derivatives. The first
LDG method was constructed by Cockburn and Shu in [8] for solving nonlinear convection
diffusion equations containing second order spatial derivatives. Their work was motivated by
the successful numerical experiments of Bassi and Rebay [2] for the compressible Navier-
Stokes equations. The idea of the LDG method is to rewrite the equations with higher order
derivatives into a first order system, then apply the DG method on the system. The design of
the numerical fluxes is the key ingredient to ensure stability. The LDG techniques have been
developed for convection diffusion equations (containing second derivatives) [8], nonlinear
one-dimensional and two-dimensional KdV type equations [30, 33] and Cahn-Hilliard equa-
tions [28, 29]. Recently, there is a review paper on the LDG methods for high-order time-
dependent partial differential equations [32]. More general information about DG methods
for elliptic, parabolic and hyperbolic partial differential equations can be found in the three
special journal issues devoted to the DG method [10, 11, 14], as well as in the recent books
and lecture notes [21, 23, 26, 27].

The paper is organized as follows. In Sect. 2, we give some notations, definition and
projections. In Sect. 3, we show LDG scheme for the surface diffusion of graphs and the
main results in this paper. In Sect. 4, we give some auxiliary results which is important for
our analysis. In Sect. 5, we present the proof of the error estimates. Concluding remarks
are given in Sect. 6. Some of the more technical proofs of several lemmas are collected in
Appendix.

2 Notations, Definitions and Projections

We first introduce notations, definitions and projections to be used later in the paper. We
define some projections and present certain interpolation and inverse properties for the finite
element spaces that will be used in the error analysis.

2.1 Tessellation and Function Spaces

For a rectangular partition of � = �d
i=1[ai, bi] ⊂ R

d , we denote the mesh by Lj =
[x(j)

i− 1
2
, x

(j)

i+ 1
2
], for i = 1, . . . ,Nj and j = 0, . . . , d. The cell lengths are denoted by h

(j)

i =
x

(j)

i+ 1
2
− x

(j)

i− 1
2

with h(j) = max1≤i≤Nj
h

(j)

i , and h = maxj=1,...,d h(j) being the maximum mesh

size. We assume the mesh is regular.
Let Th denote a tessellation of � with shape-regular elements K . Let � denote the union

of the boundary faces of elements K ∈ Th, i.e. � = ⋃
K∈Th

∂K , and �0 = �\∂�.
In order to describe the flux functions we need to introduce some notations. Let e be a

face shared by the “left” and “right” elements KL and KR (we refer to [33] and [32] for a
proper definition of “left” and “right” in our context). Define the outward unit normal vectors
νL and νR on e pointing exterior to KL and KR , respectively. If ψ is a function on KL and
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KR , but possibly discontinuous across e, let ψL denote (ψ |KL
)|e and ψR denote (ψ |KR

)|e ,
the left and right trace, respectively.

Let Qk(K) be the space of tensor product of polynomials of degree at most k ≥ 0 on
K ∈ Th in each variable. The finite element spaces are denoted by

Vh ={ϕ ∈ L2(�) : ϕ|K ∈ Qk(K), ∀K ∈ Th},
	h ={η = (η1, . . . , ηd)

T ∈ (L2(�))d : ηl |K ∈ Qk(K), l = 1, . . . , d, ∀K ∈ Th}.

For one-dimensional case, we have Qk(K) = P k(K) which is the space of polynomials
of degree at most k ≥ 0 defined on K . Note that functions in Vh and 	h are allowed to
have discontinuities across element interfaces. Here we only consider periodic boundary
conditions. Notice that the assumption of periodic boundary conditions is for simplicity only
and not essential: the method can be easily designed for non-periodic boundary conditions.
The development of the LDG method for the non-periodic boundary conditions can be found
in [24].

The definition we use for the L2-norm, L∞ norm in � and on the boundary are given by
the standard definitions:

‖η‖� =
(∫

�

η2 dx

) 1
2

, ‖η‖L∞(�) = ess sup
x∈�

|η|, ‖η‖∂� =
(∫

∂�

η2 ds

) 1
2

. (2.1)

The H�(�)-norm over � is

‖η‖H�(�) =
(∑

|α|≤�

‖Dαη‖2
�

) 1
2

, � > 0. (2.2)

We note that we simplify the notation for these norms and only designate the norm type
and not the domain. Further, we need to define the inner product notation as

(w,v)K =
∫

K

wv dK, (w,v)∂K =
∫

∂K

wv ds, (2.3)

(q,p)K =
∫

K

q·p dK, (q,p)∂K =
∫

∂K

q·p ds (2.4)

for the scalar variables w,v and vector variables q,p respectively. We can also get the
following relations

‖w‖2
� =

∑
K

(w,w)K, ‖q‖2
� =

∑
K

(q,q)K. (2.5)

2.2 Notations for Different Constants

We will adopt the following convention for different constants. These constants may have a
different value in each occurrence.

We will denote by C a positive constant independent of h, which may depend on the
solution of the problem considered in this paper. For problems considered in this section,
the exact solution is assumed to be smooth with periodic. Also, 0 ≤ t ≤ T for a fixed T .
Therefore, the exact solution is always bounded.
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2.3 Projection and Interpolation Properties

2.3.1 One-Dimensional Case

In what follows, we will consider the standard L2-projection of a function ω with k + 1
continuous derivatives into space Vh,

P ± : H 1(�) −→ Vh,

which are defined as the following. Given a function η ∈ H 1(�) and an arbitrary subinterval
Kj = (xj−1, xj ), the restriction of P ±η to Kj are defined as the elements of P k(Kj ) that
satisfy

∫
Kj

(P +η − η)w dx = 0, ∀w ∈ P k−1(Kj ), and P +η(xj−1) = η(xj−1), (2.6)

∫
Kj

(P −η − η)w dx = 0, ∀w ∈ P k−1(Kj ), and P −η(xj ) = η(xj ). (2.7)

For the projections mentioned above, it is easy to show (cf. [3])

‖ηe‖� + h‖ηe‖L∞(�) + h
1
2 ‖ηe‖� ≤ Chk+1‖η‖k+1,�, (2.8)

where ηe = πη − η or ηe = P ±η − η. πη is the standard L2 projection of the function η.
The positive constant C, only depending on η, is independent of h.

2.3.2 Two-Dimensional Case

To prove the error estimates for two-dimensional problems in Cartesian meshes, we need a
suitable projection P ± similar to the one-dimensional case. The projections P − for scalar
functions are defined as

P − = P −
x ⊗ P −

y , (2.9)

where the subscripts x and y indicate that the one-dimensional projections defined by (2.7)
are applied with respect to the corresponding variable on a two-dimensional rectangle ele-
ment I ⊗ J = [xi−1, xi] × [yj−1, yj ].

The projection �+ for vector-valued function ρ = (ρ1(x, y), ρ2(x, y)) are defined as

�+ρ = (P +
x ⊗ πyρ1,πx ⊗ P +

y ρ2). (2.10)

Here πx,πy is the standard L2 projection in x or y direction. It is easy to see that, for any
ρ ∈ [H 1(�)]2, the restriction of �+ρ to I ⊗ J are elements of [Qk(I ⊗ J )]2 that satisfy

∫
I

∫
J

(�+ρ − ρ) · ∇w dy dx = 0 (2.11)

for any w ∈ Qk(I ⊗ J ), and
∫

J

(�+ρ(xi−1, y) − ρ(xi−1, y)) · νw(x+
i−1, y) dy = 0 ∀w ∈ Qk(I ⊗ J ), (2.12)
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∫
I

(�+ρ(x, yj−1) − ρ(x, yj−1)) · νw(x,y+
j−1) dy = 0 ∀w ∈ Qk(I ⊗ J ), (2.13)

where ν is the outward unit normal vector to the domain integrated. For the definition of
similar projection on three-dimensional case, we refer to [9].

Similar to the one-dimensional case, there are some approximation results for the projec-
tions (2.9) and (2.10) in [19]

‖ηe‖� + h
1
2 ‖ηe‖� ≤ Chk+1‖η‖Hk+1(�), ∀η ∈ Hk+1(�),

‖ρe‖� + h
1
2 ‖ρe‖� ≤ Chk+1‖ρ‖Hk+1(�), ∀ρ ∈ [Hk+1(�)]d ,

where ηe = πη − η, ρe = πρ − ρ or ηe = P ±η − η, ρe = �±ρ − ρ and C is independent
of h.

2.4 Inverse Properties and Approximation

Finally we list some inverse properties of the finite element space Vh that will be used in our
error analysis. For any ωh ∈ Vh, there exists a positive constant C independent of ωh and h,
such that

(i) ‖∇ωh‖� ≤ Ch−1‖ωh‖�,

(ii) ‖ωh‖� ≤ Ch− 1
2 ‖ωh‖�,

(iii) ‖ωh‖L∞(�) ≤ Ch− d
2 ‖ωh‖�,

(2.14)

where d = 1, 2 or 3 is the spatial dimension. For more details of these inverse properties, we
refer to [3].

3 The LDG Method for the Surface Diffusion of Graphs

In this section, we consider the LDG method for the surface diffusion of graphs equation
(1.1). We will give the L2 stability and area-decreasing properties of the LDG method. The
main error estimates results will be presented.

3.1 The LDG Method

To define the local discontinuous Galerkin method, we rewrite (1.1) as a first order system:

ut + ∇ · s = 0, (3.1a)

s − E(r)p = 0, (3.1b)

p − ∇H = 0, (3.1c)

H − ∇ · q = 0, (3.1d)

q − r

Q
= 0, (3.1e)

r − ∇u = 0, (3.1f)
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with

E(r) = Q

(
I − r ⊗ r

Q2

)
, (3.2)

Q =
√

1 + |r|2, (3.3)

where s, p, q , r are vectors, E(r) is the d × d matrix and I is the d × d identity matrix.
Applying the LDG method to the system (3.1), we have the scheme: Find uh, Hh ∈ Vh,

sh, ph, qh, rh ∈ 	h, such that, for all test function ϕ, ϑ ∈ Vh and φ, η, ρ, ζ ∈ 	h,

((uh)t , ϕ)K − (sh,∇ϕ)K + (ŝh · ν, ϕ)∂K = 0, (3.4a)

(sh,φ)K − (E(rh)ph,φ)K = 0, (3.4b)

(ph,η)K + (Hh,∇ · η)K − (Ĥh,ν · η)∂K = 0, (3.4c)

(Hh,ϑ)K + (qh,∇ϑ)K − (q̂h · ν, ϑ)∂K = 0, (3.4d)

(qh,ρ)K −
(

rh

Qh

,ρ

)
K

= 0, (3.4e)

(rh, ζ )K + (uh,∇ · ζ )K − (ûh,ν · ζ )∂K = 0, (3.4f)

where ν is the outward unit normal vector to ∂K and E(rh) and Qh are similarly defined as
follows:

E(rh) = Qh

(
I − rh ⊗ rh

Q2
h

)
, (3.5)

Qh =
√

1 + |rh|2. (3.6)

The “hat” terms in (3.4) at the cell boundary obtained after integration by parts are the
so-called “numerical fluxes”, which are functions defined on the cell edges and should be
designed based on different guiding principles for different PDEs to ensure stability. It turns
out that we can take the simple choices

ŝh|e = sh,R, q̂h|e = qh,R, Ĥh|e = Hh,L, ûh|e = uh,L, (3.7)

which ensure L2 stability. Numerical examples for the schemes (3.4)–(3.7) can be found in
[31].

Using the numerical flux above we get the following property (see [19, Lemma 2.2])

Lemma 3.1 Suppose e is an inter-element face shared by the elements K1 and K2; then

(ŵ,ρ · ν)∂K1∩e + (w, ρ̂ · ν)∂K1∩e − (w,ρ · ν)∂K1∩e

+ (ŵ,ρ · ν)∂K2∩e + (w, ρ̂ · ν)∂K2∩e − (w,ρ · ν)∂K2∩e = 0,

for any w ∈ Vh and ρ ∈ 	h. Here ŵe = wL, ρ̂e = ρR and again ν is the outward unit normal
vector to ∂Ki ∩ e . Moreover, the periodic boundary conditions gives

∑
K∈Th

((ŵ,ρ · ν)∂K + (w, ρ̂ · ν)∂K − (w,ρ · ν)∂K) = 0.
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The projection P − defined in (2.9) on the Cartesian meshes has the following supercon-
vergence property (see [19, Lemma 3.7]).

Lemma 3.2 Suppose η ∈ Hk+2(�),ρ ∈ 	h and the projection P − defined in (2.9), then we
have

∣∣∣∣
∫

�

(η − P −η)∇ · ρ d� −
∫

�

(η − P̂ −η)ρ · ν d�

∣∣∣∣ ≤ Chk+1‖η‖Hk+2(�)‖ρ‖L2(�), (3.8)

where “hat” term is numerical flux.

3.2 L2 Stability and Area Decreasing

In this section, we give the L2 stability and area decreasing properties of the LDG method
for the surface diffusion of graphs defined in the previous section.

Proposition 3.3 (L2 stability [31]) The solution of the surface diffusion of graphs using the
schemes (3.4)–(3.7) satisfies L2 stability

1

2

d

dt
‖uh‖2

� + ‖Hh‖2
� = 0, ∀uh,Hh ∈ Vh. (3.9)

Proposition 3.4 (Area decreasing) The solution of the surface diffusion of graphs using the
schemes (3.4)–(3.7) satisfies

d

dt

∫
�

Qh d� ≤ 0, (3.10)

where Qh is the area element.

Proof Differentiating (3.4f) with respect to time and combining with (3.4a)–(3.4e), we get

((uh)t , ϕ)K − (sh,∇ϕ)K + (ŝh · ν, ϕ)∂K = 0, (3.11a)

(sh,φ)K − (E(rh)ph,φ)K = 0, (3.11b)

(ph,η)K + (Hh,∇ · η)K − (Ĥh,ν · η)∂K = 0, (3.11c)

(Hh,ϑ)K + (qh,∇ϑ)K − (q̂h · ν, ϑ)∂K = 0, (3.11d)

(qh,ρ)K −
(

rh

Qh

,ρ

)
K

= 0, (3.11e)

((rh)t , ζ )K + ((uh)t ,∇ · ζ )K − ((̂uh)t ,ν · ζ )∂K = 0. (3.11f)

If we take the test functions in (3.11a)–(3.11f)

ϕ = −Hh, φ = −ph, η = sh, ϑ = (uh)t , ρ = −(rh)t , ζ = qh,

then we obtain
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− ((uh)t ,Hh)K + (sh,∇Hh)K − (ŝh · ν,Hh)∂K = 0, (3.12a)

− (sh,ph)K + (E(rh)ph,ph)K = 0, (3.12b)

(ph, sh)K + (Hh,∇ · sh)K − (Ĥh,ν · sh)∂K = 0, (3.12c)

(Hh, (uh)t )K + (qh,∇(uh)t )K − (q̂h · ν, (uh)t )∂K = 0, (3.12d)

− (qh, (rh)t )K +
(

rh

Qh

, (rh)t

)
K

= 0, (3.12e)

((rh)t ,qh)K + ((uh)t ,∇ · qh)K − ((̂uh)t ,ν · qh)∂K = 0. (3.12f)

Summing up (3.12a)–(3.12f) we get

(sh,∇Hh)K + (Hh,∇ · sh)K − (ŝh · ν,Hh)∂K − (Ĥh,ν · sh)∂K

+ (qh,∇(uh)t )K + ((uh)t ,∇ · qh)K − (q̂h · ν, (uh)t )∂K − ((̂uh)t ,ν · qh)∂K

+
(

rh

Qh

, (rh)t

)
K

+ (E(rh)ph,ph)K = 0.

In view of (3.6) we differentiate Qh with respect to time t to get

(Qh)t = rh

Qh

· (rh)t .

We also have

(E(rh)ph,ph)K = (ph · ph, Qh)K −
(

ph · rh,
ph · rh

Qh

)
K

≥ (ph · ph, Qh)K −
(

|ph|2,
|rh|2
Qh

)
K

=
(

ph · ph,
1

Qh

)
K

≥ 0. (3.13)

Summing up over all elements K and Lemma 3.1 we obtain

d

dt

∫
�

Qh d� ≤ 0. �

Now we consider the well-posedness of the LDG solution uh(x, t). On each element we
get an ordinary differential equations (ODEs) by (3.4a)–(3.4f). It is a Cauchy problem. For
the local existence we can get easily by the theory of the local existence and uniqueness of
ODEs. Using Proposition 3.3, we can see uh is bounded in L2-norm. So for each h, uh is
bounded in L∞-norm, the bound depends on h. Then we get global existence by the theory
of the global existence and uniqueness of ODEs. So for each h, we can get a unique solution
using this LDG scheme.

3.3 The Main Results of Error Estimates

In this section, we state the main error estimates of the semi-discrete LDG scheme (3.4) for
the two-dimensional problem in Cartesian meshes.
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We introduce notations

eu = u − uh, eH = H − Hh, er = r − rh,

eq = q − qh, ep = p − ph, es = s − sh.

We assume the periodic boundary conditions and the equation has a unique solution u, which
satisfies

u ∈ L∞([0, T ];W 3,∞(�)) ∩ L∞((0, T );Hk+4(�)), (3.14)

ut ∈ L∞([0, T ];W 1,∞(�)) ∩ L∞([0, T ];Hk+3(�)), (3.15)

which implies ‖u‖Hk+4(�), ‖ut‖Hk+3(�), ‖r‖L∞(L∞), ‖r t‖L∞(L∞), ‖p‖L∞(L∞), ‖ut‖L∞(L∞)

are all bounded. Here, ‖ · ‖L∞(L∞) denotes ‖ · ‖L∞([0,T ];L∞(�))

Theorem 3.5 Assume that (3.1a)–(3.1f) with periodic boundary conditions and smooth
enough initial condition has a unique solution u, which satisfies (3.14)–(3.15). Let uh be
the numerical solution of the semi-discrete LDG scheme (3.4)–(3.7) and the initial condi-
tion uh(x,0) = P −u(x,0). For rectangular triangulation of �, if the finite element space
is the piecewise tensor product polynomials of degree k ≥ 1, then for small enough h there
holds the following error estimates

max
t

‖eu‖� + max
t

‖er‖� + max
t

‖eq‖� ≤ Chk+1, (3.16)

∫ T

0
‖eH ‖2

� dt +
∫ T

0
‖ep‖2

� dt +
∫ T

0
‖es‖2

� dt ≤ Ch2k+2, (3.17)

where C depends on the final time T , ‖p‖L∞(L∞), ‖r‖L∞(L∞), ‖r t‖L∞(L∞),
‖u‖L∞([0,T ];Hk+4(�)) and ‖ut‖L∞([0,T ];Hk+2(�)).

Remark 3.1 Although the theory can only guarantee the situation when k ≥ 1. But the nu-
merical test shows the same optimal accuracy result for the piecewise constant polynomials
in [31].

4 Auxiliary Results

In this section, we introduce two operators and some auxiliary lemmas which give the dif-
ferent properties of the operators defined.

4.1 Two Operators

We borrow the idea of operators from [1] and use the similar technique to prove the proper-
ties of the operators.

Let v, w belong to L2(Th) × L2(Th). We define two operators on each element K

aK(r;v,w) =
(

Q

(
I − r ⊗ r

Q2

)
v,w

)
K

, (4.1)

ãK(r;v,w) =
(

1

Q
v,w

)
K

, (4.2)
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aK(rh;v,w) =
(

Qh

(
I − rh ⊗ rh

Q2
h

)
v,w

)
K

, (4.3)

ãK(rh;v,w) =
(

1

Qh

v,w

)
K

. (4.4)

We also use the following notations

a(r;v,w) =
∑
K

aK(r;v,w), a(rh;v,w) =
∑
K

aK(rh;v,w), (4.5)

ã(r;v,w) =
∑
K

ãK(r;v,w), ã(rh;v,w) =
∑
K

ãK(rh;v,w). (4.6)

Remark 4.1 Comparing aK and ãK

• The forms aK and ãK are symmetric if we fix r .
• The forms aK and ãK are nonnegative, i.e.

aK(r;v,v) ≥ 0.

The reason is the same as the proof in (3.13).
• Equivalence

– If d = 1, aK(r;v,v) = ãK(r;v,v).
– If d > 1, aK(r;v, r) = ãK(r;v, r).

They hold for aK(rh;v,w) and ãK(rh;v,w).

Remark 4.2 Equivalence form of aK . Let ξ := r
|r| if r = 0 and be arbitrary otherwise. Let

{χ i}d−1
i=1 be a normalized complementary orthogonal set perpendicular to ξ . Then each vector

v in Rd can be represented as follows:

v = v · ξξ +
d−1∑
i=1

v · χ iχ i . (4.7)

A simple calculation then yields

aK(r;v,w) =
(

1

Q
v · ξ ,w · ξ

)
K

+
d−1∑
i=1

(Qv · χ i ,w · χ i )K . (4.8)

Let ξh := rh

|rh| if rh = 0 and be arbitrary otherwise. Let {χhi}d−1
i=1 be a normalized com-

plementary orthogonal set perpendicular to ξh. The same analysis gives

aK(rh;v,w) =
(

1

Qh

v · ξh,w · ξh

)
K

+
d−1∑
i=1

(Qhv · χhi ,w · χhi)K . (4.9)

4.2 Basic Geometric Formulas

We start by introducing the following notations which are also used in [22]:

γ = (−r,1)T

Q
, γ h = (−rh,1)T

Qh

,
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NK
h (t) = (Qh(γ − γ h),γ − γ h)K.

Here, rh is finite element approximation to r . And we denote

Qh :=
√

1 + |rh|2, Nh(t) :=
∑
K

NK
h (t).

Lemma 4.1 [22] Using the notation introduced above, the follow inequalities hold:∣∣∣∣ 1

Q
− 1

Qh

∣∣∣∣ ≤ |γ − γ h|, |Q − Qh| ≤ QQh|γ − γ h|, (4.10)

∣∣∣∣ r

Q
− rh

Qh

∣∣∣∣ ≤ |γ − γ h|,
∣∣∣∣r ⊗ r

Q
− rh ⊗ rh

Qh

∣∣∣∣ ≤ 3QQh|γ − γ h|, (4.11)

|γ − γ h| ≤ |r − rh|. (4.12)

4.3 A priori Assumption

To derive the error estimates. We need to make a priori assumption:

• d ≤ 3

‖r − rh‖� ≤ h
7
4 . (4.13)

Then we get

‖r − rh‖L∞(�) ≤ Ch
1
4 , (4.14)

where C is a constant independent of h.
Recalling that Qh = √

1 + |rh|2, we immediately get

‖Qh‖L∞(�) = ‖
√

1 + |rh|2‖L∞(�) ≤ R, (4.15)

where R depends on ‖r‖L∞(�) and T . Without loss of generality, let us assume ‖r‖L∞(�) < R

and take R = max{R,‖r‖L∞(�)} otherwise. This assumption will be used to get the follow-
ing auxiliary estimates lemmas.

Remark 4.3 The assumption will be satisfied if k ≥ 1. We will give the explanation in the
end of the proof.

Remark 4.4 Using this assumption we simplify the proof of lemma 4.4 and Lemma 4.6
comparing with [1].

4.4 Auxiliary Lemmas

In this section, we will give some auxiliary lemmas to help prove the error estimates.

Lemma 4.2 For every ε > 0,

|aK(r;v,w)| ≤ εaK(r;v,v) + 1

4ε
aK(r;w,w),

|aK(rh;v,w)| ≤ εaK(rh;v,v) + 1

4ε
aK(rh;w,w).

(4.16)
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Proof By Remark 4.2, we have

|aK(r;v,w)| =
∣∣∣∣
(

1

Q
v · ξ ,w · ξ

)
K

+
d−1∑
i=1

(Qv · χ i ,w · χ i )K

∣∣∣∣

=
∣∣∣∣
(

v · ξ√
Q

,
w · ξ√

Q

)
K

+
d−1∑
i=1

(v · χ i

√
Q,w · χ i

√
Q)K

∣∣∣∣

≤ εaK(r;v,v) + 1

4ε
aK(r;w,w),

where the last inequality is by Cauchy-Schwarz inequality. The same analysis for
aK(rh;v,w). �

Lemma 4.3 For every ε > 0, there exists a constant C = C(ε,‖p‖L∞(L∞),‖r‖L∞(L∞)) > 0,
such that

|aK(r;p,w) − aK(rh,ph,w)| ≤ εaK(rh; ep, ep) + C‖w‖2
K + NK

h (t). (4.17)

Proof The proof of this lemma will be given in Appendix A.1. �

Lemma 4.4 For every ε > 0, there exists a constant C = C(ε,‖r‖L∞(L∞),‖p‖L∞(L∞)) > 0,
such that

|aK(r;p,w) − aK(rh;p,w)| ≤ εaK(rh;w,w) + CNK
h (t). (4.18)

Proof The proof of this lemma will be given in Appendix A.2. �

Corollary 4.5 (Coercivity of aK ) There exists C = C(‖r‖L∞(L∞),‖p‖L∞(L∞)) > 0, such
that

aK(r;p, ep) − aK(rh;ph, ep) ≥ 1

2
aK(rh; ep, ep) − CNK

h (t).

Proof Adding and subtracting aK(rh;p, ep), and using Lemma 4.4 with ε = 1
2 , we can

obtain the desired estimate. �

Lemma 4.6 There exists C = C(‖r‖L∞(L∞)) > 0, such that

‖er‖2
K ≤ CNK

h (t). (4.19)

Proof The proof has been given in [22] in Lemma 5.3. �

Lemma 4.7 There exists C = C(‖r t‖L∞(L∞)) > 0, such that

ãK(r; r, er t ) − ãK(rh; rh, er t ) ≥ 1

2

d

dt
NK

h (t) − CNK
h (t). (4.20)

Proof The proof has been given in [22] in Lemma 5.9. �
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Lemma 4.8 For every ε > 0

|ãK(r; r,w) − ãK(rh; rh,w)| ≤ εãK(rh;w,w) + 1

4ε
NK

h (t). (4.21)

Proof Using the definition of ãK

|ãK(r; r,w) − ãK(rh; rh,w)| =
∣∣∣∣
(

r

Q
− rh

Qh

,w

)
K

∣∣∣∣
≤

(∣∣∣∣ r

Q
− rh

Qh

∣∣∣∣, |w|
)

K

≤ ε

(
1

Qh

w,w

)
K

+ 1

4ε
(Qh(γ − γ h),γ − γ h)K.

This finally gives the proof. �

We shall use all these results in the next section.

5 Proof of the Error Estimates

In this section, we will give the proof of the main results in Sect. 3.3.

5.1 Error Equations

In order to obtain the error estimate to smooth solutions for the considered semi-discrete
LDG scheme (3.4), we need to first obtain the error equation.

Notice that the scheme (3.4) is also satisfied when the numerical solutions uh, sh, ph, Hh,
qh, rh are replaced by the exact solutions u, s, p, H , q , r . So we have the error equations

(ut − (uh)t , ϕ)K − (s − sh,∇ϕ)K + ( ̂(s − sh) · ν, ϕ)∂K = 0, (5.1a)

(s − sh,φ)K − (E(r)p − E(rh)ph,φ)K = 0, (5.1b)

(p − ph,η)K + (H − Hh,∇ · η)K − (Ĥ − Hh,ν · η)∂K = 0, (5.1c)

(H − Hh,ϑ)K + (q − qh,∇ϑ)K − ( ̂(q − qh) · ν, ϑ)∂K = 0, (5.1d)

(q − qh,ρ)K −
(

r

Q
− rh

Qh

,ρ

)
K

= 0, (5.1e)

(r − rh, ζ )K + (u − uh,∇ · ζ )K − (û − uh,ν · ζ )∂K = 0. (5.1f)

Denote

BK(u, s,p,H,q, r;ϕ,φ,η, ϑ,ρ, ζ )

= (ut , ϕ)K + (s,φ)K + (p,η)K + (H,ϑ)K + (q,ρ)K + (r, ζ )K

− (s,∇ϕ)K + (H,∇ · η)K + (q,∇ϑ)K + (u,∇ · ζ )K

+ (̂s · ν, ϕ)∂K − (Ĥ ,∇ν · η)∂K − (̂q · ν, ϑ)∂K − (̂u,ν · ζ )∂K. (5.2)
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We can easily check that BK is linear in each variable. And we use the convention B :=∑
K BK . In view of the definition of aK and ãK , (5.1a)–(5.1f) can be simplified as follows

BK(u − uh, s − sh,p − ph,H − Hh,q − qh, r − rh;ϕ,φ,η, ϑ,ρ, ζ )

− (aK(r;p,φ) − aK(rh;ph,φ)) − (ãK(r; r,ρ) − ãK(rh; rh,ρ)) = 0. (5.3)

Denote

eu = u − uh = u − Pu + Pu − uh = u − Pu + P eu,

eH = H − Hh = H − PH + PH − Hh = H − PH + P eH ,

er = r − rh = r − �r + �r − rh = r − �r + �er ,

eq = q − qh = q − �q + �q − qh = q − �q + �eq ,

ep = p − ph = p − �p + �p − ph = p − �p + �ep,

es = s − sh = s − �s + �s − sh = s − �s + �es .

Let P and � be the projections onto the finite element spaces Vh and
∑

h, respectively,
which have been defined in Sect. 2.3. In this paper we choose the projection as follows

(P,�) = (P −,P +) in one dimension, (5.4)

(P,�) = (P −,�+) in multi-dimension. (5.5)

We choose the initial condition uh(x,0) = P −u(x,0). Taking ζ = �r − rh in (5.1f) with
the help (2.8), Lemmas 3.2 and 5.7 we obtain the initial error estimates

‖u(x,0) − uh(x,0)‖� ≤ Chk+1,

‖r(x,0) − rh(x,0)‖� ≤ Chk+1, (5.6)

‖q(x,0) − qh(x,0)‖� ≤ Chk+1.

We can rewrite (5.3) as followings with the aid of the interpolation error

BK(P eu,�es,�ep,P eH ,�eq ,�er;ϕ,φ,η, ϑ,ρ, ζ )

+ BK(u − Pu, s − �s,p − �p,H − PH,q − �q, r − �r;ϕ,φ,η, ϑ,ρ, ζ )

− (aK(r;p,φ) − aK(rh;ph,φ)) − (ãK(r; r,ρ) − ãK(rh; rh,ρ)) = 0. (5.7)

5.2 The First Energy Equation

We try to mimic the derivation of the L2 stability in order to gain control on ‖eu‖� and
‖eH ‖�.

We first choose the test functions in (5.7)

ϕ = P eu, φ = �er , η = �eq , ϑ = P eH , ρ = −�ep, ζ = −�es .

Then we obtain
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BK(P eu,�es,�ep,P eH ,�eq ,�er ;P eu,�er ,�eq ,P eH ,−�ep,−�es)

+ BK(u − Pu, s − �s,p − �p,H − PH,q − �q, r − �r;
P eu,�er ,�eq ,P eH ,−�ep,−�es)

= (aK(r;p,�er) − aK(rh;ph,�er)) − (ãK(r; r,�ep) − ãK(rh; rh,�ep)). (5.8)

In the following, we will give the estimates for each term in (5.8).

Lemma 5.1 The following equation holds:

1

2

d

dt
‖P eu‖2

� + ‖P eH ‖2
�

= −B(u − Pu, s − �s,p − �p,H − PH,q − �q, r − �r;
P eu,�er ,�eq ,P eH ,−�ep,−�es)

+ (a(r;p,�er) − a(rh;ph,�er)) − (ã(r; r,�ep) − ã(rh; rh,�ep)). (5.9)

Proof The same argument as that used for the L2 stability in Proposition 3.3. �

Lemma 5.2 For every ε > 0, there exists a positive C > 0, such that

∫ t

0
|B(u − Pu, s − �s,p − �p,H − PH,q − �q, r − �r;

P eu,�er ,�eq ,P eH ,−�ep,−�es)|dt

≤ Ch2k+2 + ε

∫ t

0
(‖P eu‖2

� + ‖�er‖2
� + ‖�eq‖2

� + ‖P eH ‖2
� + ‖�ep‖2

� + ‖�es‖2
�)dt,

(5.10)

where C depends on ε, t , ‖u‖Hk+4(�) and ‖ut‖Hk+2(�).

Proof The proof of this lemma will be given in Appendix A.3. �

Lemma 5.3 For every ε > 0, there exists a positive C > 0, such that

∫ t

0
|(a(r;p,�er) − a(rh;ph,�er)) − (ã(r; r,�ep) − ã(rh; rh,�ep))|dt

≤ Ch2k+2 + C

∫ t

0
Nh(t) dt + ε

∫ t

0
‖ep‖2

� dt, (5.11)

where C depends on ε, t , ‖p‖L∞(L∞), ‖r‖L∞(L∞) and ‖u‖Hk+4(�).

Proof The proof of this lemma will be given in Appendix A.4. �

5.3 The Second Energy Equation

Next, we mimic the derivation of the area-decreasing to get control on ‖ep‖� and Nh(t). We
introduce the following bilinear form
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B̃K(u, s,p,H,q, r;ϕ,φ, ϑ,ρ, ζ )

= (ut , ϕ)K + (s,φ)K + (p,η)K + (H,ϑ)K + (q,ρ)K + (r t , ζ )K

− (s,∇ϕ)K + (H,∇ · η)K + (q,∇ϑ)K + (ut ,∇ · ζ )K

+ (̂s · ν, ϕ)∂K − (Ĥ ,∇ν · η)∂K − (ϑ, q̂ · ν)∂K − (ût ,ν · ζ )∂K, (5.12)

and we can get the corresponding error equation

B̃K(P eu,�es,�ep,P eH ,�eq ,�er;ϕ,φ,η, ϑ,ρ, ζ )

+ B̃K(u − Pu, s − �s,p − �p,H − PH,q − �q, r − �r;ϕ,φ,η, ϑ,ρ, ζ )

− (aK(r;p,φ) − aK(rh;ph,φ)) − (ãK(r; r,ρ) − ãK(rh; rh,ρ)) = 0. (5.13)

We also use the convention B̃ := ∑
K B̃K .

We choose the test functions in (5.13)

ϕ = −P eH , φ = −�ep, η = �es,

ϑ = P eut , ρ = −�er t , ζ = �eq .

Then we obtain

a(r;p, ep) − a(rh;ph, ep) + ã(r; r, ert ) − ã(rh; rh, ert )

= B̃(P eu,�es,�ep,P eH ,�eq ,�er ;
− P eH ,−�ep,�es,P eut ,−�er t ,�eq)

+ B̃(u − Pu, s − �s,p − �p,H − PH,q − �q, r − �r;
− P eH ,−�ep,�es,P eut ,−�er t ,�eq)

− (a(r;p,p − �p) − a(rh;ph,p − �p)) − (ã(r; r, r t − �r t )

− ã(rh; rh, r t − �r t )). (5.14)

In the following, we will give the estimates for the each term in (5.14).

Lemma 5.4 The following equation holds:

B̃(P eu,�es,�ep,P eH ,�eq ,�er ;−P eH ,−�ep,�es,P eut ,−�er t ,�eq) = 0. (5.15)

Proof The same argument as that used for the area-decreasing in Proposition 3.4. �

Lemma 5.5 For every ε > 0, there exists a positive C > 0, such that

∣∣∣∣
∫ t

0
B̃(u − Pu, s − �s,p − �p,H − PH,q − �q, r − �r;

− P eH ,−�ep,�es,P eut ,−�er t ,�eq) dt

∣∣∣∣
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≤ Ch2k+2 + ε(‖P eu‖2
� + ‖�er‖2

�)

+ ε

∫ t

0
(‖P eu‖2

� + ‖�er‖2
� + ‖�eq‖2

� + ‖P eH ‖2
� + ‖�ep‖2

� + ‖�es‖2
�)dt,

(5.16)

where C depends on ε, t , ‖u‖Hk+4(�) and ‖ut‖Hk+3(�).

Proof The proof of this lemma will be given in Appendix A.5. �

Lemma 5.6 For every ε > 0, there exists a positive C > 0, such that

∫ t

0
|(a(r;p,p − �p) − a(rh;ph,p − �p))

+ (ã(r; r, r t − �r t ) − ã(rh; rh, r t − �r t ))|dt

≤ Ch2k+2 + C

∫ t

0
Nh(t) dt + ε

∫ t

0
‖ep‖2

� dt, (5.17)

where C depends on ε, t , ‖p‖L∞(L∞), ‖r‖L∞(L∞), ‖u‖Hk+4(�) and ‖ut‖Hk+2(�).

Proof The proof of this lemma will be given in Appendix A.6. �

5.4 Estimates of ‖�eq‖2
� and ‖�es‖2

�

Lemma 5.7 There exists C = C(‖q‖Hk+1(�)) > 0, such that

‖�eq‖2
� ≤ C(Nh(t) + h2k+2).

Proof The proof has been given in [22] in Lemma 5.8. �

Lemma 5.8 There exists C = C(‖s‖Hk+1(�),‖r‖L∞(L∞),‖p‖L∞(L∞)) > 0, such that

‖�es‖2
� ≤ C(Nh(t) + ‖ep‖2

� + h2k+2).

Proof We consider (5.1b) separately.

((s − sh),φ)K − (E(r)p − E(rh)ph,φ)K = 0.

Taking φ = �es , we obtain

‖�es‖2
K = −(s − �s,�es)K + ((E(r)p − E(rh)ph,�es)K. (5.18)

We observe that

|(E(r)p − E(rh)ph,�es)K | = |aK(r;p,�es) − aK(rh;ph,�es)|
= |aK(r;p,�es) − aK(rh;p,�es)| + |aK(rh; ep,�es)|.

In view of Lemma 4.2 and Lemma 4.4, we get
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|(E(r)p − E(rh)ph,�es)K |

≤ 2εaK(rh;�es,�es) + C

4ε
NK

h (t) + 1

4ε
aK(rh; ep, ep)

≤ ε‖�es‖2
K + C(NK

h (t) + aK(rh; ep, ep))

≤ ε‖�es‖2
K + C(NK

h (t) + ‖ep‖2
�).

The last inequality is according to a priori assumption. Finally we get the estimate with
applying the Cauchy-Schwarz inequality in the first term of (5.18). �

5.5 Proof of Theorem 3.5

Now we are ready to get the estimates in Theorem 3.5.
Combining the results in Sects. 5.2 and 5.3, we can get the following estimates

∫ t

0

1

2

d

dt
‖P eu‖2

� dt +
∫ t

0
‖P eH ‖2

� dt

+
∫ t

0
(a(r;p, ep) − a(rh;ph, ep) + ã(r; r, ert ) − ã(rh; rh, ert )) dt

≤ Ch2k+2 + C

∫ t

0
Nh(t) dt + ε(‖P eu‖2

� + ‖�er‖2
�)

+ ε

∫ t

0
(‖P eu‖2

� + ‖�er‖2
� + ‖�eq‖2

� + ‖P eH ‖2
� + ‖�ep‖2

� + ‖�es‖2
�)dt. (5.19)

Using Corollary 4.5 and Lemma 4.7, we have

∫ t

0

1

2

d

dt
‖P eu‖2

� dt +
∫ t

0
‖P eH ‖2

� dt +
∫ t

0

1

2
a(rh; ep, ep) dt +

∫ t

0

1

2

d

dt
Nh(t) dt

≤ Ch2k+2 + C

∫ t

0
Nh(t) dt + ε(‖P eu‖2

� + ‖�er‖2
�)

+ ε

∫ t

0
(‖P eu‖2

� + ‖�er‖2
� + ‖�eq‖2

� + ‖P eH ‖2
� + ‖�ep‖2

� + ‖�es‖2
�)dt,

where C = C(‖r‖L∞(L∞),‖r t‖L∞(L∞),‖p‖L∞(L∞),‖u‖Hk+4(�),‖ut‖Hk+3(�), ε, t).
Form Remark 4.1, we can get

1

2
a(rh; ep, ep) ≥ 1

2C
‖ep‖2,

where C depends on a priori assumption constant R. So we obtain

1

2
‖P eu‖2

� +
∫ t

0
‖P eH ‖2

� dt + 1

2C

∫ t

0
‖ep‖2 dt + 1

2
Nh(t)

≤ Ch2k+2 + C

∫ t

0
Nh(t) dt + ε(‖P eu‖2

� + ‖�er‖2
�)

+ ε

∫ t

0
(‖P eu‖2

� + ‖�er‖2
� + ‖�eq‖2

� + ‖P eH ‖2
� + ‖�ep‖2

� + ‖�es‖2
�)dt.
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After choosing ε sufficiently small, using Lemma 4.6, Lemma 5.7, Lemma 5.8 and employ-
ing the Gronwall’s inequality, we get

max
t

‖Peu‖2
� + max

t
Nh(t) +

∫ T

0
‖P eH ‖2

� dt +
∫ T

0
‖�ep‖2

� dt ≤ Ch2k+2

where C depends on T , ‖p‖L∞(L∞), ‖r‖L∞(L∞), ‖r t‖L∞(L∞), ‖u‖L∞([0,T ];Hk+4(�)) and
‖ut‖L∞([0,T ];Hk+3(�)).

We use Lemma 4.6, Lemma 5.7, Lemma 5.8 again and obtain

max
t

‖er‖2
� + max

t
‖�eq‖2

� + +
∫ T

0
‖�es‖2

� dt ≤ Ch2k+2.

Triangle inequality yields Theorem 3.5.
To complete the proof, let us verify the a priori assumptions (4.13). For k ≥ 1 and d ≤ 3,

we can consider h small enough so that Chk+1 < 1
2 h

7
4 , where C is the constant determined

by the final time T . Then, if t∗ = sup{t : ‖r(s) − rh(s)‖ ≤ h
7
4 , ‖H(s) − Hh(s)‖ ≤ h

7
4 , s ∈

[0, t)}, we would have ‖r(t∗)− rh(t
∗)‖ = h

7
4 , ‖H(t∗)−Hh(t

∗)‖ = h
7
4 by continuity if t∗ is

finite. On the other hand, our proof implies that (4.13) and holds for t ≤ t∗, in particular

‖r(t∗) − rh(t
∗)‖ ≤ Chk+ 1

2 <
1

2
h

7
4 , ‖H(t∗) − Hh(t

∗)‖ ≤ Chk+ 1
2 <

1

2
h

7
4 .

This is a contradiction if t∗ < T . Hence t∗ ≥ T and our a priori assumptions (4.13) is
justified when d ≤ 3.

6 Concluding Remarks

In this paper, we have presented the optimal error analysis for the LDG method of the surface
diffusion of graphs on Cartesian meshes. The analysis is made for the fully nonlinear case
and the results are valid for all space dimension d ≤ 3 and polynomial degree k ≥ 1.

An important issue not addressed in this paper is L2 a priori error estimates on triangular
meshes. On Cartesian meshes the special projection has been used to get rid of the boundary
terms. But if we follow the same proof technique in this paper for triangular meshes, we
could easily lose half an order or even one order in accuracy, because we can not elimi-
nate the inter-element boundary terms that affect the convergence rate by using the known
projections. Such error estimates are left for future work.

Appendix: Proof of Several Lemmas

A.1 Proof of Lemma 4.3

We first add and subtract the term aK(rh;p,w) to obtain

aK(r;p,w) − aK(rh;ph,w) = aK(rh; ep,w) + aK(r;p,w) − aK(rh;p,w)

:= (I ) + (II).
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We will analyze (I ) and (II) separately. By Lemma 4.2, we have

|(I )| ≤ εaK(rh; ep, ep) + 1

4ε
aK(rh;w,w).

Using the definition of aK , we get

aK(rh;w,w) = (Qhw,w) −
(

1

Qh

w · rh,w · rh

)
K

≤(Qhw,w)K ≤ R‖w‖2
K.

We now turn to estimate (II). It follows from the definition of aK and Lemma 4.1

(II) = |aK(r;p,w) − aK(rh;p,w)|

=
∣∣∣∣
((

(Q − Qh)I −
(

r ⊗ r

Q
− rh ⊗ rh

Qh

))
w,p

)
K

∣∣∣∣
≤ 4(|γ − γ h|

√
Qh,Q

√
Qh|p||w|)K

≤ (|γ − γ h|2,Qh)K + 4(|p|2|w|2,Q2Qh)K

≤ NK
h (t) + C‖w‖2

K,

where C depends on ‖r‖L∞(L∞), ‖p‖L∞(L∞). By the triangle inequality, we obtain (4.17).

A.2 Proof of Lemma 4.4

The proof is similar to the analysis of the (II) in Lemma 4.3. We have

|aK(r;p,w) − aK(rh;p,w)|

=
∣∣∣∣
((

(Q − Qh)I −
(

r ⊗ r

Q
− rh ⊗ rh

Qh

))
w,p

)
K

∣∣∣∣
≤ 4(QQh|p||w|, |γ − γ h|)K

≤ 4R2(|p||w|, |γ − γ h|)K

≤ ε

(
1

Qh

w,w

)
K

+ 4R4

ε
‖p‖2

L∞(L∞)N
K
h (t).

The desired estimate then follows by taking C = 4R4

ε
‖p‖2

L∞(L∞).

A.3 Proof of Lemma 5.2

The linear form can be rewritten as the following form

B(u − Pu, s − �s,p − �p,H − PH,q − �q, r − �r;
P eu,�er ,�eq ,P eH ,−�ep,−�es)

= Z1 + Z2,
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where

Z1 = − (ut − Put ,P eu)� − (s − �s,�er)� − (p − �p,�eq)�

− (H − PH,P eH )� + (q − �q,�ep)� + (r − �r,�es)�,

Z2 =(s − �s,∇P eu)� − (H − PH,∇ · �eq)�

− (q − �q,∇P eH )� + (u − Pu,∇ · �es)�

− (P eu, ̂(s − �s) · ν)� + ( ̂H − PH,�eq · ν)�

+ (P eH , ̂(q − �q) · ν)� − (û − Pu,�es · ν)�.

A.3.1 Estimate of
∫ t

0 Z1 dt

Using the approximation property of the projections, we have

|Z1| ≤ ‖ut − Put‖�‖P eu‖� + ‖s − �s‖�‖�er‖� + ‖p − �p‖�‖�eq‖�

+ ‖H − PH‖�‖P eH ‖� + ‖q − �q‖�‖�ep‖� + ‖r − �r‖�‖�es‖�

≤ Chk+1(‖P eu‖� + ‖�er‖� + ‖�eq‖� + ‖P eH ‖� + ‖�ep‖� + ‖�es‖�)

≤ ε(‖P eu‖2
� + ‖�er‖2

� + ‖�eq‖2
� + ‖P eH ‖2

� + ‖�ep‖2
� + ‖�es‖2

�) + Ch2k+2.

Let C which depends on t ,‖u‖Hk+4(�), ε, and ‖ut‖Hk+1(�). This implies that

∣∣∣∣
∫ t

0
Z1 dt

∣∣∣∣ ≤ Ch2k+2 + ε

∫ t

0
(‖P eu‖2

� + ‖�er‖2
�

+ ‖�eq‖2
� + ‖P eH ‖2

� + ‖�ep‖2
� + ‖�es‖2

�)dt.

A.3.2 Estimate of
∫ t

0 Z2 dt

Observing the definition of the numerical fluxes and the projection, in one-dimension
Z2 = 0, which is analyzed in Appendix A.4 on p. 276 in [22]. In multi-dimension, we have

Z2 = − (H − PH,∇ · �eq)� + ( ̂H − PH,�eq · ν)�

+ (u − Pu,∇ · �es)� − ( ̂u − P eu,�es · ν)�.

Using of Lemma 3.2 and integrating Z2 with respect to time between 0 and t , we obtain

∣∣∣∣
∫ t

0
Z2 dt

∣∣∣∣ ≤ Ch2k+2 + ε

∫ t

0
(‖�eq‖2

� + ‖�es‖2
�)dt,

where C depends on t, ‖u‖Hk+4(�), ε.
Now, we combine the estimate of a and b, we get the desired estimates.
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A.4 Proof of Lemma 5.3

Assume

Z3 = (a(r;p,�er) − a(rh;ph,�er)) − (ã(r; r,�ep) − ã(rh; rh,�ep))

=
∑
K

(aK(r;p,�er) − aK(rh;ph,�er))

−
∑
K

(ãK(r; r,�ep) − ãK(rh; rh,�ep))

:=
∑
K

((IV) − (V )).

Next, we estimate the
∑

K(IV) and
∑

K(V ), separately. We observe that

er = r − �r + �er .

We decompose (IV) into two terms

(IV) = (aK(r;p, er) − aK(rh;ph, er)) − (aK(r;p, r − �r) − aK(rh;ph, r − �r)).

Adding and subtracting aK(rh;p, er),

aK(r;p, er) − aK(rh;ph, er) = aK(r;p, er) − aK(rh;p, er) + aK(rh; ep, er).

Using Lemmas 4.2, 4.4 and 4.6,

|aK(r;p, er) − aK(rh;ph, er)|

≤ εaK(rh; er , er) + CNK
h (t) + εaK(rh; ep, ep) + 1

4ε
aK(rh; er , er)

≤ ε‖ep‖2
K + CNK

h (t)

with C depending on ε, ‖p‖∞, ‖r‖∞. Similarly,

|aK(r;p, r − �r) − aK(rh;ph, r − �r)|

≤ εaK(rh; r − �r, r − �r) + CNK
h (t) + εaK(rh; ep, ep) + 1

4ε
aK(rh; er , er)

≤ ε‖ep‖2
K + C(NK

h (t) + ‖r − �r‖2
K)

with C depending on ε, ‖p‖L∞(L∞), ‖r‖L∞(L∞).
In view of

ep = p − �p + �ep,

we can decompose (V ) as follows

(V ) = ãK(r; r,�ep) − ãK(rh; rh,�ep)

= (ãK(r; r, ep) − ãK(rh; rh, ep)) − (ãK(r; r,p − �p) − ãK(rh; rh,p − ep)).
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Using Lemma 4.8, we get

|ãK(r; r, ep) − ãK(rh; rh, ep)| ≤ εãK(rh; ep, ep) + 1

4ε
NK

h (t)

≤ ε‖ep‖2
K + 1

4ε
NK

h (t).

The same analysis yields

|ãK(r; r,p − �p) − ãK(rh; rh,p − �p)| ≤ ε‖p − �p‖2
K + 1

4ε
NK

h (t).

Collecting the estimates of (IV) and (V ) and summing up all the elements K , we get

∫ t

0
Z3 dt ≤ Ch2k+2 + C

∫ t

0
Nh(t) dt + ε

∫ t

0
‖ep‖2

� dt,

where C depends on ε, t , ‖p‖L∞(L∞), ‖r‖L∞(L∞) and ‖u‖Hk+4(�).

A.5 Proof of Lemma 5.5

The linear form can be rewritten as the following form

B̃(u − Pu, s − �s,p − �p,H − PH,q − �q, r − �r;
− P eH ,−�ep,�es,P eut ,−�er t ,�eq)

= S1 + S2,

where

S1 = (ut − Put ,P eH )� + (s − �s,�ep)� − (p − �p,�es)�

− (H − PH,P eut )� + (q − �q,�er t )� − (r t − �r t ,�eq)�,

S2 = − (s − �s,∇P eH )� − (H − PH,∇ · �es)�

− (q − �q,∇P eut )� − (ut − Put ,∇ · �eq)�

+ (P eH , ̂(s − �s) · ν)� + ( ̂H − PH,�es · ν)�

+ (P eut ,
̂(q − �q) · ν)� + ( ̂ut − Put ,�eq · ν)�.

A.5.1 Estimate of
∫ t

0 S1 dt

∣∣∣∣
∫ t

0
(−(H − PH,P eut )� + (q − �q,�er t )�) dt

∣∣∣∣
=

∣∣∣∣−(H − PH,P eu)�|t0 +
∫ t

0
(Ht − PHt,P eu)� dt
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+ (q − �q,�er)�|t0 −
∫ t

0
(q t − �q t ,�er)� dt

∣∣∣∣
≤ ε(‖P eu‖2

� + ‖�er‖2
�) + ε

∫ t

0
(‖P eu‖2

� + ‖�er‖2
�)dt + Ch2k+2,

where C depends on ‖u‖Hk+3(�) , ε, t and ‖ut‖Hk+3(�). Integrating S1 with respect to time
between 0 and t . We obtain

∣∣∣∣
∫ t

0
S1 dt

∣∣∣∣ ≤ Ch2k+2 + ε(‖P eu‖2
� + ‖�er‖2

�)

+ ε

∫ t

0
(‖P eu‖2

� + ‖�er‖2
� + ‖�eq‖2

� + ‖P eH ‖2
� + ‖�ep‖2

� + ‖�es‖2
�)dt.

A.5.2 Estimate of
∫ t

0 S2 dt

Observing the definition of the numerical fluxes and the projection, in one-dimension S2 = 0.
In multi-dimension, we have

S2 = − (H − PH,∇ · �es)� + ( ̂H − PH,�es · ν)�

− (ut − Put ,∇ · �eq)� + ( ̂ut − Put ,�eq · ν)�.

Using of Lemma 3.2 and integrating S2 with respect to time between 0 and t , we obtain

∣∣∣∣
∫ t

0
S2 dt

∣∣∣∣ ≤ Ch2k+2 + ε

∫ t

0
(‖�eq‖2

� + ‖�es‖2
�)dt,

where C depends on ‖u‖Hk+4(�) , ε, t and ‖ut‖Hk+2(�).
Now, we combine the estimate of c and d. Finally we get the desired estimates.

A.6 Proof of Lemma 5.6

Assume that

S3 =
∑
K

(aK(r;p,p − �p) − aK(rh;ph,p − �p))

+
∑
K

(ãk(r; r, r t − �r t ) − ãK(rh; rh, r t − �r t )).

Using Lemma 4.1, Lemma 4.2, Lemma 4.3, Lemma 4.4, Lemma 4.6 and Lemma 4.8 gives
the estimate

∣∣∣∣
∫ t

0
S3 dt

∣∣∣∣ ≤ Ch2k+2 + C

∫ t

0
Nh(t) dt + ε

∫ t

0
‖ep‖2

� dt,

where C depends on ε, t , ‖p‖L∞(L∞), ‖r‖L∞(L∞), ‖u‖Hk+4(�) and ‖ut‖Hk+2(�).
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